

Abstract— An introduction to agile principals through agile

manifesto has been shown. To prove the functionality of agile
methods, qualitative (or quantitative) comparisons have been
carried out with the other regular methods. It’s always a
complicated task for a project analyst to analyze the
development of a software project; especially when it comes to
evaluation of the development methodology and estimation of
the project’s success considering every related aspect. The goal
of this paper is to simplify this task for the analyst and clarify
the important aspects of a project which develop with agile
methodologies.

Index Terms—Software Engineering, Software

Development Methodologies, Agile Methods, Evaluation of
Functionality

INTRODUCTION
There’s a misconception due to comparison of

“plan-driven” software development methodologies to agile
methodologies while it can be concluded that agile
methodologies are “unplanned” which is not true. In fact, the
concept within this comparison is agile methodologies are
“adaptive” rather than “predictive”.

Predictive methods focus on formation of a programmed
plan to perform the project. In contrast, adaptive methods
focus on analyzing the current situation and finding the best
solution in every step of performing the project.

This paper focuses on how to comprehend if Agile
methodologies are useful for a specific project.

Section 1 discusses about the principles of Agile methods
through the Agile community’s manifesto. Section 2 explains
the major differences among Agile methodologies and some
other software development methodologies. Section 3
discusses about a method that can be used to evaluate the
functionality of Agile methodologies in a software project.
Answering some specific questions will lead the analyst to
determine the factors and data that can be used as input to the
estimation formulas. Those factors and data will be put in
couple of statistical formulas and then analyst has to interpret
the outcome. Section 4 talks about a software that can do
these calculations.

I. AGILE COMMUNITY’S MANIFESTO
Some of the principles behind the Agile Manifesto [1] are:
• Customer satisfaction by rapid, continuous delivery of
useful software

• Working software is delivered frequently (weeks rather

than months)
• Working software is the principal measure of progress.
• Even late changes in requirements are welcomed.
• Close, daily and cooperation between business people
and developers

• Face-to-face conversation is the best form of
communication.

• Projects are built around motivated individuals, who
should be trusted

• Continuous attention to technical excellence and good
design.

• Simplicity
• Self-organizing teams
• Regular adaptation to changing circumstances

The publication of the manifesto back in 2001 spawned a
movement in the software industry known as agile software
development.
 The Manifesto has become an important piece of the Agile
Movement, in that it characterizes the values of Agile
methods and how Agile distinguishes itself from traditional
methods.[2],[3]

II. COMPARISON WITH OTHER METHODS
Agile methods are often defined as being at the opposite

end of the spectrum from "plan-driven" or "disciplined"
methodologies. This misconception is misleading, as it
implies that agile methods are "unplanned" or
"undisciplined." In fact, the true distinction is to say that
methods exist on a continuum from "adaptive" to
"predictive". [4] Agile methods exist on the "adaptive" side
of this continuum.

Adaptive methods focus on adapting quickly to changing
realities. When the needs of a project change, an adaptive
team changes as well. An adaptive team will have difficulty
describing exactly what will happen in the future. The further
away a date is, the vaguer an adaptive method will be about
what will happen on that date. An adaptive team can report
exactly which tasks are being done next week, but only which
features are planned for next month. When asked about a
release six months from now, an adaptive team may only be
able to report the mission statement for the release, or a
statement of expected value vs. cost.

Predictive methods, in contrast, focus on planning the
future in detail. A predictive team can report exactly what
features and tasks are planned for the entire length of the
development process. Predictive teams have difficulty
changing direction. The plan is typically optimized for the
original destination and changing direction can cause
completed work to be thrown away and done over
differently. Predictive teams will often institute a change

Estimation of Agile Functionality in Software Development

Bashir Nasr-Azadani, Reza MohammadDoost, IAENG

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

control board to ensure that only the most valuable changes
are considered.

Agile methods have much in common with the "Rapid
Application Development" techniques from the 1980's as
espoused by James Martin and others.[5]

II.I CONTRASTED WITH THE WATERFALL MODEL
Agile development has less in common with the waterfall

model. In some eyes the waterfall is discredited, but as of
2004, this model is still in common use.[6]

The waterfall model is the most predictive of the
methodologies, stepping through requirements capture,
analysis, design, coding, and testing in a strict, pre-planned
sequence. The main problem of the waterfall model is the
inflexible nature of the division of a project into separate
stages, so that commitments are made early on, and it is
difficult to react to changes in requirements. Iterations are
expensive. This means that the waterfall model is likely to be
unsuitable if requirements are not well understood or are
likely to change radically in the course of the project.[7]

Agile methods, in contrast, produce completely developed
and tested features (but a very small subset of the whole)
every few weeks or months. The emphasis is on obtaining the
smallest workable piece of functionality to deliver business
value early, and continually improving it/adding further
functionality throughout the life of the project.

Some agile teams use the waterfall model on a small scale,
repeating the entire waterfall cycle in every iteration.[8]
Other teams, most notably Extreme Programming teams,
work on activities simultaneously.

II.II CONTRASTED WITH "COWBOY CODING"
Cowboy coding is the absence of a defined method: team

members do whatever they feel is right. Agile development's
frequent reevaluation of plans, emphasis on face-to-face
communication, and relatively sparse use of documents
sometimes causes people to confuse it with cowboy coding.
Agile teams, however, do follow defined (and often very
disciplined and rigorous) processes.

As with all methodologies, the skill and experience of the
users define the degree of success and/or abuse of such
activity. The more rigid controls systematically embedded
within a process offer stronger levels of accountability of the
users. The degradation of well-intended procedures can lead
to activities often categorized as cowboy coding.

III PREPARING THE INPUT DATA FOR THE FORMULAS
In order to estimate more accurate, we should compare

Agile methodologies with other methodologies in different
projects. In order to calculate a value that can help the analyst
choose the best methodology to manage a project , some
questions should be answered. Those answers will be the data
the analyst needs to put into the formulas. These questions
derived from the comparison of Agile methodologies with
other methodologies and the Agile manifesto and the features
of Agile methodologies.

 Agile methods encourage businesses to be accountable for
the value produced by software development efforts. The key
metrics we use should allow us to monitor this accountability.
Metrics should help validate businesses that make smart
software investments and teams that deliver business value
quickly.[9]

An answer to each question is a value between 1 to 10. The
value shows the importance of each factor asked in the
question. (1 indicates the least importance,10 indicates the
most.)

The questions have been asked based on different side of
each project for example customer’s point of view or project
manager’s point of view and etc.

The major questions concerns:
Customer

1) How often developers can be in touch with the
customer?

2) How fast the customer wants the project to be delivered?
3) How important is the number of deliveries during the

project development period for the customer?
4) How fast the customer wants each delivery?
5) How much does the customer know about his/her

requirements and his/her project?
6) How much does the customer support and collaborates

with developers during the whole development
operations?

Project development process
1) How important the documenting process is?
2) How important is the time limits?
3) If the project (major problem) can be divided into

smaller parts , how difficult is to make the parts?
4) How dynamic the project is?
5) How important is testing the project by the time each

iteration would be completed?
6) How complicated the project is?
7) How big is the size of the project?
8) How important is the risk management for this project?

Production Team
1) How much facility the team has for communication

among developers?
2) How many senior developers in the team are?
3) How democratic the culture of the team’s organization

is?
4) How dense the team is?
5) How close relationships in the team are?
6) How honest the team members are?
7) How important security of information in the team is?
8) How many programmers and developers are in the team?
9) How adaptive the team is?

Product
1) How clear major problems of the project are?
2) How familiar this kind of project is to the team

members?
3) How important is the quality of the product?

III.I STATISTICAL CALCULATIONS
Each answer is a value named K between 1 to 10. it also

has an error factor named a. a can be –a or +a or both values.
+a means the answer to the question can be more and –a
means the answer can be less, +a and –a both means the

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

answer can be a value more or a value less.
After all questions being answered and the error factors

being given analyst do the additions:
1) Addition of all Ks.
2) Addition of all (K+a)s.

The mathematical definition of U will be (1) and (2).

(min) (min)
1
[]

m

i
i

iU K a
=

= −∑ (1)

(max) (max)
1
[]

m

i
i

iU K a
=

= −∑ (2)

Here m indicates the number of questions and Ki indicates the
value of each answer to the question number I, respectively.
Refer to (1) and (2) it can be concluded that:

(min)
(min) (max)1

10* 10* 10*

[]
m

i
i

i

m m m

K a
U U=

−
≤ ≤

∑ (3)

Note that, in (3), the term 10*m means all the questions has
been answered with 10 value (which indicates the best
possibility for using Agile methodologies). Thus, the division
of ∑Kis to 10*m results a value named U.
Multiplication of U to 100 results in a percentage quality
named S. (4)

*100
10*

US
m

= (4)

The quality S indicates the percentage of Agile
methodologies functionality for the software project
according to the answers which has been given to the
questions.
Therefore, using Umin and Umax to calculate Smin and Smax, it
will be clear that:

(min) (max)S S S≤ ≤ (5)
However the value of S should be interpreted and the best
conclusion should be drawn by analysts. It means which
value scopes explain how useful Agile methodologies can be
for this specific project. By entering the data as inputs into
the software which will be discussed later, the final answer
will be calculated.
Here are some solutions to improve the estimation:
1) If analyst has more factors in mind regarding the project,

he/she simply can add them into the software as
questions. Hence, the software can recalculate S value
concerning the new questions. In contrast, analyst can
remove any needless questions in his/her point of view.

2) Normally, all questions have the same importance factor
named B and its value is 1. However, if some factors will
be more important to the analyst he/she can change the
importance factor manually.

By entering the importance factor (B) into the calculations,
we have:

1

(min) (min)*[]
m

i i i
i

U B K a
=

= −∑ (6)

1
(max) (max)*[]

m

i i i
i

U B K a
=

= −∑ (7)

Therefore, S formula modifies into (8):

1

*100
10*

m

i
i

S
B

U

=

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦

∑

 (8)

IV. DEVELOPING THE SOFTWARE FOR OTHER
METHODOLOGIES

The software can calculate all those formulas which has been
discussed above automatically. However, the input data is
important.
The software has the ability to add and remove the questions,
due to this fact analyst can add questions regarding the
factors of other methodologies; so the calculations works for
that methodology too. However, It is important to interpret
the final output and estimate the best methodology through
that outcome.

REFERENCES

[1] Beck K., Cockburn A., Jeffries R., Highsmith J., “Agile manifesto”,

http://www.agilemanifesto.org, 2001.
[2] Glass R., “Agile versus traditional: Make love, not war”, Cutter IT

Journal,
http://www.cutter.com/content/itjournal/fulltext/2001/12/itj0112c.html
, 2001, pp. 12-18

[3] Cohen D., Lindvall M., & Costa P, “An introduction to agile
methods”. Available:
http://www.cs.umd.edu/~mvz/cmsc435-s05/pdf/agile-paper.pdf, 2004,
pp 8-12.

[4] Boehm, B., R. Turner, “Balancing Agility and Discipline: A Guide for
the Perplexed”, Boston, MA: Addison-Wesley, 2004, pp. 165-194

[5] Martin J, “Rapid Application Development”, Macmillan Coll Div,
1991

[6] Laplante, P.A., C.J. Neill, “"The Demise of the Waterfall Model I6
Imminent" and Other Urban Myths”,
http://www.acmqueue.com/modules.php?name=Content&pa=showpa
ge&pid=110, 2004.

[7] Sommerville I, “4.1.1. The waterfall model”, Software engineering, 8th
edition, Harlow: Addison Wesley, 2007, pp. 66f.

[8] As reported by HeavyLogic, http://heavylogic.com/agile.php
[9] Hartmann D, Dymond R, “Appropriate Agile Measurement”.

Available:
http://www.berteigconsulting.com/AppropriateAgileMeasurement.pdf
, 2006, pp. 3-6.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

