
Fault Tolerance Through Automated Diversity in

the Management of Distributed Systems

Jörg Preißinger ∗

Abstract—Nowadays the reliability of software is

often the main goal in the software development pro-

cess. Despite more and more improvements in fault

preventing techniques, it is a fact that faults remain

in every complex software system. In contrast to

hardware-faults, no concepts or mechanisms for fault

tolerance of general software-faults became widely ac-

cepted. In this paper we present a new concept for the

design of system management, that enables the tol-

erance of software-faults of the executed applications.

We explain how the underlying resource management

of a distributed system affects the occurrence of er-

rors of a faulty application and how the re-execution

of the application with altered resource management

decisions prevents the occurrence of errors with cer-

tain probability. Our contribution is to motivate a

new approach for fault tolerance in distributed sys-

tems and to give a general concept for system design-

ers which states what decision spaces can be used to

tolerate faults and how different alternatives in one

decision space can be evaluated and generated. The

concept is applicable for a large class of system mod-

els.

Keywords: fault tolerance, software-faults, distributed

systems, system management, diversity

1 Introduction

An improvement of the reliability and survivability of dis-
tributed systems is necessary due to the increasing use of
these systems in environments, in which a system failure
implies a financial disaster or even the harm of human
beings. This improvement can only be achieved by com-
bining fault preventing and fault tolerating techniques.
On the one hand, fault preventing techniques during the
software engineering process reduce the number of faults
in software drastically. But on the other hand, despite
exhaustive testing and model-checking techniques, bugs
remain in complex software and thus especially in dis-
tributed applications due to the dependencies in concur-
rent problem solutions (cp. [1] and [2]). These remain-
ing software-faults as well as hardware-faults need to be
tolerated during execution to improve the reliability of
systems.

∗Institut für Informatik, Technische Universität München,
85748 Garching bei München, Email: preissin@in.tum.de

1.1 Fault Tolerance

Approaches to tolerate hardware-faults are well explored
and established. The goal of these approaches is to tol-
erate transient or permanent faults of one or several in-
stances of a hardware entity under the assumption, that
some other instances of that kind of hardware work cor-
rectly. This implies that the hardware has no faults in
its design, but faults appear in some of its produced in-
stances by aging or environmental influence. Through
structural redundancy faults of some components can
be compensated by the correctly working ones and thus
hardware-faults can be tolerated (cp. [3]).

1.1.1 Software-fault Tolerance

In contradiction to hardware-faults, software-faults (i.e.
bugs) are faults in the design of the software; a software-
fault is permanent and exists in every instance (e.g. every
copy) of the software. If the techniques of fault tolerance
for hardware-faults were used to tolerate software-faults,
either every redundantly executed part of a software (e.g.
module, function) computed the same correct result or
produced the same error, for a certain input. For this
reason the tolerance of software-faults is more complex,
less understood and less established than the tolerance of
hardware-faults (cp. [3]).

Today software-fault tolerance1 can be differentiated into
two classes: The first class covers exception mechanisms,
which handle predictable problems such as communica-
tion errors or insufficient resources by explicitly defined
or standardized functions. The second class covers ap-
proaches that try to cope with any kind of unpredictable,
general design fault in software. The first class is very
useful and established, but the fault tolerance in this
class can be viewed more as part of the problem solu-
tion than as an approach to tolerate software-faults. The
approach of diversity programming (N-Version Program-
ming) is the only approach in the second class of software-
fault tolerance, attempting to tolerate any software-fault:
Starting from the same specification, several separated
programming teams implement several versions of a soft-

1In this paper the term software-fault tolerance means the tol-
erance of software-faults, not in software implemented tolerance of
faults.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008



ware with equal functionality. The different versions can
then be executed redundantly and faults can be tolerated,
if they exist only in some of the versions (cp. [4]).

1.1.2 Problems of Diversity Programming

Several Studies and Experiments show that the errors
made in the different versions are correlated due to sev-
eral reasons ([5] p. 165): Common specifications, intrin-
sic difficulty of the problem, common algorithms, cul-
tural factors, common platforms. The most important
reason for the correlation of errors is the fact, that the
complexity of software or generally of problem solutions
differs. There nearly always exist some cases of input
or some parts of the problem solution, where additional
dependencies drastically increase the complexity of pro-
gramming. In these cases programmers tend to make
more errors, independent of their education, the used
programming language or their cultural background (cp.
[6]). The correlation of errors in the different versions
of the software reduces the theoretically achievable reli-
ability increase of diversity programming. Nevertheless
diversity programming is a very expensive technique, be-
cause the programming and testing of not only one but
several versions of a software needs to be done. The high
costs combined with the moderate increase of reliabil-
ity due to correlated errors makes diversity programming
unprofitable in most cases in practice (cp. [7]).

1.2 Challenge

Unpredictable software-faults remain in complex software
systems in spite of fault preventing techniques as test-
ing and model-checking. Techniques to tolerate software-
faults are needed to meet high reliability and survivabil-
ity requirements of computer systems, particularly in the
case of distributed systems due to the additional software
complexity. These techniques must avoid the shortcom-
ing of diversity programming in the sense that the de-
velopment costs of software must remain profitable for
practice.

1.3 Contribution

We present a new concept of software-fault tolerance
based on checkpointing and re-execution with automated
diversity in system management. We illustrate why cer-
tain changes in the execution environment of an appli-
cation, e.g. decisions and strategies of resource manage-
ment in the underlying operating system or middleware,
avoid the re-occurrence of errors with high probability.
We propose strategies to vary management decisions and
to generate execution alternatives based on approxima-
tions of execution costs and on the approximated proba-
bility of tolerating faults.

1.4 Organisation

The remainder of this paper is structured as follows:
section 2 provides some terminology and discusses what
kinds of faults often remain in software. The concept of
fault tolerance through automated diversity is described
in section 3. In section 4 two examples are briefly ex-
plained to illustrate the concept. Related work is de-
scribed in section 5. Section 6 concludes the paper and
emphasizes resulting challenges for the future.

2 Software-faults

This section provides a short introduction to the used ter-
minology and discusses what kind of software-faults are
particularly hard to detect and remove by fault prevent-
ing techniques and therefore need to be tolerated.

2.1 Terminology

In the area of fault tolerance and fault prevention several
kinds of faults and different aspects can be distinguished.
For a comprehensive description of terms and definitions
we refer to P. Jalote [3]; for the paper at hand we dis-
tinguish between fault, error and failure. A failure of a
system occurs, if the system (viewed as black box) does
not behave as specified. An error is an internal state of
the system (viewed as glass box) which may lead to a
failure. Whether the failure actually occurs depends on
the execution that takes place after the error occurred.
An error is the result of a fault, but the error occurs at
runtime whereas the fault exists statically. This paper
addresses software-faults in particular; these are perma-
nent faults in the source code of software that may or
may not cause an error during execution. In this case
fault and resulting error both are commonly called bug.

Fault prevention techniques aim at preventing the soft-
ware from faults during the engineering process. Test-
ing, model-checking, bug-finding tools and reviews are
used to reduce the number of faults in software. The aim
of fault tolerance techniques is to avoid a failure in the
system even if faults are present. Therefore errors must
be detected and the causal chain to system failure inter-
rupted. Fault tolerance with forward recovery changes an
erroneous result to the correct result by using redundant
information, e.g. crc-codes or raid systems. Backward
recovery is based on former saved states that can be re-
covered. Usually the same execution is tried again from
that saved states, thus errors caused by non-permanent
faults can be tolerated.

2.2 Remaining Software-faults

Fault prevention techniques, in particular software tests,
are valuable and very efficient to decrease the number
of software-faults drastically. As stated in the introduc-
tion some faults remain in software even though excessive
software tests and other fault prevention techniques were

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008



done (cp. [8]). Some kinds of faults are more easy to
detect and remove than others and particularly the kinds
of faults that frequently remain in software need to be
tolerated at runtime.

Apparently the difficulty to detect a software-fault by
testing depends on the determinism of it’s caused error
and failure. If a software-fault causes an error and leads
to a failure deterministically for a given input, the ex-
istence of this fault can easily be detected during the
software testing process. If a fault causes - given the
same input - only in seldom cases an error, it’s detection
is much more difficult and the chance is high that the
fault stays undetected during the testing process. The
un-determinism of the occurrence of errors in these cases
is due to additional dependencies concerning the execu-
tion environment, which is the system internal resource
management, e.g. scheduling, as well as the system ex-
ternal environment, e.g. incoming messages. Typically,
the occurrence of those errors depends on timing (race-
conditions), or on the use of resources, e.g. accessing
wrong memory regions (not allocated, buffer-overflow,
etc.).

It’s not possible to influence the external environment,
e.g. what messages reach a system, at least not transpar-
ently. In contrast, all internal causes of the occurrence of
such an error can be influenced by the execution environ-
ment. We call faults concretion dependent, if the sum of
all management decisions is decisive for the fault causing
an error or not. In other words, if a fault in an application
causes an error only in some of all possible combinations
of management decisions of the underlying system, it is
called concretion dependent fault. We define the man-
agement of the system as all software components, that
are necessary to execute the problem solution written in a
high level programming language on the given hardware;
this includes compiler, binder, loader, operating system,
communication middleware, etc.

On the one hand concretion dependent faults are hard
to detect by fault prevention techniques and thus often
remain in software despite high effort for quality assur-
ance during the software engineering process. On the
other hand the cause of errors by concretion dependent
faults can – by definition – be avoided and thus toler-
ated due to their dependence on management decisions.
Furthermore, if a software-fault in a closed system is not
concretion dependent, it causes errors deterministically
and thus is easy to detect and can be removed. In the
following section we describe how management decisions
can be altered to tolerate concretion dependent faults in
applications.

3 Automated Diversity in Distributed

System Management

The concept to tolerate software-faults described in this
paper is based on mechanisms to detect errors on the one

hand, and to perform rollbacks to saved system states
on the other hand. The mechanisms are generally inde-
pendent from the automated diversity that occurs after
having detected an error and rolled back to a former saved
state. The demand on the error detection mechanism is
to enable a detection of a large class of software-faults,
whereas the checkpoint-rollback mechanism is indepen-
dent of the fault tolerance concept. Due to the limits
of this paper we will postulate the existence of mecha-
nisms for error detection and checkpoint-rollback on sys-
tem level and refer to former work in the same project on
error detection [9] and checkpointing [10].

3.1 General Idea

Particularly those software-faults that only appear in spe-
cial execution environments or specific temporal execu-
tion sequences are often not detected by fault preventing
techniques. The management’s decisions on execution
and resource management of the high level problem solu-
tion affect the occurrence of these errors. Error detection
mechanisms are used to detect software errors, without
classification or localization. The management performs
a rollback to a former saved state after an error was de-
tected. The management’s degrees of freedom are used
when re-executing from that saved state to vary the deci-
sions of resource management based on collected applica-
tion information. If the fault was concretion dependent,
there is a probability that a different combination of man-
agement decisions does not lead to the occurrence of the
same error again.

Viewed from a high abstraction level, one can say that
the problem to tolerate a concretion dependent fault is a
classical search problem on the possible combinations of
management decisions. If the fault is concretion depen-
dent, then - by definition - some combinations of manage-
ment decisions will lead to errors whereas other ones will
lead to the correctly executed and terminated system. In
the following sections we will describe, what management
decisions should be manipulated, how new alternative de-
cision combinations can be generated and which of them
should be chosen. On the one hand, the goal for efficient
system execution must be met, whereas on the other hand
the probability for the tolerance of faults should be max-
imized.

3.2 Decision Spaces

For the execution of a software written in a high level lan-
guage, the decision space for the management, including
compilation, deployment and execution, is tremendous.
For practicability, we need a small amount of manage-
ment decisions that can easily be altered and former de-
cisions logged, but have a high impact on the probability
of the occurrence of typical concretion dependent faults.
It is difficult to get statistic informations about the kind
of faults that remain in software after extensive test-
ing, and more important, the reasons of their occurrence.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008



One large number of bugs are either in the field of erro-
neous memory management, meaning to overwrite data
due to wrong pointers, loop variables, array boundaries,
etc. (cp. [8]). Another large remaining class of faults,
or more reason for the occurrence of faults or unspeci-
fied behavior, are race conditions. We use two classes of
management decisions that affect these two fault classes
to demonstrate the general concept of fault tolerance
through automated diversity on management level. The
concept is not restricted to those two classes of decisions
and can easily be applied for other decision spaces. It de-
pends on the whole distributed system, including appli-
cation programming language, compiler, communication
services and operating system, which decisions promise a
high probability to be the trigger of errors.

One decision space that has an important impact on re-
source availability and in particular on the timing be-
tween cooperating processes in a distributed execution is
the process placement. In a general model for distributed
systems we presume to have a finite set of nodes N and
a dynamically changing set of processes P . Processes
p ∈ P are created dynamically, communicate via mes-
sage passing and terminate after finishing their calcula-
tions. For every created process the system management
must decide on which of the Nodes N the process should
be executed. The mapping of processes to nodes affects
the execution of the interacting processes: first, processes
executed on one node can communicate about 105 times
faster than processes on different nodes via standard net-
work. Second, resources as cpu and memory are shared
through virtualisation and thus the total number of pro-
cesses on one node affects the real time behavior of pro-
cesses and therefore the relative timing to processes on
other nodes.

Assuming that a distributed application consisting of
three processes p1, p2 and p3 has a software fault in syn-
chronization that leads only to an error if p1 reaches a
critical section before p2 does. If this application is ex-
ecuted on a distributed system consisting of two nodes,
the occurrence of this error may depend on the placement
decision: if p1 is executed on one node whereas p2 and p3

are executed on the other, the probability for the occur-
rence of the error is much higher than in the case of p2

being executed on one node and p1 and p3 on the other.
Obviously the probability for the occurrence of the error
lies somewhere between if p3 is on one node and p1 and
p2 share the node. We will use the process placement in
a cooperating distributed system as an example decision
space to illustrate and explain the general concept, which
can be applied to any decision space in system manage-
ment.

3.3 Generating Alternatives

After an error is detected, the management needs to per-
form a rollback to a previously saved state and re-execute
the application with changed management decisions. A

change of management decisions requires the possibility
to generate different alternatives and to evaluate them.
First we will explain how alternatives can be generated
given an evaluation function fe : A × A 7→ IR that maps
the difference between two alternatives a1, a2 to a real
number. Later we will explain how to design fe. Sup-
pose that, comparing two alternatives a1, a2, the higher
the chance that an error that occurred when performing
a1 will not occur again when performing a2, the higher
the value of fe will be for a1, a2. An alternative a ∈ A

is one of all possible outcomes in the decision space. In
the example of the process placement decision, the al-
ternatives are all possible mappings of actually existent
processes to the available nodes. More precisely A is the
set of all possible partitionings of the set P of actually
existing processes into 1 . . .N partitions, where the pro-
cesses are distinguished but the nodes are presumed to
be equal.

The complexity of generating a new alternative for a
given decision and given evaluation function fe depends
on the decision space. If the set A of alternatives is large,
we propose the usage of search algorithms to generate a
new alternative starting from the one that lead to the
error. For example hill-climbing (cp. [11]), simulated an-
nealing (cp. [12]) or genetic search algorithms (cp. [13])
can be used to generate a new alternative. Which search
algorithm should be chosen depends on the properties of
the decision space. For the process placement a genetic
search algorithm can be used, because the genetic op-
erations crossover and mutation can be applied for the
partitioning easily. Given one partitioning, mutation is
to move one random process from one to another set in
the partitioning. For the crossover operation, we suggest
to divide the set P of processes into two disjunct subsets
P1, P2. Then the partitioning of the subset P1 from one
alternative is combined with the partitioning of P2 from
another alternative. With these operations the chance to
get a new alternative with good evaluation in few popu-
lations is high.

If the decision space is small, the new alternative can be
generated algorithmically from the old one regarding the
evaluation function fe. When designing a system and
identifying decision spaces, one way for the generation
method of new alternatives must be chosen and imple-
mented.

3.4 Evaluating Alternatives

The requirement to generate a new alternative for a man-
agement decision that lead to an error is the evaluation
function fe, that expresses the difference in achieving the
system goals between the last used alternative and a new
one as numerical value. This evaluation function rep-
resents the system strategy for fault tolerance, which is
in most systems a tradeoff between system performance
and the probability to tolerate faults. We propose to con-
struct the evaluation function fe as a combination of two

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008



functions respecting those two important system criteria.

3.4.1 Cost

One important goal of every system is performance. Usu-
ally the strategies in management aim at system per-
formance, this implies that the decisions, after which
an error occurred, usually preferred the alternative with
most performance. The loss of performance when try-
ing another alternative is expressed by the cost function
fc : A × A 7→ IR. The cost function fc(a1, a2) expresses
the relative performance loss as a real number, when us-
ing alternative a2 instead of a1. The cost function is one
part of the evaluation function fe. The problem is how to
construct the cost function, or in other words an adequate
approximation of the relative loss of system performance
for two given alternatives in a decision space. Again, the
cost function depends on the decision space as well as
the system details and must be developed during system
design.

Constructing a practically relevant approximation for the
effect of different process placements on system perfor-
mance is a difficult task. We based our cost function
on the work of C. Rehn who used compiler analysis of
communication dependencies and execution times to ap-
proximate the real parallel execution times for an op-
timization of task placement in distributed systems [14].
The important factor for a task placement that optimizes
performance is not the cpu load in the moment of the
placement decision, but the communication dependencies
that influence which processes can be executed in parallel
if placed on different nodes and which process commu-
nication is fast on the same node or slow via network.
Based on the compiler analysis we get an approximation
of the system overall execution time dependent on process
placement. Additionally we take the migration costs of
processes into account, if already placed processes need to
migrate to another node to achieve an alternative process
placement starting from a saved state. Let runtime() be
the algorithm that approximates the overall system run-
time for a given process placement a ∈ A from a saved
state including migration costs, then the cost function
is fc(a1, a2) = runtime(a2) − runtime(a1); a1, a2 ∈ A.
We will not give details on the approximation algorithm,
because this paper focuses on the general concept rather
than the details for one implementation, but the example
should illustrate the concept. Details on the approxima-
tion can be found in [14].

3.4.2 Variance

The second part of the evaluation function fe, that should
affect the management decision after an error occurred,
is the probability to tolerate the fault in the sense that
the same error will not occur again at that point of exe-

cution. It is not possible to approximate this probability,
because it depends on every single fault, which changes
in decisions and which alternatives affect the occurrence
of the implied error. As we argued in section 2.2, concre-
tion dependent faults only lead to an error if certain de-
cisions in management are taken, which often affect tim-
ing or resource management. This leads to an important
assumption: statistically the distance in the dimensions
time and resource consumption between two alternatives
is directly proportional to the probability, that an error
which occurred in one alternative caused by a concre-
tion dependent fault will not occur in the other alterna-
tive. This assumption is based on the locality principle
of code and data. If for example the mutual exclusion to
access a critical region is faulty and we suppose that in
one alternative a1 the timing lead to the erroneous case
that two processes entered the critical region at the same
time, then the more the time interleaving of those two
processes gets changed, the higher is the chance that the
error will not occur again. Suppose a process to over-
write data that is allocated directly after an array with
erroneous boundaries. Again the greater the distance in
resource management, in this case the changes of mem-
ory layout, the higher the chance that there is no valuable
data following the array.

We call the distance between two alternatives in time or
resource consumption the variance of two alternatives.
The variance function fv : A × A 7→ IR expresses this
relative distance between two alternatives of one decision
space as real number. The construction of a variance
function is to a certain extent intuitive and not entirely
measurable. However, at system design time a function
must be constructed that approximates that distance ef-
ficiently. The complexity of this task is again dependent
on the decision space, but we will illustrate the construc-
tion for the process placement example. Let two pro-
cesses p1 and p2 cooperate via message passing. The
execution timing of those processes is influenced by the
decision if they are executed on the same node, or on
two different ones. If they are on the same node, the
communication via message passing is very fast, if exe-
cuted on two different nodes the time messages need for
transportation will have a large impact on the concur-
rent execution. We express this in a boolean auxiliary
function fa : A × A × P × P 7→ {0, 1}. fa compares the
placement of two processes p1, p2 ∈ P in two placement
alternatives a1, a2 ∈ A and results to 0, if the two pro-
cesses are either on one node or on different nodes in both
alternatives. If they are placed on the same node in one
alternative and on different ones in the other, fa results
to 1. The variance function can then be defined as the
sum of all changes of combined process-pairs:

fv(a1, a2) =
∑

∀pi,pj∈P

fa(a1, a2, pi, pj)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008



3.4.3 Strategy

The cost function fc and variance function fv need to
be combined to the evaluation function fe, which is used
to generate new alternatives via search algorithms. The
weighted combination of cost function and variance func-
tion expresses the tradeoff between system performance
and probability to tolerate faults. This tradeoff has an
effect only after an error is detected an a rollback per-
formed. A strategy that lays more stress on a low value
of the cost function will execute the system similarly ef-
ficient from the saved state as the time before, but the
chance that the same error occurs again will be relatively
high. If a high value of the variance function is focused
in the strategy, the re-execution of the system part will
be less efficient, but the chance to tolerate the fault will
be higher. If the same error occurs again, the rollback
can be performed another time, but the decision should
be chosen differently. So we propose to use a dynami-
cally changing strategy for the combination of fv and fc

such that first, fc is weighted heavier to keep the system
efficient, but the more often the same error occurs again,
the more fv is weighted more to increase the probability
to tolerate the fault. Due to the dynamically evolving
evaluation function, the management tries other alterna-
tives for a given decision every time the same error occurs
again. Thus the chance to find a combination of manage-
ment decisions in which the error does not occur rises.

4 Examples

In the following we briefly describe two examples for de-
cision spaces with evaluation functions to illustrate the
general concept.

4.1 Process Placement

As already mentioned above, the process placement of
cooperating processes in a distributed system has an im-
pact on execution timing and resource availability. Cost
and variance functions were already described above. A
genetic search algorithm can be used to generate the new
alternatives based on the evaluation function, which is
dynamically changed as follows: in the first retry, we use
lowest cost

fe(a1, a2) =
1

fc(a1, a2)
, withfc 6= 0

the second retry uses the best ratio between variance and
cost:

fe(a1, a2) =
fv(a1, a2)

fc(a1, a2)
, withfc 6= 0.

If the error occurs another time, the variance function is
maximized without respecting the costs:

fe(a1, a2) = fv(a1, a2).

Due to the genetic search, even if the evaluation function
is unchanged, different alternatives will be generated.

Race conditions, i.e. faults that cause their errors depen-
dent on the execution timing of concurrent processes, can
be tolerated with high probability by altering the process
placement. Due to the changing number of processes on
one processor as well as the different communication de-
lay, the interdigitation of process execution can be altered
essentially and thus the fault tolerated.

4.2 Memory Layout

array

object

word

additionally allocated 
buffers

standard memory layout altered memory layout

Figure 1: decision space memory layout

Faults in memory management are a large class of typ-
ical software bugs. The proposed concept can also be
used to alter the memory layout of processes to toler-
ate some of these faults. We propose a very simple way
to change the memory layout here to demonstrate a de-
cision space, where cost function and variance function
are trivial in contrast to those of the process placement.
In many memory related faults, the memory region that
is located directly after the allocated region gets over-
written. One solution for that problem is to allocate an
additional buffer in the size of the stored data at the next
address of allocated memory. Our decision space has only
two alternatives, usual memory layout and that with ad-
ditional buffers, as illustrated in fig. 1. In a decision space
with only two alternatives, the evaluation function sim-
ply changes the memory layout from normal to buffered
mode. This is an example of a very simple use of the
proposed concept, to illustrate that even minor changes
of decisions with acceptable expenses in development can
raise the fault tolerance of distributed systems. Of course
the altering of memory layout can be designed far more
complex and thus lead to a higher probability to tolerate
faults.

5 Related Work

The introduced concept must be generally distinguished
from diversity programming, where different versions of
the application need to be developed. In the proposed
concept the diversity is implemented via altering manage-
ment decisions such that a faulty application executed on
the system will be executed correctly with a certain prob-
ability. The software development effort must be invested
once at system design time, not for every application.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008



Wang et al. describe an approach called ”progressive
retry” to tolerate faults in message passing systems via
reproducing incoming messages with altered order in case
of an error [15]. Wangs work is one example for the use
of diversity on management level to tolerate faults. In
that case the decision space is the order of incoming mes-
sages. Wangs approach encourages the general concept
presented in the paper at hand.

Some interesting work in the field of security is done in
recent years using randomized diversity in system man-
agement. In contrast to the work at hand, the goal of
that work is not to tolerate software-faults, but to change
the uniformity of systems which is the main reason for
the vulnerability to attacks [16]. E.g. Xu et al. pro-
hibit attacks based on unauthorized control information
tampering (ucit) as buffer overflows etc. via dynamically
randomized memory layout in their project Transparent
Runtime Randomization (TRR) [17].

6 Conclusion

In the paper at hand we presented a general concept to
tolerate software-faults. The main contribution of our
work is to present a new approach of fault tolerance in
system management without dependencies to special sys-
tem models or concrete management implementations.
We argued that most faults that remain in complex soft-
ware after exhaustive testing are concretion dependent
faults: the combination of management decisions implies
if the fault causes an error or not. Thus one way to tol-
erate those faults and thus improve the reliability of the
software is automated diversity in the management: after
an error gets detected, the system is re-executed starting
from a saved state with an altered combination of man-
agement decisions. We presented possibilities to iden-
tify decision spaces, generate alternatives and construct
evaluation functions. Further we illustrated the general
concept on the basis of the process placement decision.

We want to challenge system designers to implement fault
tolerance based on this concept and gain practical experi-
ences with different decision spaces, evaluation functions
and methods to generate alternatives. Practical experi-
ences are necessary to identify the effectivity of the pro-
posed concept as well as the efficiency of the concept for
different decision spaces to improve the reliability of soft-
ware systems.

Acknowledgment

The author would like to thank Prof. Dr. P. P. Spies
for his valuable comments in discussions on the proposed
concept. Further thank goes to Prof. Dr. U. Baumgarten
for his support of this work.

References

[1] Jim Gray. Why do computers stop and what can be done about
it? In Symposium on Reliability in Distributed Software and

Database Systems, pages 3–12, 1986.

[2] Gerard J. Holzmann. The logic of bugs. SIGSOFT Softw.

Eng. Notes, 27(6):81–87, 2002.

[3] Pankaj Jalote. Fault tolerance in distributed systems. Prentice-
Hall, 1998.

[4] A. Avizienis and L. Chen. On the implementation of n-version
programming for software fault tolerance during execution.
roc. the First IEEE-CS International Computer Software and
Applications Conference (COMPSAC 77), Nov 1977. Chicago.

[5] Israel Koren and C.Mani Krishna. Fault-Tolerant Systems.
Morgan-Kaufman Publishers, San Franciso, CA, 2007.

[6] J. C. Knight and N. G. Leveson. An experimental evaluation of
the assumption of independence in multiversion programming.
IEEE Trans. Softw. Eng., 12(1):96–109, 1986.

[7] R. Feldt. Generating diverse software versions with genetic
programming: an experimental study. IEEE Proceedings -

Software, 145(6):228–236, 1998.

[8] M. Sullivan and R. Chillarege. Software defects and their im-
pact on system availability-a study of field failures in operating
systems. In Fault-Tolerant Computing, 1991. FTCS-21. Di-

gest of Papers., Twenty-First International Symposium, pages
2–9, 25-27 June 1991.

[9] Jörg Preißinger and Alexander Mayer. Integrating de-
sign by contract in insel. In Proceedings of the Interna-

tional MultiConference of Engineers and Computer Scientists,

IMECS’2007, pages 1037–1043, Hong Kong, March 2007.

[10] Jörg Preißinger and Mark Pflüger. Compiler supported in-
terval optimisation for communication induced checkpointing.
In Hamid R. Arabnia, editor, Proceedings of the International

Conference on Parallel and Distributed Processing Techniques

and Applications, PDPTA’07, volume II, pages 550–556, Las
Vegas, NV, June 2007. CSREA Press.

[11] Winston P. Henry and Patrick Henry Winston. Artificial Intel-

ligence. Addison Wesley Longman Publishing Co., Inc., Red-
wood City, CA, USA, 2004.

[12] S. Kirkpatrick, Jr. Gelatt, C. D., and M. P. Vecchi. Opti-
mization by Simulated Annealing. Science, 220(4598):671–
680, 1983.

[13] David E. Goldberg. Genetic Algorithms in Search, Optimiza-

tion and Machine Learning. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 1989.

[14] Christian Rehn. Dynamic mapping of cooperating tasks to
nodes in a distributed system. Future Generation Comput.

Syst., 22(1):35–45, 2006.

[15] Yi-Min Wang, Yennun Huang, W. Kent Fuchs, and Chan-
dra Kintala. Progressive retry for software failure recov-
ery in message-passing applications. IEEE Trans. Comput.,
46(10):1137–1141, 1997.

[16] Elena Gabriela Barrantes, David H. Ackley, Stephanie Forrest,
and Darko Stefanovi. Randomized instruction set emulation.
ACM Trans. Inf. Syst. Secur., 8(1):3–40, 2005.

[17] Jun Xu, Z. Kalbarczyk, and R.K. Iyer. Transparent runtime
randomization for security. In Reliable Distributed Systems,

2003. Proceedings. 22nd International Symposium on, pages
260–269, 6-18 Oct. 2003.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008


