

Abstract—An imperative language such as C++ is a familiar
object oriented programming that is widely used for reusability
and increased ability to enlighten with other languages. The
objective of software testing is to uncover as many errors as
possible with a minimum cost. Testing is not confined only to
the detection of bugs, it also assists with the evaluation of the
functional properties of the software. A piece of software can be
tested to increase the confidence by exposing potential flaws or
deviations from the user’s requirements. Unit testing is to
authenticate incorrectness and succeed when an error is
detected.

This work addresses the detection of defects in C#
applications, which leads to logical error. Logical errors occur
when the code does not perform the way it is intended to
perform. The detection and elimination of the logical bug is one
of the aims of testing. These errors are very difficult to track
since the compiler does not provide assistance. One of the
reasons for Errors is the presence of unintended characters. A
missing or an incorrect piece of code is a defect and it remains
undetected until an event activates it. When the code performs
unit test, automatically each and individual line of code
attempts the syntax checking. It helps to detect and remove all
logical and syntactical defects from a given piece of code; unit
testing is the most essential technique which can be used for
executing the code with checking process. To catch all kinds of
defects in the coding phase, the unit tests take a place on C++
and C# applications.
 This work includes the defects occur due to unintended
characters, wrong usage of data member and formal parameter
and a missing argument indicator in console-based applications
of C#. In addition to that, the interface anomaly and inheritance
anomaly are also detected. Because of enrichment, the
comparison has been made on the object oriented source code
such as C++ with C# applications. By this approach instantly,
unit testing improves the quality of the code in terms of
reducing the programmer’s burden, time and effort.

Index Terms—Defects, C++ and C# Programs, inheritance
anomaly, interface anomaly and Unit Testing

I. INTRODUCTION
Testing is the process of exercising a program with the

intent of finding an error. Software testing helps ensure the
quality of the code. Unit testing is testing a subset of the
functionality of a piece of software. A unit test is different
from a system test in that it provides information. Unit testing
is not black box testing, but certain black box tools may be
useful to help with monitoring software behavior and
creating error conditions. Instead of using unit test, it has
some drawback while test the units, the whole structure will

S.Sarala, Lecturer, School of Computer Science and Engineering,

Bharathiar University, Coimbatore- 641046, Tamilnadu, INDIA. Phone:
91-0422- 2425743, Mobile: 9444052641; e-mail: sriohmau@ yahoo.co.in.

not be possible to show for the code. Depends on any
language, a unit may be a class, function, procedure or a
module. Unit test plays an important role to verify each
class’s functionality and robustness effectively. It involves
simply a code that may starts with a class or function. It also
ensures the code’s ability to handle unexpected or
exceptional situations in the source code.

The unit test is to verify the source code’s functionality
and construction, also extended to modules, sub-modules and
applications. As an individual unit might be tested, the other
modules have also been tested. In this work, the unit testing
has involved by detecting the interface anomaly and
compared the features of C++ and C# applications. Instantly,
unit testing improves the quality of the code in terms of
reducing the programmer’s burden, time and effort.

In this work a few defects have been eliminated that are to
prevent the errors by checking the lines of code in C#
programs. It is more likely to prove the confidence, reliability
and efficiency of the C# applications. Thus, this work takes
much effort to compare the concepts of C++ and C#
applications. Console based applications like C# are
compiled into a stand-alone executable file and run from the
command prompt. Input and output is exchanged between the
command prompt and the running application. There is no
graphical user interface.

II. UNIT TESTING IN OBJECT ORIENTED PROGRAMS
The literature study includes the classes, methods,

procedure calls that have been tested through the help of tools
[1] [2] [10] [11] [12] [14] [15] [16] by various authors. Unit
testing is defined as the smallest compilation unit of the
applications [3] [6] [8] [12] [15] [16]. It performs to
demonstrate each individual unit such as method, class,
objects in the class, procedure call and function call. Various
experts have analyses the misused variables, unreachable
code and polymorphic faults in the object oriented code.

Tao Xie et.al [23] presented statistical algebraic
specifications for identifying special and common object
oriented unit tests that are automatically generated tests
without requiring specifications. The abstraction is an
equation that abstracts the program’s runtime behavior like
interactions among method calls. They have developed a tool
sabicu which was applied for complex data structures.
 Mana Taghdiri [9] proposed a new static program analysis
method for checking the structural properties of the code. A
property is a partial specification of a procedure selected by
the user. In this analysis, the original code is finalized by
unrolling loops and recursions that constrain the
configuration of the heap after the execution of a procedure.

Defects Detection in Imperative Language and
C# Applications – Towards Evaluation Approach

S. Sarala

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

 Yonsik cheon et.al[26] described the tool Junit that
attempts to automate unit testing of object oriented programs.
They have implemented genetic algorithms for test data
generation with the help of Junit. The author peter and parnas
[1994] have been developed a tool that generates C++ test
oracle procedures from relational program specifications.
 Arindam chakrabarthi et.al[25] have identified the control
and data inter-dependencies between components by using
static program analysis. In their approach the source code are
divided into units where highly interwined components
which are grouped together. The authors have considered the
interfaces of a single unit. The interface of a function
describes all possible avenues of exchange of information
between the function and its environment arguments return
values, shared variables and calls to other functions. The
interface of a unit is defined as the interface of the
composition of the functions of that unit.
 Stefan wappler et.al[24] presented a tree based
representation of method call sequences by which sequence
feasibility is preserved throughout the entire search process.
They applied strongly typed genetic programming that also
been employed to generate method call trees for object
oriented programs. They have handled runtime exceptions by
distance-based fitness function. The detection of defects in
C++ and C# programs are progressed by static analysis [17]
[18] [19] [20] [21] [22].

B.Y.Tsai et.al, [27] focus on data flow testing. Atif
M.Memon et.al, [28] implemented test case generation
system called Planning Assisted Tester for graphical user
interface systems (PATHS) and experimentally evaluated its
practicality and effectiveness. The authors present a new
technique to generate test cases automatically by using
planning, an Artificial Intelligence Technique.

Jean Hartmann et.al. [29] concentrated on test cases by
modelling components using UML state charts. Gregg
Rothermel et.al [30] used graph representation for software
and used these graphs to select test cases from the original
test suite to execute code that has been changed. The authors
have worked on regression test selection for C++ software.

Vincenzo Martena et.al [31] automatically produce test
case from object-oriented code specifications. They address
the problem of interclass testing.

III. UNIT TESTING ON C# APPLICATIONS

A unit test is a piece of code written by a developer or
programmer who exercises a very small, specific area of
functionality in the code being tested. Usually a unit test
exercises some particular method in a particular context. For
instance, the developer or programmer might add a large
value to a sorted list and then confirm this value appears at
the end of the list or else the developer might delete a pattern
of characters from a string and then confirm that they are
gone.

A. Introducing C# Applications

C# is a type-safe language for developing enterprise
applications. Similarly, the .NET framework provides a
run-time environment called the Common Language
Runtime that manages the execution of code and provides
services for the development process.

The sample of C# program is as follows,

class a {
static void main() {
System.Console.WriteLine(“Hello”);
 }
}
Figure 1 Representation of C# structure

The fig 1 shows the string “Hello” on the screen whereas
C++ that may recall that the first method. The comparison of
C++ programs with C# is very much essential to identify the
block of code.

When focus the features of this code, eventually it helps to

find the programs dependencies.

• Identifying the individual component/object
• Identifying the method of the class
• Identifying the function of the class
• Identifying the object of the function

Though the method has been invoked in the class during

execution the compiler has to perform what the user intended
in the code. But it shows an error due to misplace of access.
In this work mainly focus on anomaly where the method or
function or class is not used in proper way of execution.

In fig 2 depicts the interface anomaly which could try to
create an instance of interface and call the collect fee method,
then the anomaly “cannot create an instance of the abstract
class or interface ‘InterfaceDemo.ComputerCenter’ is
displayed. If an access specifier is used for a method in the
interface as,
public void collectFee ();
then the anomaly the modifier ‘public’ is not valid for this
item.

A defect is an instance in which a requirement is not
satisfied. The defects that are incorrect or even missing
functionality or specifications may create an unwanted
problem. The fig 3 represents the anomaly of accessing the
inheritance in C# applications. If the object e is instantiated
using default constructor Employee(), then this displays an
error. When there is no constructor defined for the class, then
the compiler will provide the default constructor. But once
the user specifies a constructor for the class, the compiler will
not provide the default constructor.

If the statement,

Console.WriteLine(“Employee Address: ” + Address) in
display function of Employee class is changed to the
following statement,

 Console.WriteLine(“Employee Address: ” + address)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

then the anomaly “ inheritanceDemo.Personaddress is
inaccessible due to its protection level is displayed. Since the
“address” data member is a private member in Person class, it
cannot be used in the Employee class.

}
Figure 2 Representing the interface Anomaly of C#
Applications

If the “address” member need to be used, then it is possible
only through the public setter and getter methods. So the
public setter and getter methods for the “address” member in
the Person class is “Address”.

The C# sample code in the fig 3 depicts the inheritance
anomaly.

namespace InheritanceDemo
{
class Program
{
 static void Main(string [] args)
 {
 Employee e = new Employee(1, “aaa”, “Chennai”);
 e.display();
 Console.Read();
 }

}
class person
{
 string name;
 public string Name
 {
 get { return name; }
 set { name = value; }
 }
 string address;
 public string Address
 {
 get { return address; }
 set { address = value; }
 }
public Person(string name, string address)
{
 this.name = name;
 this.address = address;
 } }
class Employee : Person
{
 int empid;
 public int Empid
 {
 get { return empid; }
 set { empid = value; }
 }
 public Employee (int empid, string name, string address) :
 base(name, address)
 {
 This.empid =empid;
 }
 public void display()
 {
 Console.WriteLine(“Empl.Id:” + Empid) ;
 Console.WriteLine(“Em.Name:” + Name) ;
 Console.WriteLine(“Em.Add: ” +Address) ;
 }
}
}
Figure 3 Detected code for the inheritance anomaly in C#

IV. COMPARISON OF C++ AND C# BY ESSENTIAL FEATURES
In this comparison of C++ with C#, there are no global

variables or functions in C# applications. All members and
methods must be declared within classes. Unlike C++, local
variables cannot shadow variables of the enclosing block.
The C# multiple inheritance is not supported, although a class
can implement any number of interfaces.

It is more type safe than C++ applications. The novel idea
of making comparison is to detect the time consumption and
consistency of both applications. This work includes the
identification of the anomaly when executing the code of
these applications.

namespace InterfaceDemo
{
class Program
{
 static void Main(string [] args)
{
AB s = new AB();
s.Address = “S.S.Puram”;
s.Num_students = 25;
s.collectFee();
Console.Read();
}
}
interface Computercenter
{
 Void collectFee();
}
class AB : Computercenter
{
 int num_students;
 public int Num_students
 {
 get { return num_students; }
 set { num_students = value; }
 }
 string address;
 public string Address
{
get { return address; }
set { address = value; }
}
public void collectFee()
{
 Console.WriteLine (“Inside Collecting fee function”) ;
}
}

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

Table I The Essential Features of C++ and C#
Applications

V. CONCLUSION

The developed algorithm is to detect the interface anomaly
and inheritance anomaly. Some of the important features of
the imperative language and C# applications are compared in
this work. The aim of work is to detect the unwanted anomaly
in the compilers. In this approach the programmer’s burden
and compiler’s efficiency have been checked by means of
finding the anomaly where the compiler does not have
adequate syntax checking. In terms of applying the unit test,
the code’s quality has been carried out through the test cases.

REFERENCES
[1] Arnaud Vernet and Guillaume Brat, ‘Precise and Efficient

Static Array Bound Checking for Large Embedded C
Programs’, ACM SIGPLAN Conference on Programming
Language Design and Implementation, USA, pp. 1-12.

[2] Atanas Rountev, Ana Milanova and Barbara G. Ryder,
‘Fragment Class Analysis for Testing of Polymorphism in Java
Software’, IEEE Transactions on Software Engineering,
Vol.30, No. 6, pp. 372-387.

[3] Beizer B., ‘Software Testing Techniques’, Van Nostrand
Reinhold, New York.

[4] Chi Keen Low and Tsong Yueh Chen, ‘CDFA: A Testing
System for C++’, IEEE Transactions on Software Engineering,
Melbourne, pp. 216-228.

[5] David Evans, John Guttag, James Horning and Yang Meng
Tan, ‘LCLint: A Tool for Using Specifications to Check Code’,
In The Proceedings of the ACM SIGSOFT Symposium on the
Foundations of Software Engineering, pp. 87-96.

[6] Houman Younessi, ‘Object-Oriented Defect Management of
Software’, Prentice Hall, USA.

[7] John Viega J.T., Bloch, Tadayoshi Kohno and Gary McGraw,
‘ITS4: A Static Vulnerability Scanner for C and C++ Code’, In
16th Annual Computer Security Applications Conference,
2000, pp. 257-267.

[8] Kit Edward, ‘Software Testing in the Real World’,
Addison-Wesley, 1995.

[9] Mana Taghdiri, ‘Inferring Specifications to Detect Errors in
Code’, 19th IEEE International Conference on Automated
Software Engineering, 2004, pp. 144-153.

[10] Mark W. Bailey and Jack W. Davidson, ‘Automatic Detection
and Diagnosis of Faults in Generated Code for Procedure
Calls’, IEEE Transactions on Software Engineering, 2003,
Vol. 29, No. 11, pp.1031-1042.

[11] Misha Zitser, Richard Lippmann and Tim Leek, ‘Testing Static
Analysis Tools Using Exploitable Buffer Overflows from
Open Source Code’, In The Proceedings of the ACM
SIGSOFT Symposium on the Foundations of Software
Engineering, 2004, pp. 97-106.

[12] Myers and Glenford J, ‘The Art of Software Testing’,
John-Wiley & Sons.

[13] Nakamura Goichi, Makino Kyoko and Murase Ichiro,
‘Buffer-Overflow Detection in C Program by Static
Detection’, Journal of the National Institute of Information and
Communication Technology, 2005, Vol. 52, pp. 35-41.

[14] Ng S.P., Murane T., Reed K., Grant D. and Chen T.Y, ‘A
Preliminary Survey on Software Testing Practices in
Australia’, Proceedings of the 2004 Australian Software
Engineering Conference, IEEE Computer Society, pp.
116-127.

[15] Ran Patton, ‘Software Testing’, SAMS Techmedia, 2001.
[16] Robert V. Binder, ‘Testing Object-Oriented Systems - Models,

Patterns and Tools’, Addison Wesley, 1999, pp. 640-641.
[17] Sarala S. and Valli S, ‘A Tool to Automatically Detect Defects

in C++ programs’, In the Proceedings of the 7th International
Conference on Information Technology, "Lecture Notes in
Computer Science", (LNCS 3356) by Springer-Verlag, 2004,
pp. 302-314.

[18] Sarala S. and Valli S, ‘A Tool to Automatically Generate Test
Cases for C++ Programs’, In the Proceedings of the 2004
International Conference on Software Engineering Research
and Practice, Las Vegas, Nevada, USA, 2004, Vol. 1, pp.
345-351.

[19] Sarala S. and Valli S, ‘An Automatic Defect Detection for C++
Programs’, Asian International Workshop on Advanced
Reliability Modeling, Hiroshima Shudo University, Hiroshima
City, Japan, 2004, pp. 419-426.

[20] Sarala S. and Valli S, ‘Generation of Test Cases for Console
Based Applications in C#’, In The Proceedings of the National
Conference on Trends of Computational Techniques in
Engineering (TCTE), Sant Harchand Singh, Longowal, Central
Institute of Engineering and Technology, Longowal, pp.
227-230.

[21] Sarala S. and Valli S, ‘Algorithms for Defect Detection in
Object Oriented Programs’, Information Technology Journal,
Asian Network for Scientific Information, Vol. 5, No. 5, pp.
876-883.

[22] Sarala S. and Valli S, ‘Algorithms for Defect Detection in
Console Based Applications in C#’, ICFAI Journal of System
Management, ICFAI University Press, India.

[23] TaoXie and DavidNotkin. ‘Automatically Identifying Special
and Common Unit Tests for Object-Oriented Programs, In
Proceedings of the 16th IEEE International Symposium on
Software Reliability Engineering, Chicago, Illinois, USA, pp.
277-287.

[24] Stefan Wappler and Joachim Wegener., “Evolutionary Unit
Testing of Object-Oriented Software Using Strongly-Typed
Genetic Programming”, The 2006 IEEE Conference on
Evolutionary Computation, pp. 3193-3200, Canada.

[25] Arindam Chakrabart and Patrice Godefroid. “Software
Partitioning for Effective Automated Unit Testing”,
Proceedings of the 6th ACM & IEEE International conference
on Embedded software, pp.262-271, Seoul, Korea.

[26] Yoonsik Cheon, Myoung Yee Kim and Ashaveena
Perumandla, “A Complete Automation of Unit Testing for Java
Programs”, In Proceedings of the 2005 International
Conference on Software Engineering Research and Practice,
Nevada, USA, pp. 290–295.

[27] Bor-Yuan Tsai, S.Stobart and N.Parrington, “Employing data
flow testing on object-oriented classes”, IEE Proceedings on
Software Engineering”, vol.148, No.2, pp.56-64, April 2001.

[28] Atif M. Memon, Martha E.Pollack and Mary con Soffa,
“Hierarchical GUI test Case Generation using Automated

Category C++ C#

Data type int
float
char

Value-type
Reference type
Pointer

Predefined value
type

struct
enum

Struct-type
Enum-type

Automatic memory
management

Not provided provided

Garbage Collection Eligible Eligible

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

Planning”, IEEE Transactions on Software Engineering,
vol-27, No.2, pp.144-155, Feb-2001.

[29] Jean Hartmann, Claudio Imoberdorf and Michel Meisinger,
“UML-Based Integration Testing”, ACM International
Symposium on Software Testing and Analysis (ISSTA’00),
Portland, pp.60-70, 2000.

[30] G.Rothermel, M.J.Harrold and Jeinay Dedhia, “Regression
Test Selection for C++ Software”, Journal of Software
Testing, Verification and Reliability, Vol.10, No.2, pp.1-35,
June-2000.

[31] Vincenzo Martena, Alessandro Orso and Mauro Pezze,
“Interclass Testing of Object-Oriented Software”,
Proceedings of the International Symposium in Software
Testing and Analysis (ISSTA’00), IEEE computer society
press, pp.10-19, 2000.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

