

Abstract—These Actual business leverages on software

service to improve general firm performance. Software is
always more a strategic asset to sustain business. In meantime
business is changing continuously: there is a transition from
centralized to distributed and cooperative organizations. This
work describes a software maintenance process strictly
integrated with enterprise evolution. It starts from the basic
hypothesis that the software service model has to be integrated
in the process of define/improve business models at run time
and not in a separate step. This means paradigmatic changes:
from top down maintenance and control to a bottom-up
evolutionarily life cycle where software assets maintenance is
integrated with organizational assets maintenance. The benefits
of the model are measured reduction of the number of defects
on high level requirements and the incremental commitment
nature of the process: expenditures tend to be balanced with
certainty level.

Index Terms—Software process for maintenance, Services
Organization Architecture (SOA).

I. INTRODUCTION
Business models of firms are changing: there is an

evolution toward distributed models better suited for
integration into a global economy. This scenario is well
described by Paul R. Krugman in [1] and implies a strategic
capacity to manage new emerging values, strategies and
products/markets. The enterprises organizational models
have to consider a network of internal and external agents
(partners) with fuzzy boundaries and continuous exceptions
in processes. Such status is the source of new ideas and
opportunities [2]. This environment is particularly
challenging for software maintenance and new “smart”
approaches have to be defined.

The shift from centralized to distributed and cooperative
organizations needs software with Service Oriented
Architecture dynamically integrated with business
architecture. Software applications become the fundamental
platform to support products delivery and services
management. Their maintenance is becoming a major
challenge to guarantee software aligned to business
processes.
This work describes a maintenance process designed to
satisfy the described scenario. The innovative aspect derives

from an agile approach integrated with self-organizing and
changing business. The self-organization process is not
described in this report, because out of scope.

F. Rago., is with M3 Comp. LLC, 113 Barksdale Professional

Center,Newark – DE (USA) (e-mail: francesco.rago@megatris.com).

II. . BUSINESS CONTEXTS DEFINITION
The context concept is a fundamental notion of an

Enterprise Architecture [3]. Contexts are typically used to
model the effect of the environment on interactions and
communications occurring among active (and typically
intelligent) agents, such as humans or artificial. Contexts
typically describe interactions and communications.

III. AGENTS SYSTEMS

The multiple interacting agents in economy models can
represent individuals (e.g. people), social groupings (e.g.
firms), biological entities (e.g. growing crops), and/or
physical systems (e.g. transport systems) [4]. In particular,
system events should be driven by agent interactions. Agent
systems are not control-oriented, but task-oriented. They
have no central control authority, instead each agent is an
independent locus of control. Control is inside agents and the
agent’s task drives the control. They may be anything human
or humans or artificial inside the value chain of the firm.
Control and data are uncoupled, since data do not necessarily
flow with control [5]. Agent coordination contexts can serve
the purposes of:

• enabling agents to model the environment where

they interact and communicate (the subjective
viewpoint),

• providing a framework to express how the
environment affects interpretation of agent
communication acts (the objective viewpoint). The
notion of agent coordination context enables agents
to perceive the space where they act and interact,
reason about the effect of their actions and
communications, and possibly affect their
environment to achieve their goals.

IV. SELF-ORGANIZATION CONTEXT OF FIRM AND
ECONOMICS: THE ROLE OF SOFTWARE

MAINTENANCE
Self-organization refers to the capacity of networks of

agents have for combining and recombining capabilities
without a centralized and detailed managerial guidance.
Since technology is the engine that drives the most successful
economies of post-industrial societies, it seems likely that
technological innovation is characterized by self-organizing
processes in nets of firms [6].

Networks of agents are linked organizations with no
central control authority. They create, acquire and integrate

Self-organizing Business Networks, SOA and
Software Maintenance

Francesco Rago

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

diverse knowledge and skills required to manage complex
technologies and products. An agents model is appropriate
for networks of firms that are in a supply chain ruled by
Service Level Agreements.

Network self-organization involves a continuous interplay
among three sets of factors: network resources, constraining
and focusing factors. Taken together, these factors comprise
what might be called a “resource-based view of the network”.
The network resources have at least existing core
capabilities, internalized software assets and ability in
organizational learning. Learning is the key of the process
because new capabilities and software assets are identified,
acquired, shared among network participants, and
continuously updated or discarded to give to the network as a
whole competitive leadership in a particular market sector.
Learning through collaboration and effective
self-organization requires that networks have a “window” on
their partners’ capabilities and assets. Network learning is
thus inseparable from the evolving interactions among
holders of core capabilities and complementary software
assets that are an ongoing part of self-organization network.
This means a paradigmatic change: from top down
maintenance and control to a bottom-up and evolutionarily
method, integrating software assets maintenance with
organizational assets. Software has a strict relationship with
the other components of the enterprise architecture and each
agent is integrated in the process of software maintenance.

V. BUSINESS MODEL FOR I.T. SELF-ORGANIZATION
PROCESSES

A Business Model describes the architecture of the firm’s
business and its network of partners for creating, marketing
and delivering value and relationship capital, in order to
generate profitable and sustainable revenue streams.
Networks of agents have to share all or part of the model to
integrate their activities and software assets.

Adopting a definition from Hagel and Singer (1999) [10],
a business model has to address the following topics (see fig.
1):

• [Agent] internal and external agents including
Customers that operate for and against business
goal,

• [Activity] the business, the product innovation and
the value proposition offered on the market.

• [Relationship]&[Partnership] the customers
targeted, how to deliver them the products, and the
relationships with them,

• [Channel] Organizational structure based on agents
network,

• [Infrastructure Network] the logistics infrastructure
together with Hardware/Software assets,

• [Revenue]& [Costs] the revenue model and the cost
model.

The Infrastructure Network contains the list of hardware and
software assets. Maintenance of software assets operate on
this part of the model and of its relationships.
A Business Model has to be shared with all interested agents.
To maintain the model means also to be aware of business
evolution and to be able to modify software in time.

Fig. 1 Self-Organization Business Model Ontology

VI. SOFTWARE MAINTENANCE OF SYSTEMS
Once a business model is defined and agreed by all agents,

we used a method to support software maintenance through
advanced iterative and incremental approach. We adopted a
process similar to SCRUM [11]-[13] because it is not a
step-by-step cookbook approach and requires active,
thoughtful development and management. The method starts
with the premise that maintenance environment is
complicated and unpredictable.

You can predict or definitively plan what you will deliver,
when you will deliver it, and what the quality and cost will
be, but you have to negotiate continuously them according to
various risks and needs as you proceed. SCRUM method was
integrated with the Enterprise Business Model maintenance
to improve the associated SOA model and the software
architecture.

The fundamental steps of an extended SCRUM method
follow:

Stage I. Concept

The purpose of the concept stage is to better define exactly
how the business model and its context was
changed/improved, who is aimed at, how it will be positioned
in market segments and how Information Technology assets
has to be changed/improved to support business focus on
target.

The Business Model is analyzed with a process approach
using Statistical Process Control results (where applicable) to
value the actual status of processes.

The following main topics are relevant:

• social goals and effectiveness of agents
commitments;

• possible interferences or agents opportunities;

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

Fig.2 Complete Process

• links between agents (flow of information regarding
other agents’ epistemic utility to improve
measurable performance [15]);

• presence of signs or exceptions relative to “little
piece of business” able to reveal tendencies or new
business evolutions. This means the identification of
possible business evolutions, because not always a
stable and capable process is a successful process
for ever.

The main rules to model the architecture of Hardware and

Software are on the basis of this approach:

• Each package-subsystem has to serve a set of
primary functions/services to guarantee meaningful
business coverage.

• The function/services have to guarantee
stakeholders utility and have measurable statistical
capabilities.

• Each package-subsystem have to be of limited
dimension (size). This helps interactions and
maintenance.

• Each package-subsystem has to manage strong data
quantities with integrated sub functions to measure
performance of the business functions.

Stage II. Backlog update

The software maintenance begins in earnest. It is used a
streamlined, flexible approach to requirements change

management reflecting both Extreme Programming (XP)’s
planning game and the SCRUM methodology.

There is a stack of prioritized and estimated
requirements which needs to be implemented. Such
requirements are a consequence of the Stage I analysis and
have the scope to guarantee agents successful operations.
SCRUM suggests that the requirements are frozen for the
current iteration to provide a level of stability for the
developers.

The Product Backlog is generated on requirements and
used during the entire development phase. The Product
Backlog contains a prioritized list of all the activities, Since
the Product Backlog is never finalized, the priority, along
with the listed items, can be changed during the entire
maintenance phase.

Stage III. Technical Cycle

This is an iterative stage where technical operations are
accomplished. The structure of the service application is
created/maintained. The stage has the following steps:

III.1 Create/Update Solution architecture

Define/Update the conceptual structure of the service
application.

III.2 Define/Update runtime environments

Define the runtime environments in which the Service
application should run. This covers all test
environments, including unit test and final production
environment.

III.3 Identify Existing Models and Common Patterns

The repeating patterns are identified within the service
application. These patterns often occur either because of
the consistent use of an architectural style or because of
the requirements of the runtime platforms. Common
patterns are compared with existing assets, making any
necessary small adjustment to their architecture to
exploit what is already available.

III.4 Define/Update design model

This task creates/updates the definition of a model that
specifies the components for the Service in a
runtime-independent manner.

III.5 Design, code, test
Step of design, code and test that produces the service
software.

Stage IV. Trial

The Trial stage is a validation of the product's design and
features in use. Software prototypes are tested within the firm
to determine that no technical flaws exist. In parallel, an
agent test of the product is conducted. The object is to
identify design defects, and, in particular, modifications
needed to improve business agents’ acceptance. The trial
stage represents a "dry run" of all commercial facets of the
software. The agents’ tests provide the inputs to finalize the
business model if issues appear in the new enterprise
architecture. This means the identification of needed
adjustments to the business model. A final estimate of market

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

share and expected sales are two results of the test market.

Stage V: Launch

The launch stage involves startup of full or commercial
production and the implementation of infrastructure assets of
the business model. Post launch evaluation or control points
at pre-designated times after launch provide benchmarks to
gauge whether a software product is "on target." Such
benchmarks include market share, sales volume, production
costs, etc. Post-launch evaluations are essential to control the
software product and to signal the implementation of
corrective schemes to move the software product back on
course.

Fig.4 Technical Cycle

VII. RESULTS
The presented approach was used in four closed web small

and midsize projects with the following post mortem results.
People culture is still not aligned to service approach.

Managers think in term of functional black box, with strictly
defined boundary following a typical top-down engineering
approach. This is a problem in the beginning of the
innovation process. It is difficult to reason in term of
knowledge and services sharing on common goals in a
network. This has a heavy impact on the start-up of software
process with an over-cost of 30-40% of effort.

The real improvement was measured in the number of
defects on high level requirements: there was a meaningful
reduction of 30-40%. The average number of defects for
project was 12.4 [defects/N.of Projects] during Concepts
phase while the previous average with different life cycles
(Requirements and Analysis phases) was 18.7. This gave a
positive answer to the basic hypothesis that the software
service model has to be integrated in the process of
define/improve business model at run time and not after in a
separate step.

The complexity of the maintenance process grew because
Product Backlog had to parallelize different and often
conflictive changes. This happened in the 40% percent of
the cases.

Main data of closed projects are contained in Table I.

Project Technology K-loc

s
Changes Concept

Defects
1. C/C++ 79368 47 3
2. Asp/ C++ 2593 31 15
3. ASP/ C++ 2680 45 10
4. Php/ C++ 1680 5 21

Table 1: Changes vs Defect

VIII. CONCLUSION

New software product/service maintenance will never be
risk free. Much can be learned about effective new software
management from a review of the experiences in past
projects. Many of these insights have been incorporated into
the method presented. The benefits of the model are many.
One result is that the process becomes more
multidisciplinary. The balance between the internal versus
external orientation becomes obvious. A second payoff is
that interaction between agents is encouraged: many
evaluation nodes demand diverse inputs from different
groups in the company. A third benefit is the incremental
commitment nature of the process: expenditures tend to be
balanced with certainty level; each stage involves
progressively better information and concurrently entails
progressively higher expenditures; and risk is managed.
Further, decision nodes and bail-out points are provided at
each stage. Finally, the process is market oriented, providing
for ample market information and marketing planning, not
only towards the launch phase, but throughout the entire
process.

REFERENCES
[1] Paul R. Krugman, The Self-Organizing Economy,

Cambridge, MA: Blackwell Publishers, 1996; Jose A.
Scheinkman and Michael.

[2] Peter A. Corning, “Synergy and Self-Organization in The
Evolution of Complex Systems,” Systems Research, June
1995, pp. 89-121.

[3] Stafford Beer, Diagnosing the System for
Organisations; 1985, John Wiley.

[4] Bruun, Charlotte (Ed.), Advances in Artificial Economy
as a Complex Dynamic System, Series: Lecture Notes in
Economics and Mathematical Systems , Vol. 584.

[5] Lucio Biggiero, “Self-Organizing Processes in Building
Entrepreneurial Networks: A Theoretical and Empirical
Investigation,” Human Systems Management, No. 3,
2001.

[6] Mary E. Lee, “The Evolution of Technology: A Model of
Socio-Ecological Self-Organization,” in Loet
Leydesdorff and Peter Van den Besselaar, eds.,
Evolutionary Economics and Chaos Theory: New
Directions in Technology Studies, New York: St.
Martin’s Press, 1994.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

[7] Frank-Jurgen Richter, “The Emergence of Corporate
Alliance Networks—Conversion to Self-Organization,”
Human Systems Management, No. 1, 1994, pp. 19-26.

[8] Richard N. Osborn and John Hagedoorn, “The
Institutionalization and Evolutionary Dynamics of
Inter-organizational Alliances and Networks,” Academy
of Management Journal, April 1997.

[9] Anders Lundgren, Technological Innovation and
Network Evolution, New York: Routledge, 1995, pp.
77-104.

[10] Hagel, J., Singer, M. (1999) Unbundling the corporation.
Harvard Business Review 77 (2): 133- 141.

[11] Linda Rising and Norman S. Janoff, The Scrum
Software Development Process for Small Teams., AG
Communication Systems.

[12] Ken Schvaber and Mike Beedle, Agile Software
Development with Scrum, Prentice Hall. USA.

[13] Jim Highsmith, Alistair Cockburn, Agile Software
Development: The Business of Innovation, September
2001.

[14] R. J. Bril , R. L. Krikhaar , A. Postma , Architectural
support in industry: a reflection using C-POSH, Journal
of Software Maintenance and Evolution: Research and
Practice, Volume 17, Issue 1 , Pages 3 – 25.

[15] Wynn C. Stirling, Coordinated Intelligent Control Via
Epistemic Utility Theory, Control Systems, Vol. 13 n.5.

[16] Scott M. Brown,Norman Wilde, A Software
Maintenance Process Architecture, 9th Conference on
Software Engineering Education (CSEE),1996.

[17] Keith H. Bennett, Václav T. Rajlich ,Software
maintenance and evolution: a roadmap, Proceedings of
the Conference on The Future of Software Engineering,
2000.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

