

Abstract—There is a continuously growing number of

customers who use online banking because of its convenience.
We consider two current online banking problems. First, we
observe a lack of attention and research focusing on security
issues relevant to the clients’ side of online banking systems.
Second, there are many security products used in online
banking systems. However, security testing is still in its infancy
and little is available to verify if those security products are
working properly. We discuss the current security testing
categories and standards, as well as common security testing
approaches. We then propose an original scheme to design a
compliance testing system for the security of online banking.
Our proposal aims at suggesting to testers how to design
security testing and identify potential vulnerabilities in current
online banking systems.

Index Terms—security testing, online banking, security
standards, compliance

I. INTRODUCTION

Internet-based electronic banking is also called online

banking. There are a continuously growing number of
customers using online banking because of its convenience.
Banks also encourage their customers to use online banking
since it can lower banks’ costs. However, online systems
providing banking services need to offer strong security
because of the confidential information involved, as well as
attacks against online banking authentication mechanisms
[8].

There’s no ‘peace of mind’ for online banking according
to Mannan [12]: most banks mislead their customers about
the security of online banking and make customers believe
that banks will offer refunds if hackers steal money from
accounts. For example, most banks’ customer agreements
require customers to install and maintain an up-to-date
version of anti-virus, firewall and anti-spyware software.
These security requirements must be satisfied if banks are to
completely reimburse customers for losses resulting from
unauthorized transactions through online banking. However,
some customers are not aware or may not know how to
satisfy such conditions. A survey of 123 advanced
security-aware users [12] shows that most failed to satisfy

Manuscript received December 30, 2008.
H. Chen is a Ph.D. candidate with the School of Computer Science,

Carleton University, Ottawa, Ontario, CANADA K1S 5B6 (email:
hchen9@scs.carleton.ca).

J.-P. Corriveau is an Associate Professor and Graduate Director with the
School of Computer Science, Carleton University, Ottawa, Ontario,
CANADA K1S 5B6 (phone: 1-613-520-2600 ext. 8751; fax: ext. 4344;
email: jeanpier@scs.carleton.ca).

common security requirements and would not be eligible to
get a refund if hackers raided their accounts.

We find that there are two potential security problems in
the current online banking systems. First, online banking
systems constitute a kind of client/server application. Most
research on online banking systems is focusing on security on
the server’s side and on network security (i.e., the creation of
a secure channel between the clients’ computers and the
bank’s servers). Solutions to ensure authenticity and
confidentiality over Internet are widely available. However,
little exists to address security on the clients’ side. Second,
there are many security technologies, implementations and
products that can be selected and applied to online banking
systems. However, it is difficult to find a testing system that
can be used by the customers themselves to verify if those
security products are running properly. Clearly, there is no
real security protection without proper installation and
configuration of such products.

Therefore it is very important to perform security testing
on the client side in accordance with the security standards or
policies of banks. To the best of our knowledge, there is
currently no product for testing online banking systems on
the client’s side. In this paper, we sketch out how testers may
perform online banking security testing.

Security technologies involve algorithms, protocols,
standards, and mechanisms. Furthermore, it is commonly
agreed that there are four levels of security: system, network,
data and application [6]. Moreover, many security
technologies can be used for each level. Consequently, once
risks are identified and appropriate corresponding security
technologies selected, the latter must be tested to demonstrate
they meet the security demands of the relevant level(s). More
precisely, testing results and metrics must provide this
demonstration.

Our goal here is to summarize criteria and ideas that may
be useful for the creation of a compliance testing approach
for the security of online banking systems. Such an approach
should be designed according to the security standards and
policies of banks. And it should allow users to establish
whether they satisfy the security demands of their bank
before they start using online banking.

In section 2, we categorize security testing into black-box
and white-box issues. Section 3 discusses security standards
relevant to compliance testing. Section 4 summarizes
common security testing approaches and technologies.
Section 5 proposes how to build a compliance testing system
using such security testing approaches. Related work is
discussed in section 6.

Security Testing and Compliance for Online
Banking in Real-World

Hao Chen and Jean-Pierre Corriveau

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

II. SECURITY TESTING CATEGORIES

Software security can be viewed as the absence of

characteristics that pose a risk to the operator of the software
or third parties if such characteristics are exploited with
malicious intent [23]. Roughly put, security testing is about
discovering risk in what is not specified. This definition
focuses on ‘exploits’ rather than security functions. For
example, buffer overflow errors may appear anywhere in a
system and their impact usually does not depend on security
functions.

Security testing involves two types of testing: functional
and non-functional. The former consists in testing security
features or components, such as an access control system, in
order to ensure the system works. It can be performed using a
traditional testing approach. For example, testing
authentication with user name and password constitutes
functional security testing. We are able to ensure the system
meets security functional requirements after testing because
we know the expected results and behavior of the system.
Non-functional security testing is also called risk-based
security testing. Its purpose is to test for a malicious attack,
which may require probing undocumented vulnerabilities
such as SQL insertion or a poor password. It is difficult for
traditional software testers to perform this kind of testing
because they may not think as an attacker aiming to exploit
the system.

Orthogonal to the functional/non-functional dichotomy,
security testing can be performed using both white box and
black box testing to reveal possible software risks and
potential exploits. White box testing takes into account the
internal mechanism of a system or component [26].
Conversely, black box testing ignores the internal mechanism
of a system or component and focuses on the outputs
generated in response to selected inputs and conditions [26].
That is, black box testing runs software without considering
the source code. Consequently, software testers need to try
various malicious inputs in order to break a system. Some
security testing tools do treat software applications as black
boxes. For example, there are some black-box vulnerability
scanners such as Nikto [17] and Nessus [21], which use large
repositories of known software flaws to discover security
problems by launching attacks against an application.

Compliance testing, also called conformance testing, aims
to verify whether a product or system meets the supplied
specification. Regardless of the domain or specification,
conformance testing is a form of black-box testing [27]. That
is, conformance tests are derived solely from the product or
system requirements or specifications.

III. SECURITY STANDARDS

Security compliance may include analysis and testing of

the system for conformance to a set of security standards. It is
important that a security evaluation of IT products be
performed using official standards that contribute to the
objectivity of the results. Some of the most popular security
standards include CC/CEM, ISO 17799, COBIT, NIST,

Basel II, ISO 21188 and FISCAM [22]. Let us elaborate:
The Common Criteria for IT Security Evaluation (CC) [4]

and the Common Methodology for IT Security Evaluation
(CEM) [5] are used as the standard evaluation criteria and
methodology for all security evaluations of IT products
Evaluations are done based on the seven evaluation
assurance levels (EALs) [22]. The Common Criteria is an
international standard (ISO/IEC 15408) and has received
worldwide acceptance. It is a very important framework for
the evaluation of IT products and systems with respect to
their security mechanisms.

The ISO 17799 standard can be used to develop a security
policy within an organization. It addresses information
security policy, access control, information systems
maintenance and compliance. The Control Objectives for
Information and Related Technology (COBIT) [28] is a
framework and supporting toolset for IT management,
created by the Information Systems Audit and Control
Association (ISACA), and the IT Governance Institute
(ITGI). It contains high-level controls for system security
such as managed security, logical access control, security of
online data, user account security and controls, data
classification and firewall architectures [28]. COBIT allows
managers to bridge the gap between control requirements,
technical issues and business risks. The National Institute of
Standards and Technology (NIST) provides a guideline on
Network Security Testing for operating systems. Underlying
Technical Models for Information Technology Security [18]
provide security features and known security attacks on IT
systems. For secure systems or products, the National
Computer Security Centre (NCSC) has published the US
Department of Defense "Trusted Computer System
Evaluation Criteria" (referred to as the "Orange Book").

Basel II is a security standard of Internet banking. It
describes a number of security controls including
authentication of customers, non-repudiation of online
transactions, authorization controls, data integrity of
transactions, audit trails and confidentiality of bank
information. The International Organization for
Standardization’s ISO 21188:2006 [10] is a framework of
Public Key Infrastructure for Financial Services and
describes requirements to enable certificate-based solutions
for secure Internet banking applications. It also defines
security targets and procedures used for the risk management
process. The Federal Information System Controls Audit
Manual (FISCAM) was designed to evaluate the general and
application controls over financial systems. It is very useful
for developing a security program or application.

The open question is to decide how these standards can be
used as part of a systematic approach to compliance security
testing for online banking.

IV. SECURITY TESTING APPROACHES AND TECHNOLOGIES

There are some common testing approaches for security,

which are based on testing targets such as: overall system or
one component, server or client side, network or operating
system. For example, monitoring tools focus more on
network and file systems, while vulnerability scanners are to

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

test web applications rather than underlying operating
systems. Knowing what a method targets for testing must
guide the selection of such methods.

Flaw hypothesis testing (also called ‘penetration’ testing
when applied to security testing) is based on propagation of
errors due to vulnerabilities in order to find possible ways to
attack a system. The method was first introduced by Linde in
[11], and the idea is to hypothesize possible flaws, and then
test whether these hypotheses are true. Penetration testing is a
black box testing and has been used in several tools built for
network security testing, e.g. SAINT [1]. The quality of data
collected from network traffic or vulnerability databases is of
vital importance in order to do penetration testing effectively.
Fuzzing [16] sends random inputs to an interface in order to
find a bug by chance. Fuzzing is about how to look, rather
than what to look for. Fault injection [24] is more targeted
than fuzzing. By making use of fuzzing, we can identify
flaws in software that we do not have full access to and
perform a black-box testing. Fault injection can be used for
testing ActiveX objects, file formats, command-line
executables, and shared memory segments [29]. A number of
useful tools can automate this process and identify various
vulnerabilities. For example, OLEView is a tool included
with Microsoft Visual Studio that lists installed ActiveX,
COM, and OLE objects. It allows the user to view the
properties and implemented interfaces, and can be used to
check whether a given ActiveX object is scriptable and
marked safe [29]. If there is a serious vulnerability in
ActiveX components that might be activated by a remote
Web page, an attacker may access and control the user’s
computer by taking advantage of the vulnerability.

Interactive proxies used for Web application security
testing are better to understand test requirements and produce
results than automation tools. WebScarab [3] is a tool which
operates as an interactive proxy, allowing the user to review
and modify requests created by the browser before sending to
the server, and to review and modify responses returned from
the server [3]. WebScarab is able to test secure web
applications because it can intercept HTTPS besides HTTP
communication. Both software testers and security specialists
can use it to debug problems and identify vulnerabilities.

Vulnerability scanners are systematically used to test Web
applications, but they have poor performance [15] because of
their automation and because they generate too many false
positives [25]. OWASP top ten [2] is useful to find common
vulnerabilities and security problems required for testing. For
example, cross site scripting (XSS), injection flaws, and
malicious file execution are all listed in OWASP top ten and
considered as most critical security flaws for web
applications. The main purpose of using vulnerability
scanners is to identify those specified flaws on the list by
conducting security checks. In addition, OWASP top ten is
often used as a minimum standard for web application
vulnerability assessment and security tesing to find security
defects.

An attack tree [20] focuses on possible attacks against a
system. It provides a threat model and is very useful to
perform security analysis and evaluation. However, a

systematic method is needed to develop the tree. It is open to
formalization [14].

STRIDE (Spoofing, Tampering, Repudiation, Information
disclosure, Denial of service, and Elevation of privilege) [9]
may be viewed as an aspect-oriented programming (AOP)
approach. It considers a set of generic attack techniques and
analyzes a system’s ability to defend itself against such
attacks. It may guide testers in focusing on important
components.

There are other common approaches and techniques to
security testing such as a) checklists, monitoring tools that
are systematically used for network traffic and file access; b)
honeypot, which is a systematic approach to collecting and
interpreting evidence obtained after putting a system on the
Internet and waiting for hackers to access; and c) some
methods for observing and modeling the behavior of a system
in order to determine if it is secure.

Two important aspects of compliance testing are standards
and testing methods. We have described most common
security standards in section 3. In this section, we referred to
a number of testing approaches suitable for security
compliance testing.

V. COMPLIANCE TESTING FOR ONLINE BANKING SECURITY

We propose to use security-testing technologies to design

a compliance testing system in order to ensure online banking
systems comply with security criteria and standards.

Compliance testing is used to determine whether a system
meets some specific standard(s). There are three reasons why
we propose compliance testing for online banking security.
First, compliance testing will establish a desirable exchange
of information between customers and service providers
(e.g., banks). Compliance testing will likely increase
customers’ trust in products and services. When customers
are more confident about the security of online banking, they
use it more, which is desirable for both parties (with respect
to convenience and cost). Also, service providers can
substantiate their claims about the security of their systems
without imposing (in fine print customer agreements)
hard-to-test conditions on the systems of the users. For
example, a security product or system may obtain
corresponding security certification if it complies with
specified standard after testing. Second, compliance testing is
an objective method to evaluate products against a standard.
International standards are recognized all over the world, so
testing the online banking system based on these standards is
objective. On the contrary, testing is subjective when it is
with respect to internal security requirements created by a
bank. Third, requirements in security are different from
others for software systems. Most approaches to security
testing treat the implementation under test (IUT) as a black
box. The internal structure of IUT may not be accessible.
Compliance testing also follows black box testing. Therefore,
we may use security testing approaches to design and
perform compliance testing because they rely on black box
testing techniques. Also, generally a compliance test suite is a
collection of combinations of legal and illegal inputs to the
IUT, together with a corresponding collection of expected

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

results or the corresponding outputs that can be compared
with a reference implementation respecting the relevant
standard.

We propose a general process for building a compliance
testing system for security.

First, select the security standard or policies that the online
banking system under test (SUT) must comply with. For
example, Common Criteria or Basel II could be chosen. Most
banks announce that their online banking applications meet
or surpass the minimum industry standards because security
has been the main concern of customers in the use of online
banking. Therefore, we may select a bank with respect to the
standards that banks use or mention in their security policy or
agreements.

Second, create a set of detailed requirements or
specifications to show how specific tasks meet the specific
standard(s). For example, consider secure operating system
requirements such as using up-to-date anti-virus,
anti-spyware software and a firewall may be defined in
detailed specifications. No one can guarantee that one
computer is 100 percent secure, but installing an anti-virus
and firewall can definitely lower the risk of disclosing
confidential information or being hacked. In [19], the author
shows how online banking is not as secure as it should be and
how it is possible and not difficult to create a virus to break
security and access bank accounts. Thus, the point to be
grasped is that detailed requirements are the key facet of the
compliance testing system.

Third, select corresponding security testing approaches or
tools to develop tests according to these detailed security
specifications. Different testing approaches focus on
different areas (as previously mentioned). The area of the
selected testing approaches should match the related area of
detailed security requirements or specifications of the step
two. Testing approaches may include vulnerability scanning,
penetration testing, log review, integrity and configuration
checkers. Some of these testing techniques are used together
to gain a more comprehensive assessment of the overall
security. For example, using a log review to detect the
existence of required security applications in the operating
systems of a customer’s computer is not enough because such
detection does not guarantee these applications are working
properly. Therefore we need to check configurations and
monitor the behavior of the applications in order to
demonstrate compliance to the online banking requirements
at the client side.

Fourth, verify and demonstrate that the compliance of
overall system has been achieved. Vulnerability assessments,
penetration testing and audit reviews of security controls
ensure that policies and standards are correct. Implemented
security of the overall system on the specific platform can be
tested and compared with the requirements and
configurations to ensure that the security compliances are
verified as per the criteria and requirements.

It is hoped that a compliance testing method will be helpful
in ensuring that security requirements are operational and
satisfy the relevant standards or policies. In addition, such a
method must be able to establish whether the selected
security technologies are appropriate for the security level
required. In essence, a compliance testing method may be

viewed as a proactive rather than reactive approach to
security, one that lowers risk and threats.

VI. RELATED WORK

Security of Internet applications has become increasingly

important. Research exists on security compliance testing for
network applications, but focuses on testing application
protocols rather than application systems such as online
banking systems. Syntax-based testing is a black box, data
driven testing technique for applications for which inputs can
be described formally. SCL [13] is a language designed to
express the syntax and context sensitive constraints of
protocols and is a component of Protocol Tester [13] that
uses syntax-based testing to evaluate the security of network
applications. In addition, software transformation and
program comprehension techniques [7] are used to assist in
the security testing of network applications focusing on state
sensitive protocols.

VII. CONCLUSIONS AND FUTURE WORK

This paper describes current online banking problems and

discusses the need for security testing for online banking
systems on clients’ side. We investigate the current
categories, criteria, and approaches for security testing. We
then sketch out how to design a compliance testing system for
the security of online banking.

This paper does not attempt to develop a specific testing
tool for online banking. We propose an approach for security
testing based on the international security standards and
policies, which may help developers and testers to acquire a
good understanding of security testing and develop a general
compliance testing system focusing on client side security.
We believe the testing system will help customers increase
their confidence when performing transactions through
online banking and ensure that the online banking systems
meet the relevant security requirements and polices in order
to lower the risks of being attacked by hacker.

The compliance testing approach we proposed is still a
very sketchy conceptual framework. Future work includes:
1) Addressing compliance testing of a web-based system
executed on a remote server, using downloadable files for
local execution or a combination of remote and local access
and execution. 2) Self-test capabilities and/or formal
certification testing. 3) Making a decision on the presence or
absence of any risk on a customer’s computer and on a bank’s
website. This entails providing customers with an
understanding of the security policy of their bank. 4) In
addition, usability issues need to be considered. This depends
on what constitutes an acceptable security level and on the
trade-off between usability and security.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

REFERENCES

[1] “SAINT”, 2007. [Online]. Available:
http://www.saintcorporation.com/

[2] “OWASP Top Ten Project”, 2008. [Online]. Available:
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Projec
t

[3] “OWASP WebScarab Project”, 2008. [Online]. Available:
http://www.owasp.org/index.php/Category:OWASP_WebScarab_Proj
ect

[4] CC, “Common Criteria for Information Technology Security
Evaluation” Version 3.1, ISO 15408, 2006. [Online]. Available:
http://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R1.
pdf

[5] CEM, “Common Criteria for Information Technology Security
Evaluation”, version3.1, 2006. [Online]. Available:
http://www.commoncriteriaportal.org/files/ccfiles/CEMV3.1R2.pdf

[6] H. Chen and J.P. Corriveau, “Security Features and Technologies for
E-business Architecture Design”, Proceedings of the International
MultiConference of Engineers and Computer Scientists (IMECS ‘07),
March 21 - 27, 2007, Hong Kong, pp. 1150-1156, Newswood Limited,
2007.

[7] T.R. Dean, G.S.N. Knight, “Applying Software Transformation
Techniques to Security Testing”, International Workshop on Software
Evolution and Transformation, Delft, Netherlands, November 2004,
pp. 49-52. [Online]. Available:
http://post.queensu.ca/~trd/research/papers/step2005.pdf

[8] A. Hiltgen.; T. Kramp; T. Weigold; "Secure Internet-banking
Authentication," IEEE Security and Privacy, vol. 4, no. 2, 2006, p.
21-29.

[9] M. Howard and D. C. Le Blanc, Writing Secure Code, Microsoft Press,
2002.

[10] International Organization for Standardization, "Public Key
Infrastructure for Financial Services -Practices and Policy Framework,"
ISO 21188, 2006.

[11] R. Linde. “Operating System Penetration”. Proceedings of the National
Computer Conference, AFIPS Press, Montvale, NJ, 1975.

[12] M. Mannan, P.C. van Oorschot. “Security and Usability: The Gap in
Real-World Online Banking”. New Security Paradigms Workshop
2007 (NSPW’07), New Hampshire, USA, Sept.18-21 2007.

[13] S. Marquis, T. Dean, G.S.N. Knight, “SCL: A Language for Security
Testing of Network Applications”, Proc. CASCON 2005, Toronto, Oct.
2005. [Online]. Available: http://tarpit.rmc.ca/knight/papers/SCL.pdf

[14] S. Mauw.; M. Oostdijk, “Foundations of Attack Trees” in: Dongho
Won and Seungjoo Kim, editors, International Conference on
Information Security and Cryptology (ICISC 2005), LNCS 3935, pages
186-198, Seoul, Korea, December 2005. Springer-Verlag, Berlin.

[15] G. McGraw, Software Security: Building Security In, Addison-Wesley,
2006.

[16] B. Miller, et al., “Fuzz Revisited: A Re-examination of the Reliability
of UNIX Utilities and Services”, Technical Report CS-TR-95-1268,
University of Wisconsin, April 1995.

[17] Nikto. “Web Server Scanner”, 2005. [Online]. Available:
http://www.cirt.net/code/nikto.shtml

[18] National Institute of Standards and Technology, 2001. “Underlying
Technical Models for Information Technology Security”, 2001. Special
Publication 800-33. [Online]. Available:
http://csrc.nist.gov/publications/nistpubs/800-33/sp800-33.pdf

[19] F. Puente; J.D. Sandoval; P. Hernandez; C.J. Molina; “Improving
online banking security with hardware devices”, 39th Annual 2005
International Carnahan Conference on Security Technology (CCST
‘05), 2005. 11-14 Oct. 2005 pp.174 - 177

[20] B. Schneier, “Attack Trees: Modeling security threats”, Dr. Dobb’s
Journal, Dec. 1999.

[21] Tenable Network Security. “Nessus Open Source Vulnerability
Scanner Project”, 2005. [Online]. Available: http://www.nessus.org/

[22] H. F. Tipton, M Krause Information Security Management Handbook,
sixth edition, volume 2, Auerbach Publiations, Taylor & Francis Group,
2008.

[23] S. Turpe, “Security Testing: Turning Practice into Theory”. Software
Testing Verification and Validation Workshop, 2008. ICSTW apos;08.
IEEE International Conference, 9-11 April 2008 pp. 294 - 302

[24] J.A. Whittacker.; H. H.Thompson, How to Break Software Security,
Addison-Wesley Longman, Amsterdam, 2003.

[25] A. Wiegenstein,; F. Weidemann; M. Schumacher; S. Schinzel, “Web
Application Vulnerability Scanners - a Benchmark”, Version 1.0,
Virtual Forge GmbH, 2006-10-04. [Online]. Available:
http://www.virtualforge.de/whitepapers/web_scanner_benchmark.pdf

[26] IEEE, “IEEE Standard 610.12-1990, IEEE Standard Glossary of
Software Engineering Terminology”, 1990.

[27] C. Hagwood, “Statistics of Software Conformance Testing”. Statistical
Engineering Division, National Institute of Standards and Technology
(NIST), 2001. [Online]. Available:
http://www.itl.nist.gov/div898/pubs/ar/ar1998/node10.html

[28] COBIT, “Control Objectives for Information and Related
Technology”, 2008 [Online]. Available: http://www.isaca.org/cobit

[29] C. Wysopal, L. Nelson, D. D. Zovi, and E. Dustin, “Testing Fault
Injection in Local Applications”, in The Art of Software Security
Testing: Identifying Software Security Flaws, Addison-Wesley
Professional, part of the Symantec Press series, 2007.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

