
 
 

 

  
Abstract— Nurse Scheduling Problems (NSP) represent a 

subclass of scheduling problems that are hard to solve. The goal 
is to find high quality shift and resource assignments, in 
accordance with the labor contract rules, satisfying the 
requirements of employees as well as the employers in 
health-care institutions. The Nurse Scheduling Problems (NSP) 
can be viewed as Constraint Satisfaction Problem (CSP) where 
the constraints are classified as hard and soft constraints. In this 
paper, a real case of a cyclic nurse Scheduling problem is 
introduced. This means that the generated roster can be 
repeated indefinitely if no further constraint is introduced. We 
use two different methods, namely, Simulated Annealing and 
Genetic Algorithm to solve this problem and compared their 
performances at different difficulty levels. 
 

Index Terms— constraints, genetic algorithm, nurse 
scheduling, simulated annealing.  
 

I. INTRODUCTION 

  In organizations that operate continuously, daily work is 
divided into shifts. In such a context, the Scheduling problem 
consists in assigning a schedule to each worker, which 
involves building a timetable for a specified period. The 
timetable should comply with staffing requirements, the rules 
laid down by the administration and the labour contract 
clauses. 

   A nurse roster is a timetable consisting of shift 
assignments and rest days of nurses working at a hospital. In 
nurse scheduling, the ultimate aim is to create high quality 
timetables, taking well-being of nurses [20]  as a basis without 
discarding the concerns of employers. 

  Work schedules directly affect the employees’ pay, 
quality of life, and structure of work, family, and leisure 
activities. Effective scheduling of employees can reduce both, 
the size and the cost of the workforce. The objective is to 
satisfy the daily labor demands with the minimum size or 
minimum cost of the workforce. Typically, personnel 
scheduling problems are highly constrained and NP-hard. In 
this paper, two different procedures are presented for solving 
the cyclic nurse-scheduling problem (NSP), which involves 
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the construction of duty rosters for nursing staff over a 
pre-defined period. 

   Scheduling nurses to staff shifts involves considerable 
time and resources, and it is often difficult to create schedules 
that satisfy all the requirements. 

    The nurse scheduling is achieved based on requests from 
all nurses. Schedulers, who typically are head or chief nurses 
in the units, must assign nurses to each shift according to 
numbers and skill levels required while at the same time 
balancing the workload among the nurses involved and 
considering staff nurses’ preferences such as providing 
requested days-off [5]. 

 
      The NSP under study is incorporated with three main 

components, i.e.  
- Each nurse needs to express her preferences as the 

aversion to work on a particular day and shift.  
- The minimal coverage constraints embody the minimal 

required nurses per shift and per day, and are inherent to any 
shift scheduling problem. 

- The case-specific constraints are not inherent to any NSP 
instance but are rather case-specific, i.e. determined by 
personal time requirements, specific workplace conditions, 
national legislation, etc. 

    Hence, the objective of the NSP is to satisfy nurses’ 
requests as much as possible without discarding the concerns 
of employers.  

 

II.  PROBLEM DESCRIPTION 

We are interested in those classes of NSP, which are 
abstracted from real-life problems. There are two types of 
nurse rosters, a two-shift system and a three-shift system. In 
this paper, we focus on the 3-shift system [9] . Each day 
consists of three shifts: a morning-shift or M (8 a.m.–3 p.m.), 
an evening-shift or E (1:30 p.m.–8:30 p.m.), and a night-shift 
or N (8:00 p.m.–8 a.m.). Nurses have to be assigned to these 
shifts or give off-days. On any day only one shift can be 
assigned to any nurse. The scheduling period is usually one or 
two week or one month. These schedules have to satisfy 
working contracts and meet the demand for a given number of 
nurses on each shift, and to be accepted by the staff 
concerned. The latter objective is achieved by meeting as 
many of the nurses’ requests as possible. Few things are taken 
into account for generating a roster. These include: 

– The number of nurses assigned to each working shift must 
be within the range of a certain maximum value and a certain 
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minimum value. 
– The number of shifts assigned to each nurse must be 

within the limits of legal regulation. 
– Prohibited working patterns must be prevented. A 

“working pattern” is a sequence of working shifts over several 
days. 

– Requests from nurses should be satisfied as much as 
possible.  

     We will evaluate our method under different conditions. 
For example we consider a scheduling term of 2 weeks, and 
there are 15 nurses to be scheduled. Accordingly, the problem 
is to assign shift numbers (morning/evening/night/day off), 
i.e., values, to the number_of_nurses*number_of_days 
(15*14 =210) variables. Different hard and soft constraints 
must be taken into account for generating a roster. We’ve 
considered the following types of constraints: 

A. Hard constraints: 

All the hard constraints must be satisfied to obtain a 
feasible solution.  

1)  Type1-constraints: 
 – Constraints on the number of nurses for each working 

shift per day: For each shift, the number of nurses has to be 
within the range of maximum and minimum values (morning: 
4-6, evening: 3-5, night: 3-5). 

2) Type2-constraints:  
The roster must be cyclic and avoid the following 

prohibited working  patterns– 
 “morning-shift after night-shift”, 
 “evening-shift after night-shift”, 
 “morning -shift after evening-shift”, and 
 “3 consecutive night-shifts”. 

B. Soft constraints: 

The feasibility of a solution is determined by the 
satisfaction of hard constraints. But the quality of a feasible 
solution depends on the degree to which the soft constraints 
are satisfied.  

Type3-constraints: 
 For each nurse in this example of two weeks rostering 

problem, the typical type-3 constraints are 
Total number of off-days = 4; 
Total number of night-shifts = 3; 
Total number of morning-shifts and evening-shifts for 
each nurse is between 3 and 4. 

This will vary depending on the scheduling period and 
number of nurses. 

    As we mentioned earlier, the roster is generated based on 
the satisfaction of a number of constraints. All the hard 
constraints must be satisfied and soft constraints should be 
satisfied.  

C. Cost function 

   We have designed a cost function depending on the 
different types of constraints mentioned earlier. Total cost 
will be calculated by combining following three types of cost: 

 
 cost1 is the penalty cost for violating most important type 

of constraint i.e. type1 constraint. If the shift assignments on 
any day violate any of the type1 constraints, then for each 
violation the value of cost1 will be incremented by 1. 

  cost2 is the penalty cost for violating type2 constraints. If 
shift sequence for any nurse violates any of the type2 
constraints, then for each violation cost2 will be incremented 
by 1. 

  cost3 is the penalty cost for violating type3 constraints. 
For example, if for any nurse the total number of “day off” or 
any other shift does not fall within the mentioned limit, then 
for each violation the value of cost3 is incremented by 1. 

 
    We have assigned three different weights to three 

different types of constraints. Let w1, w2, w3 are the weights 
assigned to type1, type2, type3 constraints respectively. Then 
our objective is to minimize the 

     total cost , C = w1*cost1 + w2*cost2 + w3*cost3 
 
  We’ll consider a solution feasible only if all the hard 

constraints are satisfied (i.e. cost1 and cost2 are minimized to 
0). Solution strategy will also try to satisfy as many 
soft-constraints as possible.  

 

III.  SOLUTION METHODS 

A satisfactory analytical solution procedure for the 
problem, even in its idealized form, has not yet been found. 
We are thus forced to use heuristic methods [17] . There are 
several approaches [1]  to the nurse scheduling based on the 
framework of Constraint Satisfaction Problem (CSP) [13]. 
We have tried to solve randomly generated problem instances 
using the two randomized CSP methods. The solutions 
obtained by us are not always complete, in the sense that all 
the soft constraints are not always fully satisfied. 

   Number of variables in our problem, N = 
no_of_nurses*number_of_days. The main objective is to 
assign shift values to all these variables such that the total cost 
becomes minimum. The implementations given below 
consider several problems consisting of i) the hard constraints 
and ii) soft-constraints mentioned earlier. 

 

A.  SIMULATED ANNEALING 

The initial trial solution S in Procedure SA [19] is obtained 
by randomly assigning each nurse to one of the three shifts or 
day-off on each day. As a result, all the variables in our 
problem (x[nurse_no] [day_no]) are assigned random shift 
values. So, now, a subset of the constraints are unsatisfied. 
The initial cost corresponding to S is calculated using the cost 
function mentioned earlier. Now this cost is taken as current 
cost c. Then we randomly choose a variable, i.e., a 
combination of nurse_no and day_no, and change its shift 
value randomly. In this way we move to a neighbouring 
solution S’ of S. Then we calculate the cost corresponding to 
S’, taken as new cost c’. Now we have to take a decision, 
whether we will accept this movement permanently or not. 
This is discussed in details in Procedure SA given below.  
This process is repeated and the algorithm outputs the feasible 
solution of lowest cost.  

    Procedure SA makes use of a number of parameters. The 
values of these parameters must be finely tuned; otherwise, 
inferior results are obtained frequently. The most important 
issue is the initialization of the temperature and the 
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determination of the rate at which it should decrease [14]. In 
our problem a high temperature such as 2000 is initially 
chosen. Whenever, changes/trials > tcent, the temperature is 
reduced fast using a parameter called fastfactor having a 
typical value of 0.5; if changes/trials < tcent, the temperature 
is reduced slowly. For the reducing factor, known as 
tempfactor we choose a value of 0.98. The variable of interest 
is c*, which stores the cost of the trial solution of minimum 
cost among all feasible solutions found so far, up to the 
current instant. c* is initialized to the initial cost c. 
Procedure SA /* detailed procedure*/ 
{ 
  input a trial solution S; c = cost(S);  
 c* = c;  freezecount = 0;  initialize temp; 

initialize frzlim, sizefactor, fastfactor, tempfactor, 
minpercent, tcent; 

 while ( freezecount < frzlim ) { 
  changes = trials = 0; 
  while ( trials < sizefactor * N ) { 

/* N is determined by the size of the problem */ 
   trials = trials + 1; generate a random neighbour S' of S; 
   c' = cost(S'); ∆ = c'- c; 
    if (S' is feasible and cost(S') < c* ) 
      { S* = S'; c* = cost(S'); } 
       /* save best feasible solution found so far */ 
   if (∆ < 0) { changes = changes + 1;  c = c'; S = S'; }  

/* downhill move */ 
   else {       /* possible uphill move */ 
    choose a random number r in [0,1]; 
    if ( r <= exp(-∆/temp) ) 

 { changes = changes+1; c = c'; S = S'; } 
   } 
  } 
  if  (changes/trials > tcent ) temp = fastfactor * temp; 

/* reduce temperature quickly */ 
  else temp = tempfactor * temp; 

 /* reduce temperature slowly */  
if ( changes/trials < minpercent )  

freezecount = freezecount+1; 
  else freezecount = 0; 
 } 
 output the final solution S*; /* S* is a feasible solution of 
minimum cost */ 
} 

B. GENETIC ALGORITHM 

 
Canonical GAs [15] were not intended for function 

optimization [3], but slightly modified versions proved to be 
successful [2]. In our experiments, the initial population 
consisted of WP random trial solutions, where WP was 
chosen to be around 10. Each trial solution S is defined as a 
chromosome string of length N (number of variables, defined 
earlier) where the elements were shift values, that is, integers 
between 1 and 4. Each chromosome represents one complete 
solution. First element of any chromosome represents the shift 
assigned to nurse1 on day1; second element represents the shift 
assigned to nurse1 on day2, and so on. The fitness function was 
essentially identical to the cost function used in Simulated 
Annealing, and nGen had a typical value of 10,000. Larger 
values of nGen gave solutions of better quality at the expense 

of higher runtimes. Cross-over and Mutation operators are 
used to generate new chromosomes[2]. Among the 
chromosomes generated, the one that had the highest rating 
among all feasible solutions is finally outputted. 

Procedure GA 
1. Start with a randomly generated population of ‘n’, ‘l’ 

bit chromosomes. 
Number of bits in each chromosome= number of 
nurse * number of days; 

2. Calculate the fitness f(y) of each chromosome y in 
the population. 

3. Move the best chromosome to the new population. 
4. Repeat the following steps until (n-1) more 

offsprings are created. 
(a) Select a pair of parent chromosomes from 

the current population, the probability of 
selection being an increasing function of 
fitness. Selection is done “with 
replacement”, meaning that the same 
chromosome can be selected more than 
once to become a parent. 

(b) With probability Pc (crossover probability), 
cross over the pair between two randomly 
chosen points (chosen with uniform 
probability) to form two offsprings. If no 
cross over takes place, form two offspring 
that are exact copies of their respective 
parents. (Here the cross over rate is defined 
to be the probability that two parents will 
cross over between two break points).  

(c) Mutate the two offspring at a randomly 
chosen bit with probability Pn (the mutation 
probability or mutation rate) and place the 
resulting chromosomes in the new 
population. 

   If n is even, one new population member can be discarded 
at random. 

5. Replace the current population with new population. 
6. Go to step -2 until a desirable solution is found or 

maximum number of generations is completed.  
 

IV.  EXPERIMENTAL OBSERVATIONS 

 
Our experimental result will show the best roster in tabular 

form. A sample roster is given below. This roster is for 15 
nurses and for one week. 

• Each row in the table 1 shows the shift sequence of a 
particular nurse. 

• Each column in the table 1 shows shift assignment of 
each nurse on that particular day. 

• The marks ‘M’, ‘E’, ‘N’ and ‘* ’ represent a morning 
shift, an evening shift, a night shift, and a day off 
respectively. 

• The number of nurses assigned to each shift is given 
at the bottom of the table 1. 

• The number of the shifts that each nurse works in the 
scheduling period appears at the right of the table 1. 

• The total cost will show the cost penalty for 
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unsatisfied constraints. If all constraints are satisfied, 
then this cost is zero. 

 
TABLE 1: A SAMPLE ROSTER 

 
          M  T  W  T  F  S  S    MOR  EVE  NGT  OFF 
 
 n01:  N  N  *  M  M  E  E        2        2      2          1 
 n02:  E  E  N  N  *  M  M        2        2      2          1 
 n03:  M  M  E  E  N  N  *        2        2      2          1 
 n04:  *  M  M  E  E  N  N        2        2      2          1 
 n05:  M  M  E  E  N  N  *        2        2      2          1 
 n06:  E  N  N  *  M  M  E        2        2      2          1 
 n07:  N  *  M  M  E  E  N        2        2      2          1 
 n08:  E  N  N  *  M  M  E        2        2      2          1 
 n09:  N  *  M  M  E  E  N        2        2      2          1 
 n10:  M  E  E  N  N  *  M        2        2      2          1 
 n11:  M  M  E  E  N  N  *        2        2      2          1 
 n12:  E   E  N  N  *  M  M       2        2      2         1 
 n13:  N  N  *  M  M  E  E        2        2      2          1 
 n14:  N  *  M  M  E  E  N        2        2      2          1 
 n15:  E  E  N  N  *  M  M        2        2      2          1 
 
MOR: 4  4  4  5  4  5  4 
EVE:  5  4  4  4  4  5  4 
NGT: 5  4  5  4  4  4   4 
OFF:  1  3  2  2  3  1   3    Total Cost= 0 
 
We now summarize our experimental observations on the 

Nurse Scheduling Problem (in Table 2). The two CSP 
methods were programmed in C and run on the 
WINDOWS-based Pentium 4 machine. The random number 
generators random(int) and rand() were used for generating 
random numbers. Identical problem instances were run for 
both the methods. We wanted to create random instances of 
the NSP that were realistic and indicative of real life 
situations. For this purpose, we collected data about nurse 
rosters from well-known Peerless Hospital in Kolkata. 
Duration of roster varies in different hospitals, so we decided 
to keep the duration between 7 to 30 days. Hard constraints 
are same for all the problems. Here Soft constraints depend on 
the roster period. 100 problems were generated for each set. 
We determined the number of problems solved in a set and the 
average runtime in seconds. We also computed, for each 
feasible solution, the number of unsatisfied soft-constraints. 
The averages were taken over solved instances.  

The methods were compared on the basis of three criteria: 
i) the number of problems solved (denoted by Solved in the 
table 2) in each set of 100; ii) the runtime in second averaged 
over solved problems (denoted by Time in the table 2), iii) the 
average cost of the solution obtained (denoted by Cost in the 
table 2), cost being determined by the number of 
soft-constraints which were not satisfied. 

 Simulated Annealing (SA) is the better method, judged on 
the basis of the three criteria mentioned above. The quality of 
solutions improves markedly as parameters are fine tuned to 
their optimal values. Problems become harder to solve if the 
constraints are made stricter. 

  To solve the same problems, Genetic Algorithm (GA) was 
not very effective compared to SA. It took more time and the 

quality of the solution was not very impressive. This is 
because no constraints checking is done while choosing 
cross-over points. And often, after cross-over, the child 
chromosome may not be as good as their parent. 

 
TABLE 2: THE NURSE SCHEDULING PROBLEM 

PERFORMANCE OF SIMULATED ANNEALING AND GENETIC ALGORITHM 

  
Period 
(days) 

Probs Method  Solved  Cost Time 
(sec) 

SA 88 0.27 0.77 7 100 
GA 80 26.85 2.5 
SA 92 0.11 2.85 14 100 
GA 73 4.72 7.21 
SA 100 2.46 3.48 21 100 
GA 86 22.16 8.26 
SA 65 2.52 11.77 30 100 
GA 24 30.00 11.28 

 
 

V. CONCLUSION 

The Nurse Scheduling Problem is a complex scheduling 
problem. The runtime increases as the number of variable 
becomes higher. Assigning proper weight to each constraints 
helps to get feasible solution faster. But if we assign too much 
weight to the hard constraints, then the solutions of good 
quality are hard to find. Of course, not every randomly 
generated problem instance has a feasible solution. When no 
weight it assigned to the constraints it is quite possible that 
some of the problems do not have feasible solutions. 

 
        In this paper, we applied Simulated Annealing and 

Genetic Algorithm for solving Nurse Scheduling Problem 
which was modeled as weighted CSP. In most of the cases our 
programs were able to return a feasible solution satisfying the 
hard constraints. But the SA implementation proved to be 
more useful than GA. What is more interesting is that the 
resulting roster is cyclic, i.e. the same roster can be repeated 
after the given duration.  
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