

Abstract—Often, one connotes problem management with a

postdelivery process for resolving problems within corrective
maintenance. Very seldom, however, one relates it to the testing
process within development, evolution and maintenance. In this
paper, we propose a model of predelivery problem
management. Using the model, we study the industrial status
within eight companies situated in Greece. Our results show
that all the organizations studied conduct a predelivery
problem management process within system testing. However,
only three out of eight companies perform it within central
integration testing.

Index Terms—testing, change control, release, defect.

I. INTRODUCTION
Often, one connotes problem management with a

postdelivery corrective maintenance phase, during which one
attends to problems as reported by the customers. Very
seldom however, one relates it to the predelivery phase,
during which problem management acts as a steering engine
of the overall testing process.

Predelivery problem management plays an important role.
It functions as a communication channel between engineers and
testers. It also controls the testing process and provides an
important feedback for decision making by various roles,
such as project managers, quality managers, release
managers, testers, and the like. Despite this, it has been little
explored. To the knowledge of the authors of this paper, there
are no process models whatsoever defined for this important
activity. Software organizations do not have any standard
model to follow in order to control their testing process via a
predelivery problem management process.

In this paper, we suggest a predelivery problem
management process model to be performed during the
testing process. Our goal is to suggest an optimal model of
how to control the testing process using problem
management. Using the model, we then study the industrial
status within eight companies situated in Greece.

The remainder of this paper is as follows. Section II
describes our research method. Section III places problem
management process within the development and evolution
maintenance processes. Sections IV and V describe the

Manuscript received December 30, 2007.
Mira Kajko-Mattsson is with the Department of Computer and Systems

Sciences, Stockholm University/Royal Institute of Technology, Forum 100,
SE-16440. Kista, Sweden. (Phone: +46-8-162000; fax: +46-8-7039025;
e-mail: jaana@dsv.su.se).

Eirini Tsotra is with the Department of Computer and Systems Sciences,
Stockholm University/Royal Institute of Technology, Forum 100, SE-16440.
Kista, Sweden. (E-mail: mira@dsv.su.se).

predelivery problem management process model and its
status within the organizations studied. Finally, Section VI
makes conclusions and suggestions for future work.

II. RESEARCH METHOD
In this section, our research method is described. Section

II.A presents the organizations studied. Section II.B
describes the research steps taken during the study, and
finally, Section II.C describes the scope and validity of our
work.

A. Organizations
The companies involved in our research were experts in

the fields of assurance, IT services, food industry, travel
industry, car manufacturing and finance solutions. They
were:
1. Generali: Greek branch of multinational assurance

company [5],
2. Toyota-Europe: European branch of well-known car

manufacturing company [13],
3. Amadeus: French branch of a leading provider of IT

solutions in the travel industry [1],
4. PWC: Greek branch of assurance and advisory services

multinational company having many well-known
multinational companies as clients [11],

5. Cronos: Belgian company providing various services in
the IT world [3],

6. Cogmed Systems AB Swedish software-based company
[2],

7. Unilever S.A.: Greek member of the multinational group
ELAIS-Unilever S.A. an expert in the food industry [4],

8. Unilever Hellas S.A.: Greek branch of the multinational
group Unilever S.A. dealing with consumer products
[14].

Regarding Cronos, it cooperates on some projects with

Toyota-Europe. When receiving the responses from these
companies, Cronos was working on an on-going project at
Toyota-Europe and had responded on behalf of Toyota-
Europe’s IT department. For the credibility of our research
results, we treat these two companies as two separate cases.

B. Method Phases
Our study consisted of the following steps; (1) Literature

Study, (2) Model Creation, and (3) Model Evaluation.
Within the Literature Study phase, we searched for various

printed materials dealing with problem management within
testing. To our surprise, we found almost nothing describing

A Model of Predelivery Problem
Management

Mira Kajko-Mattsson, Eirini Tsotra

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

Table 1. Our questionnaire

this important process. The only material dealing with
problem management were various articles on postdelivery
problem management within corrective testing. The majority
of them however, were written by the lead author of this
paper [7-9]. Some information on problem management
within testing was, however, slightly mentioned in one
testing book [10].

With this state of art, we had to rely on our own experience
of problem management within testing as elicited within two
ABB organizations while creating CM3: Problem
Management, a postdelivery process model to be used within
corrective maintenance. Using this experience, we outlined a
problem management process model and placed it on major
testing process phases.

In order to evaluate the proposed model of problem
management, we created an open-ended structured
questionnaire. The questionnaire is presented in Table 1. Via
email, we then sent the description of our model and the
questionnaire to the companies studied. They provided us
with their responses to the questions via email as well.

C. Scope and Sampling
Problem management within testing and problem

management within corrective maintenance are different
processes. To distinguish between them, we use the term
predelivery problem management to refer to the problem
management within testing and the term postdelivery
problem management to refer to the back-end problem
management process within corrective maintenance [7].

The predelivery problem management covers all the four
standard testing phases: developers’ testing, integration
testing, system testing and acceptance testing. In this paper
however, we limit our scope to only the first three testing
phases. We exclude acceptance testing phase due to the

difficulties of contacting the customers within the
organizations studied. Also, in our testing process, we
assume that the integration testing is conducted by an
independent role, called System Integrator.

The choice of the organizations studied was made
according to the convenience sampling method [12]. This
means that we evaluated our model within the organizations
that agreed to be studied. The small sample size and the
convenience sampling method should not allow us to
generalize our results. More studies need to be made to
explore the domain of predelivery problem management.

III. PLACING PROBLEM MANAGEMENT WITHIN THE
DEVELOPMENT AND EVOLUTION PROCESSES

Although the problem management within testing and
problem management within corrective maintenance are
different processes, they are tightly related to each other.
Figure 1 illustrates two main milestones within the
development and evolution processes that are relevant from
the problem management perspective. These milestones
designate the point in time when these problem management
processes start and end.

Before Milestone 1 (M1 in Figure 1), the system is not
subject to formal change control. The functionality under
development or change (evolution) is not complete and not
fully tested. At M1, a component has reached sufficient
functionality and stability to start the formal change control.

Between the milestones M1 and M2, the system is subject
to formal change control. At this phase, one conducts various
levels of testing. Problems revealed during testing are then
reported to the developers/maintainers via the predelivery
problem management process dedicated to the testing phase.
The predelivery problem management is a simple process,

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

Figure 1. Placing the two problem management processes within the development and maintenance phases

during which testers report on problems in the defective
components and developers attend to these components and
supply testers with new corrected ones.

At milestone M2, the system gets delivered to the
customer. However, not always all the problems discovered
during the testing get resolved. The management of some of
them will have to be postponed to the post-delivery problem
management phase. In order not to loose track of these
unresolved problems, they are transferred from the
predelivery problem management process dedicated to
testing to postdelivery problem management process
dedicated to the postdelivery corrective maintenance phase.

IV. PREDELIVERY PROBLEM MANAGEMENT PROCESS
MODEL

Testing is an iterative process. As illustrated in Figure 2,
predelivery problem management process is an integral part
of an overall testing process. It starts at the developers’ level
and ends at the acceptance testing level.

The first phase is developers’ testing. Here, the engineers
should test their code before sending it for system integration.
They should conduct both unit and unit integration tests [9].
Although these two tests result in the same process activities,
they vary somewhat.

Unit testing encompasses testing of individual methods,
irrespective of whether they are constituents of a class or not.
It ensures that a specific method has successfully undergone
a test. Unit integration testing, on the other hand, tests
several units together, that have been developed by the same
developer. It covers one or several units/classes that have
been developed or changed by the responsible developer. The
stress is put on the interfaces among the classes and
functionality or sub-functionality as developed, evolved or
maintained by the developer.

The predelivery problem management does not explicitly
exist in this phase. However, in our model, we strongly

recommend that developers make notes on various problems
that they have encountered when testing and integrating their
units. These notes help the developers to efficiently manage
and control their problems and to learn new lessons.

As soon as engineers have written their code and tested it,
they should send it for central integration testing. The
successfully integrated and tested parts are then sent for
system and acceptance tests.

Depending on the complexity of the system, the
integration and system tests may be conducted on different
system levels. For instance, components may be integrated
into a system which, in turn, may constitute a subsystem to
another system and so forth. Hence, one may need to conduct
integration and system tests on different system levels.

All testing processes depicted in Figure 2 are iterative.
These iterations may be conducted on several levels. From
the developers’ perspective, this means that developers
iteratively test and modify their components before sending
them for integration. This is the first iteration level.

The second iteration level is as follows. The software
components, sent for central integration, may have resulted in
problems. These problems are reported by the integrators to
the developers via the predelivery problem management
process. The engineers then attend to the reported problems
and send the corrected code to the integrators. The reporting
activity and the correction of code is part of the predelivery
problem management process model.

The same procedure applies to system and acceptance
testing. As soon as system or acceptance testers encounter
problems, they should report them to the developers
responsible for the problematic code. The developers should
correct the code, and, the corrections should then be sent to
the integrators. If successfully integrated, the system is then
sent for system and acceptance testing.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

Figure 2. Predelivery problem management process within testing

From the predelivery problem management process

perspective, the integrators and system testers should write
formal problem reports and send them to the responsible
engineers. These problem reports provide an important
feedback for (1) the efficient management and control of all
the problems encountered during testing, (2) efficient
communication among all the roles involved within testing,
(3) evaluation of the system quality, (4) decision making on
whether and when to release, and (5) estimation of the
remaining cost and time of testing.

V. EVALUATION RESULTS
In this chapter, we present and analyze the results as

collected via the questionnaires. The results provide inside
information of the state of predelivery problem management
practice within the eight companies studied. When evaluating
the status, we follow the order of the questions as stated in
our questionnaire in Table 1. The evaluation results involving
the three basic phases of testing (Developers’ Testing,
Central Integration Testing and System Testing), are
presented in Sections IV.A-IV.C, respectively.

A. Developers’ Testing
Within six out of the eight companies, engineers conduct

both unit and unit integration testing. The remaining two
companies did not provide us with any information
concerning this testing phase.

Regarding the problem management process, not all
engineers make notes about the problems that they have
encountered when testing their own components. Only five
out of eight companies record a problem when it gets
encountered at this testing level. Two of the three remaining
companies only record major and more important problems.

The engineers mainly make notes in order not to forget the
problem. They use it for planning their next-coming work
and for tracking the coding and testing activity.

Five out of eight companies have had difficulties by not
making notes about the problems encountered during the
developers’ testing process. One company has not provided

us with any information about it. The remaining two
companies state that they do not have any difficulties
regarding this practice. The major difficulty that the
developers encounter when not making notes concerns the
planning of their own testing process and making decisions
on when to stop testing.

Six companies believe that making notes at this testing
level will help them (1) have a clearer understanding of their
own testing process, (2) solve problems in a more efficient
way, (3) retrieve past cases and apply their solutions, (4)
observe problem/defect/error patterns and use them to
improve future development, (5) possess a reference base for
finding out what has been tested, where and how, and (6)
identify bottlenecks within testing.

The respondents claimed that the above-listed benefits
may only be gained if these notes are well organized and
documented.

B. Central Integration testing
Six out of eight companies conduct central integration

testing and prepare test cases for this testing phase. The
remaining two companies have chosen not to reveal any
information concerning this activity.

Regarding the problem reporting activity, only three
organizations formally report on problems encountered
during integration testing to the responsible developer. To
facilitate the developers’ debugging process, the integrators
within these organizations record the testing context and
action sequence in which the problem was revealed. Another
three companies do not formally report on integration testing
problems at all. Finally, the remaining two companies have
not answered this question.

The companies that report on integration problems claim
that formal reporting within integration testing is pivotal.
Lack of it may lead to difficulties such as confusion due to
misunderstanding of the integration problems and unrealistic
feedback for the scheduling of the remaining testing
activities.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

In addition to formal problem reporting, the integrators
within six organizations interact with the developers in order
to solve the integration problems. The integrators do the
following:
• Provide the developer with data that caused the

integration problem. They do it usually via emails;
• Provide the developer with relevant examples, either

orally or in writing;
• Explain the problem to the developer by walking

through the integration testing and reproducing the
problem, or by recording the context and sequence of
testing actions during which the problem was detected.

Some problems cannot be easily explained. In this case,
the integrators provide as detailed information as possible on
the sequence of actions leading to the problem occurrence.

All eight companies, even the ones that have not
implemented the formal problem reporting within integration
testing phase, believe that formal problem management
process, as proposed in this paper, is of great importance.
According to them, it leads to the following benefits:
• Reduced misunderstanding of a problem;
• Better clarification of the problem;
• More efficient communication on problems to all

relevant parties;
• Easier tracing of solutions to problems;
• More efficient problem resolution process;
• Assurance that all resolution actions have been done;
• Increased testing efficiency in the long run.

These benefits however must be weighed against the cost
of the time consuming problem management procedures.

C. System testing

All eight companies conduct system testing in their
organizations. They all create system test cases. The point in
time when the test cases are created are the following:
• Early phase in the development/evolution cycle;
• Later phases of the requirements specification phase,

when the usage of the application is well understood;
• After completion of central integration testing;
• Early stages of system testing.

All the organizations studied formally report on problems
encountered during system testing. The reported problems
may be assigned a criticality value by the system testers.
What happens after the problem got reported by the system
testers varies depending on the testing status and the
character of the encountered problems. System testers may
continue with the testing of other parts of the system while
awaiting the corrections. When delivered, these corrected
components (corrections) are retested to make sure that their
problems got resolved.

The corrections delivered by the responsible developers
are retested at the system level within all the organizations
studied. However, only in one organization, the corrections
are also retested at the integration testing level.

Some companies encounter some difficulties in cases
when system testing problems do not get formally reported to
the responsible developers. Lack of the reporting procedure
may lead to confusion, discovery of ripple-effect problems in

other parts of the software system, and delay of the whole
testing process.

In all eight companies, the integrators communicate with
the responsible developers in order to help reproducing the
problems reported during the system testing phase. If the
problems cannot be reproduced, the integrator explains the
sequence of actions before running into the problem as
detailed as possible.

When being asked about the opinion on the outline of our
predelivery problem management process model and the
flow of problem reports and corrections, six out of eight
companies agreed upon it. The seventh company pointed out
that the testing time and cost may be substantially multiplied
with our model. The eighth company responded that for
simple problems that can be resolved right away, the flow
might be redundant. Still however, all the companies studied
believe that formal predelivery problem management process
can help improve the testing process in the following way:
• It leads to a fast solution;
• It helps all the relevant parties to continuously review the

testing status;
• It helps reduce misunderstandings related to the reported

problems;
• It assures that all required actions have been performed;
• It serves as a formal documentation for future use and

referencing;
• It prevents similar problems from occurring;
• It increases testing efficiency in the long run.

As a general conclusion, the companies are positive to our
proposed model as an approach to manage the overall testing
process. Although it implies a cost in time and energy, it is
however worth the effort.

VI. FINAL REMARKS
In this paper we have presented a predelivery problem

management process model. Our model can be used as a
guideline for how to efficiently drive the overall testing
process and how to manage communication on problems
among the various stakeholders involved in the testing
process.

We have evaluated the process model within eight
companies situated in Greece. Their main business domains
are food industry, travel industry, car manufacturing, finance
solutions and assurance. They are not pure software
developing organizations.

The results achieved during the model evaluation show
that the practice of performing predelivery problem
management varies depending on the testing phase. While a
predelivery problem management is used as a main driving
vehicle for managing system tests, it is not as well exploited
within the integration testing phase. Also, not all resolved
problems that have been reported by system testers get
retested at the integration testing level.

The results presented herein do not allow us to make
generalizations about the predelivery problem management
status. Due to the fact that the organizations chosen for this
study do not have a software production as a main business
driver, we will have to repeat a similar study in the context of

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

pure software producing companies. Still however, results
presented in this paper provide an important indication that a
predelivery problem management process is important as a
steering engine of the overall testing process.

REFERENCES
[1] Amadeus, Internet site address, http://

www.amadeus.com/amadeus/amadeus.html , accessed on 2006/11/15.
[2] Cogmed Systems AB, Internet site address, http://

www.cogmed.com/cogmed/ , accessed on 2007/02/10.
[3] Cronos, Internet site address, http:// www.cronos.be/index.html,

accessed on 2007/02/05.
[4] Elais-Unilever S.A., Internet site address, http://

www.elais.gr/unilever/unilever.jsp , accessed on 2007/01/28.
[5] Generali assurance, Internet site address, http://

www.generali.gr/index.php?lang=en&topmenuid=1&sidemenuid=1,
accessed on 2006/06/06.

[7] Kajko-Mattsson, M, Problem Management Maturity within
Corrective Maintenance, Journal of Software Evolution and

Maintenance: Research and Practice, John Wiley & Sons, May/June,
Volume 14, Issue 3, May/June, 2002, pp. 197-227.

[8] Kajko-Mattsson M., Evaluating CM3: Problem Management, in
Lecture Notes in Computer Science, Conference on Software
Advanced Information Systems Engineering, Springer-Verlag,
Volume 2348, 2002, pp. 436-451.

[9] Kajko Kajko-Mattsson M., Björnsson, T., Outlining Developers’
Testing Process Model, In Proceedings, 33rd Euromicro Conference
on Software Engineering and Advanced Applications, IEEE,
Computer Society Press: Los Alamitos, CA, 2007.

[10] Kaner C, Falk J, Nguyen H Q, Testing Computer Software, John
Wiley & Sons, Inc. 1999.

[11] PriseWaterhouseCoopers PWC, Internet site address, http://
www.pwc.com/extweb/home.nsf/docid/d6f13ee15d69057780256fe0
00437808 , accessed on 2007/01/30.

[12] Robson., C., Real World Research. Blackwell Publishing, 2002.
[13] Toyota-Europe, Internet site address, http:// www.toyota.eu/ ,

accessed on 2006/11/11.
[14] Unilever Hellas S.A., Internet site address, http:// www.unilever.gr/ ,

accessed on 2007/02/20.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

