Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

What is Hampering the Perfor mance of Softwar e Reliability
Models? A literaturereview

Khaled M. S. Fagih

Abstract— This article explores the critical factors
and issues that impede the performance of software
reliability modeling science. The literature review
indicates that software reliability models have not
delivered the desirable deliverables that they are
intended to realize. The current work suggests that the
reasons for such performance incompetence of the
software reliability modeling are attributed to eight
major causes. Based upon the findings of the current
study, a simple framework is proposed to provide
guidelines to developing softwar e organizationsin order
to improve the performance of software reliability
modeling concept.

I ndex terms— NHPP models, reliability modeling,
software modeling performance, software quality.

I. Introduction

Computer systems are booming exponentially.
Indeed, their correct functioning has become
extraordinarily critical to human lives. For exampbn
March 31 in 1986, a Mexican airline crashed into a
mountain because the software system did not dbyrec
process the mountain position. Apparently, it is
improbable to carry out many daily activities wittio
the help of computer systems controlled by softwtre
is an observable fact that the size and complexity
software system has grown massively and indeed the
trend will definitely continue in the future.

Computer system reliability has become an
increasingly imperative standard in measuring servi
continuity. System performance is measured by how
long it provides service without malfunctioning.
Successful operation of any computer system dipen

Manuscript received December 07, 2008.
Khaled M. S. Fagqih is with Al al-Bayt Universitylafraq, Jordan
(phone: +9622777715746; e-mail: km_fagih@aabujedu.

ISBN: 978-988-17012-2-0

on its software components. Thus, it is very imaott

to ensure that the underlying software will operate
correctly, perform its intended functions propealyd
fully deliver its desirable output. Neverthelesbe t
shear size and enormous complexity of current sofw
have increased the unreliability of the systemsHtate
has led largely to greater awareness of software
reliability domain. However, to express the quality
the software system to the end users, some obgectiv
attributes such as reliability and availability st be
measured. Software reliability is the most dynamic
quality characteristic which can measure and pteédec
operational quality of the software system duritgy i
intended life cycle.

The most common approach to developing software
reliability models is the probabilistic approachher
probabilistic model represents the failure occuce=n
and the fault removals as probabilistic events.r&he
are numerous software reliability models availdfole
use according to probabilistic assumptions. They ar
classified into various groups, including error dieg
models, failure rate models, curve fitting models,
reliability growth models, Markov structure modedsid
non-homogeneous Poisson process (NHPP) models . The
NHPP-based models are the most important models
because of their simplicity, convenience, and
compatibility.

The forthcoming exploratory paper targets the
contemporary state of the of the software religpili
domain. Its primary focus is to explore the limibats
of the models that are primarily designed to imgrov
software reliability. The ever increasing of sadte
complexity and size has led to the propagation of
software reliability models. In fact, software are
embedded everywhere, so they must be designed to
operate reliably not disastrously, and their depart
from user requirements must be controlled and
corrected in order to prevent any harmful consegeen
to their environment

This article is structured as follows: Secti@n
addressees NHPP-based models. Section 3 presents a
literature review of the topic. Section 4 providas

IMECS 2009

discussion which lists the critical issues that panthe
performance of the software reliability models. dtip,
section 5 concludes the article.

II. NHPP Models

The most popular and tractable models are NHPP
models. The NHPP group of models provides an
analytical framework for describing the software
failure-occurrence or fault-removal phenomenon
during testing. These models are normally based
upon different debugging scenarios, and can catch
quantitatively typical reliability growth concept
observed in the testing phase of software products.
The NHPP software reliability type models are based
primarily upon two major assumptions. First, the
numbers of failures observed in disjoint time iuntds
are independent. Second, the mean and the vargdnce
the number of software failures observed up tovargi
instant of time coincide with each other. To thestbe
knowledge of the author, these two assumptions have
never been proved accurate.

As a general class of well-developed stochastic
process model in reliability engineering, NHPP
models have been successfully used in studying
hardware reliability problems. They are especially
useful to describe failure processes which possess
certain trends such as reliability growth and
deterioration. Therefore, an application of NHPP
models to software reliability analysis is thenibas
implemented. Therefore, many proposed software
reliability models have been derived on the premise
of NHPP concept. What will happen if such concept
gets abolished?

However, there have been too many criticisns fo
considering software reliability models as a previdf
therapy to software ills and unreliability problems
Indeed, this paper is triggered by the work pressity
Cai et al. [1], whereby they cast too much doubtran
validity and appropriateness of using the non-
homogeneous Poisson process (NHPP) framework for
software reliability modeling. Their empirical
observations and statistical hypothesis testingehav
tentatively proposed that software reliability belba
does not follow a non-homogeneous Poisson process i
general, and does not fit the Goel-Okumoto NHPR [11
model in particular. Undeniably, such findings ame
need of further explorations before any solid
conclusions are drawn from them. Neverthelessereth
are numerous empirical studies available for véiia
of NHPP modes [2- 5]. Historically, models that dav
based their modeling on the concept of NHPP

ISBN: 978-988-17012-2-0

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

framework have played an influential role in saite
reliability modeling. However, Cai et al. [1] have
stressed on the fact that no controlled software
experiments have been conducted to validate or
invalidate the NHPP framework concept statistically
Due to the pessimism pointed out by many reseascher
this exploratory study intends to categorize thedies
that impede the performance of software reliability
models from providing the appropriate remedy to
software ills and unreliability headaches assodiatith
software performance once it is deployed in thiglfie

Ill. Literature review

The concept of software reliability modelingsha
been utilized for almost over three decades. A tess
number of software reliability models have been
recommended, and the earliest models include the
Jelinski and Moranda model [6], the Shooman model
[7], the Nelson model [8], and the Littlewood-Vdkra
model [9]. Some of these models have recently been
some extent falsified because of the sweeping
assumptions they made in their derivation and netho
of operation.

Schneidewind [4] formulated an error detection
model that has been extensively utilized in large
number of applications. The idea behind this maslel
that the current fault rate might be a better ptediof
the future behavior than the observed rated in the
distant past. Musa [10] established a model that ha
been considered as one of the most widely used
software reliability models which use execution im
rather than calendar time in its calculations. Msisa
basic model assumes that the detections of failares
independent of one another, perfect debugging is
assumed, and the fault correction rate is propoatito
the failure occurrence rate.

Goel and Okumoto (henceforth called G-O model)
[11] suggested the time dependent failure rate ode
assuming that the failure intensity is proportiotal
the number of faults remaining in the software. For
instance, G-O model presents a stochastic modéhéor
software failure phenomenon based on a NHPP. This
fundamental assumption of G-O model is somewhat
crude. Yet, it is a simple model for the descriptimf
software failure process. The G-O model was
transformed by Grottke and Trivedi [12] for the sak
renovation so that the model might resemble amiitefi
failures NHPP model, and the new version is cathed
truncated Goel-Okumoto model.

Most of the models mentioned above have
operationally concentrated their therapy during

IMECS 2009

software testing phase, where defects are idedhtéfiel
eliminated and therefore software reliability hdwe t
tendency to grow. Also, most of these models asetha

on the assumption of perfect debugging, where they
assume that there is one-to-one correspondence
between the failures observed and repaired. However
this hypothetical assumption of perfect debuggiag h
never been proved to be accurate.

The concept of S-shaped model came into being i
the early eighties of the last century, where Otdral
Kajiyama [13] proposed the most widely used
inflection S-shaped model which was considered a
novel mechanism for predicting and solving software
reliability issues. Yamada et al. [14] suggested a
model based on the concept of failure observation
and the corresponding fault removal phenomenon,
and it was recognized as an important advancement
in software modeling approach. Musa and Okumoto
[15] recommended both the basic execution time
model and Log Poisson model respectively. This
model differs from the Musa’s basic model in that i
reflects the view that the earlier discovered faitu
have a greater impact on reducing the failure ®itgn
function than those encountered later. The model
assumes that the software is operated in a similar
manner as the anticipated operational usage, the
detections of failures are independent of one ampth
the expected number of failures is a logarithmic
function of time, the failure intensity decreases
exponentially with the expected number of failures
experienced, and there is no upper bound on thdeum
of total failures. Yamada et al. [16] put forward a
model with two types of faults in order to widereth
scope of mathematical reliability models. Their
modified exponential model assumed that the
software contains two categories of faults namely,
simple and hard. Both faults are modeled
independently and consequently the fault removal
process is the linear sum of the two models.

Ohba [17] proposed the hyper-exponential model
to describe the fault detection process in a module
structured software, assuming that a software
consists of different modules. Each module has its
own unique characteristics and therefore the faults
uncovered in a particular module have their own
peculiarities. Consequently, the fault removal rfate
each module is not the same. Ohba recommended
that a separate modeling for each module can be
established and the total fault removal phenomenon
is the linear sum of the fault removal process Ibf a
modules. Yamada and Osaki [18] suggested two
classes of discrete time models. One class describe

ISBN: 978-988-17012-2-0

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

an error detection process in which the expected
number of errors detected per test case is
geometrically decreasing while the other class is
proportional to the current error content; a mougli
diversion from the norm, however.

Kapur and Garg [19] modified the G-O model by
introducing the concept of imperfect debugging; it
was regarded as an important new form of
assumption that may hold true naturally. Kimura et
al. [20] suggested an exponential S-shaped model
which describes the software with two types of faul
namely, simple and hard. They suggested that that
the removal of simple faults can be illustrated
utilizing the exponential model techniques while th
removal of hard fault is illustrated using the deld
S-shaped modeling approach. Zeephongsekul et al.
[21] presented a model describing the case when a
primary fault introduces a secondary fault.
Zeephongsekul's assumption is an important
development in modeling scheme and has certainly
introduced somewhat a reasonable explanation to the
nature of things that may happen in software
domains. Chang and Leu [22] proposed a non-Gaussian
state space model to formulate an imperfect delmgggi
phenomenon in software reliability in order to pogd
software failure time with imperfect debugging. Jhi
type of modeling has been found to be suitable for
tracking software reliability.

The earlier software reliability growth models
(SRGMs) were developed to fit an exponential
reliability growth curve and they are known as
exponential SRGMs [11]. In other cases, where there
was a need to fit the reliability growth by an S-
shaped curve, some available hardware reliability
models depicting similar curve were used by Ohba
[23]. Later, few SRGMs were developed taking into
account causes of the S-shapedness [13,24]. As a
result there are a large number of SRGMs, each
being based on a particular set of assumptions that
suits a specific testing environment. Satoh and
Yamada [25] have explained SRGMs based on discrete
analogs of a logistic equation that have exacttswis.

The deliverables of this type of modeling are aateir
estimates of parameters, even with small amounts of
input data. However, the generated deterministaeta
equations of these models have not facilitated the
yielding of a distribution of the estimates.

Lately some constructive NHPP software reliapil
models with change-point have been recommended by
Zou [26]. Shyur [27] included both imperfect
debugging and change-point problem into NHPP
modeling scheme, and Huang [28] incorporated both

IMECS 2009

generalized logistic testing effort function andaobe-
point parameter into software reliability modeling.
Most of the previous works concentrated on the céise
single change-point, however.

Pai and Hong (2006) [29] utilized a novel tege
based on support vector machines with simulated
annealing algorithms to predict software reliapilit
They concluded that their results concerning rdiigth
prediction were more accurate than other prediction
models. A technique where support vector regression
blended with genetic algorithms was applied to jmted
software reliability [30]. The model was tested
experimentally and the results obtained indicase the
proposed model significantly outperforms the erigti
neural-network approaches.

Finally, a modeling scheme based on the conaept
Gompertz curve has been utilized commonly in
Japanese software companies to estimate the nwhber
residual faults in testing phase of software
development. Ohishi et al. (2008) [31] proposed a
stochastic model called the Gompertz software
reliability model based on non-homogeneous Poisson
processes. They assessed the performance of Gampert
software reliability model in terms of reliability
assessment and failure prediction. Based on the
numerical observations, authors concluded that the
proposed Gompertz software growth model was rather
attractive comparing with the existing growth madel
Indeed, all these recent novel attempts have beatem
to improve the performance of software reliability
models since they have been under continuousrbira f
people everywhere as they are unable to deliver the
right solutions for achieving error-free software
systems.

IV. Discussion

Pressures have been mounted on software acsglemi
to achieve an enhancement in the performance of
software reliability models because many skepteena
that the deployment of these models in softwarealom
is a fruitless notion; even some have gone toobfar
affirming that reliability models as a terminology
should never be part of the active vocabulary of
software dictionary. There is a general consensus
among software community members that it oftengake
a life time of therapy to remove all software ilend
sometimes even that does not work at all. Thissis a
such because some software faults are hard to ipinpo
using the best practices of testing or the instever
comes for some bugs to be triggered.

ISBN: 978-988-17012-2-0

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

The current work recognizes that there are
unresolved problematic issues encountering reltgbil
modeling techniques which are responsible for
hampering to a high degree their performance. The
rationale for such issues is that the probabilistic
behaviors of software are never straightforward to
manipulate. This article has investigated mosthef t
commonly used reliability models. Their assumptions
and methods of operations have been thoroughly
addressed. The current article suggests that the
deficiency in software modeling techniques has been
attributed to the following underlying eight major
causes that have been observed to be accountable fo
performance deficiency of the software reliability
models.

e Unfounded types of assumptions. Huge varieties of
assumptions have been considered to facilitate the
mathematical treatment of the reliability software
domain to be able to develop a tractable modetdero

to achieve plausible results, many of those assomgpt
have been proposed without either theoretical or
practical justification. However, numerous studiese
shown clearly that those assumptions are not truly
representative of reality. Also, one group of taligy
models make the sweeping and crude assumption that
the testing is conducted homogeneously and randomly
that is, the test data are chosen by some random
mechanisms from the external environment and the
software using these data are tested based on the
assumption that conditions are homogeneous. Indeed,
such sweeping assumption has not been justified.
Furthermore, the widespread use of the stochaaed
assumption approaches to describe fault-detection
process behavior may be invalid. Virtually, all @t
software reliability growth models assume that
software failures occur randomly in time, an
assumption that has never been experimentallydeste
despite being criticized by a number of authorshie
field over the years. Effectively, as the relidlyilof the
software improves with time such assumption becomes
catastrophically invalid.

e Complexity of the software. It is obvious that most
software systems are characterized by complexity of
structure and shear size. This implies that it is
impossible to identify their current reliability dn
formulate any model to judge their future reliaili
Any introduction of some additional sweeping
assumptions for constructing a reasonable model may
harm the concept of reliability as a whole. As man
models as there are and many more emerging, efone
the models can capture a satisfying amount of the
complexity of software; constraints and assumptions

IMECS 2009

have to be made for the quantifying process. Thesef

it is not possible to see a single reliability mdkele to
incorporate all factors which are thought to inflae
software reliability.

e Complexity of the reliability models. A
mathematically complex reliability models have
emerged in the literature, however, an extensive
validation of these models seems to be lackindadth,
despite the existence of diversified and numerous
models, none of them can be recommended
enthusiastically to potential users. It is true ttha
mathematically-intensive expressions have been
comprehensively utilized to develop reliability nebsl
that are characterized by tremendous mathematical
strength; some of those models are not amenalaeyto
type of simplifications. The shear complexity obske
models has caused difficulty in implementing them i
software domain for the benefit of improving softera
reliability.

e Weakness of the reliability models. It has already
been said, despite the existence of many divedsifie
reliability models none of them can be recommended
enthusiastically to provide the proper therapy to
software ills. Furthermore, reliability models aneable

to account for the "thoroughness" with which theleo
may have been tested. Admittedly, most of the qotsce
utilized in software reliability modeling have been
applied inappropriately from hardware reliabiliuch
unjustified migration of these concepts has put the
software reliability modeling techniques in jeopard
Furthermore, one common aspect of all existing Hsode
is that their functionalities are probabilistic-bds This
aspect has been clearly considered as a poor inend
software reliability modeling methodologies. Anathe
common characteristic of all of these models ig tha
they uniformly treat software as a black box. Blaok
technique does not handle the internal structurthef
software, it focuses primarily on how software deal
with the external environment. Apparently, most
reliability models seem to lack the needed strength
excel in eliminating errors in software environment
Such superficiality of the reliability models clgar
characterizes most of the existing reliability misde
Not forgetting that software reliability has bdenked

at by many of being to a high extent non-scientggue
which implies that any attempt to quantify is ptess.

e The misconception of fault and failure
phenomena. The argument of most reliability
prediction models is that failure rate is directly
proportional to the number of faults in the prograinis
may be considered unrealistic to a certain degree
because such assumption has never been validated

ISBN: 978-988-17012-2-0

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

either theoretically or experimentally. Howeverséd

on empirical studies, there is a degree of indicatd
corroborate with such assumption. The expected
conclusion of this assumption is that the fail e will

be reduced. Reliability models do not criticatglude

the solid fact that software normally has varioyset

of faults and each one necessitates differentegfied
and different magnitude of testing efforts to rematv
Consequently, if such fact is ignored the modely ma
deliver gravely misleading outcomes that hamper the
reliability of the software products. Unfortunatebil
models assume that faults removal do not introduce
new ones. This assumption is referred to perfect
debugging. Nevertheless, such broad assumptiobean
seen absolutely valid because sometimes fault dixin
cannot be seen as a deterministic process thdtingsu

in perfect removal of the fault. However, new fault
could be introduced as a consequence of fixing one
fault. Also, it has been considered without justfion

that each fault contributes equally to the failuage.
However, different software faults do not affecke th
failure probability equally. Furthermore, for some
modeling techniques, failures are assumed to be
independent; this aspect has never been justified a
such.

e |naccurate modeling parameters. Most reliability
models lack enough experimental data to be used to
derive accurate parameters for the reliability mede
before transferring them completely to the software
domain. However, the parameters values never get
validated to prove accurate. Most of those modsks u
parameters which are not even justified. In reathigre

are many uncertainties surrounding those parameters
and they can rarely be estimated accurately. Ttleda
enough experimental data has been considered as a
stumbling block for the success of reliability mtsde

e Difficulty in selecting thereliability models.

Many strongly believe that selection of the relidpi
model to match the software environment has been fo
long a formidable task and fraught with uncerta@sti
There are great variations of models available in
literature. Indeed, this overabundance of relidpili
models causes the problem of model selection. As a
result there are no universally accepted methodesog
to how selection of the reliability model that
corresponds correctly to the software environment
undergoing reliability measurements could be done.

e Difficulty in building softwar e operational profile.
Software reliability models have been hit hard Hgit
incapability to deliver an accurate operationalfiteaf

the software once it is put into operation. Indeeds

an upheaval task to attempt to develop an opeition

IMECS 2009

profile. Admittedly, even though the science of
reliability has been around for long, softwareability
discipline is still struggling to establish certain
methodologies and techniques for building software
operational profiles. It is imperative though tcesa
new generation of reliability growth models thavéa
the capacity to build an operational profile of the
software product.

A proposed simple framework is suggested to
improve the current software reliability modeling
techniques. It is critical to have software buitd t
facilitate, enhance, and improve the working modes
the reliability models. The proposed framework &&n
utilized as guidelines for anyone wishing to estibh
reliability model. The guidelines are as follows:

1. The success of the framework can never mategiali
unless the aforementioned assumptions are heavily
avoided.

2. The framework must make sure that any data
populated within the system must be tested and
validated before deployment into the reliability ced

3. It is imperative to estimate new parameters bhsed

on the measurement of numerous execution time
intervals between failures.

4. An appropriate framework must be able to idgntif
all factors that feed unreliability in software dgs
domain. It is more beneficial to pin down concealed
factors that trigger unreliability than caring for
reliability after software design. Thus, there mbesta
focus upon accurate measurement, meticulous testing
powerful error verifying techniques, effective faul
detecting mechanisms, and precise means of cargecti
mistakes to achieve zero-error code.

5. It is qualitatively well-established fact thaowing
from randomness-based approach to uncertainty-based
approach will successfully support the reliability
platform framework to improve its performance.
Therefore modeling necessitates the use of the
techniques of fractal sets and chaos theory ratrer
probability theory.

6. Utilization of metrics to measure software reiliigy

can be helpful for any proposed reliability frameiwo

At each phase of the development life cycle, mgtric
can identify potential areas of problems that meadl

to problems or errors.

7. Any suggested software reliability framework mus
not be based on hardware concepts. The direct
application of hardware concepts to software donsin
fraught with uncertainties and can be catastrophic.

8. Any framework proposed must be able to suppart t
software products along its life cycle, including i
operational life. This appears to be due primatdy

ISBN: 978-988-17012-2-0

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

widespread recognition of the benefits gained from
applying the operational profile. The logic of dnyg
automated testing with an operational profile is
becoming increasingly compelling.

9. The knowledge, from the developer's perspectives
of software operational profile is a paramount
determinant in facilitating the software reliakylit
measurement. It is a customary phenomenon in
software industry terrain to see the operationafiler

of the software that has been supposed in theg earl
stages of the software life cycle far differs frame one
that has been supposed during software development
phase including the testing phase and the actual
operational environment.

The suggested simple framework will prove ukefu
since it has incorporated some of the components as
seen viable by the author to resolve the inherited
problems associated with existing software religbil
techniques.

V. Conclusion

The purpose of the current in-depth probinglgtis
to pinpoint the limitations of the software relibyi
models. Most of the articles cited in the curretitdy
primarily concerned with the mathematical formudati
of the mathematical models through making sweeping
assumptions that provide mathematical tractability.
Those assumptions are, in most cases, unjustifidtble
seems that there is a growing acceptable trend in
software reliability in making certain assumptions
without justifications. In fact, the common defioy
of most reliability models is the assumptions ttiey
make. Also, most models developed to handle soéwar
reliability problems are not tested and validated b
using real data. Admittedly, it is unclear to weatent
each of those models contributes to the improvenment
software reliability.

The current study clearly shows that the pentorce
deficiency associated with those models is still an
outstanding issue. Therefore, one can conclusisayy
that silver bullet solutions to this dilemma arencge
because large spectrums of studies have clearlyrsho
that no one knows where the best solution lies.

Finally, the present work suggests that eittier
contemporary methodologies that handle the religbil
concept in application to software domain are
immature, or the software reliability models aneith
mighty mathematical strength have been introduced
somehow to a harsh environment (the software
environment), which is not even amenable to ang typ
of mathematical analysis.

IMECS 2009

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

(1]

(2]

(3]
(4]

(5]

(6]

(7]

(8]
&l

(10]

(11]

(12]

(13]

(14]

(18]

(16]

REFERENCES

K. Y. Cai, D.B. Hu, C. G. Bai, H. Hu,.Ting, “Does
software reliability growth behavidiollow a non-
homogeneous Poisson procedsiformation and
Software Technology, 50,2007, pp. 1232-1247.

T. Nara, M. Nakata, A. Ooishi, “Softwea reliability
growth analysis —application of NHPP dels and its
evaluation"Proc. |EEE International Symposium on
Software Reliability Engineering, 1995, pp. 251-255.

A. Wood, “Predicting software reliabjlft Computer,
1996, pp. 69-77.

T. Keller, N.F. “Schneidwind, Successful péipation of
software reliability engineering fdnet NASA Space
Shuttle”, Proc. |EEE International Symposium on
Software Reliability Engineering (Case Sudies), 1997,
pp. 71-82.

K.C. Gross, “Software reliability and systewailability
at Sun”,Proc. 1ithInternational Symposium on
Software Reliability Engineering, 2000.

Z. Jelinski, and P. B. Moranda, “Softea reliability
research’Qtatistical computer performance evaluation
(Edited by W. Freiberger), Academic Press, New York,
1972, pp. 465-497.

M. L. Shooman, “Probabilistic modetsf software
reliability prediction”Proc. the Fault-Tolerant
Computing Symposium, 1972, pp. 211-215.
E. C. Nelson, “A Statistical Basidor
Reliability AssessmenfTRW-SS-73-03, 1973.
B. Littlewood, J. Verrall, “A Bayesian rebdity growth
model for computer softwareApplied Satistics, 22(3),
1973,pp. 332-346.

J. D. Musa, “A Theory of Software Rddility and
Its Applications”, IEEE Transactions on Software
Engineering, SE-1, 1975, pp. 312-327.

A. L. Goel and K. Okumoto, “Time DepemteError
Detection Rate Model for Software Reliapiand other
Performance MeasureHEEE Transactions on
Reliability, R-28(3), 1979, pp. 206-211.

M. Grottke, and K. S. Trivedi, “On #ethod for
Mending Time to Failure Disuibns”, Proc.
International Conference on Dependable System
and Network, Los Alamitos, 2005, pp. 560-569.

M. Ohba and M. Kajiyama, “Inflection S-shaped
Software Reliability Growth ModellPS, Japan,
Proceedings WGSE Meeting, Vol. 28, 1983.

S. Yamada, M. Ohba, and S. OsakKiS-shaped
Reliability Growth Modeling for Sofare Error
Detection”|EEE Transactions on Reliability, R-32,
1983, pp. 475-478.

J. D. Musa and Okumoto, “A LogarithmiPoisson
Execution Time Model For Softwar&eliability
MeasurementsProceedings of the 7" International
Conference on Software Engineering, Orlando, F1,
1984, pp. 230-237.

S. Yamada, S. Osaki, and H. Narihis&oftware
Reliability Growth Models with Two Typesf Errors”,

Software

ISBN: 978-988-17012-2-0

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

[27]

(28]

(29]

(30]

(31]

Recherche Operationnelle/Operations Research
(RAIRO), 19, 1985, pp. 87-104.
M. Ohba, “Software Reliability Analysis Mol$&, 1BM
Journal of Researchand Development, 28, 1984, pp.
428-443.
S. Yamada and S. Osaki, “Discrete SoftwBmdiability
Growth Models"Applied Stochastic Models and Data
Analysis, Vol. 1, 1985, pp. 65-77.
P. K. Kapur and R. B. Garg, “Opéim Software
Release Policies for Software ReliabilBrowth Model
under Imperfect Debugging”,Recherche
Operationnelle / Operations Research (RAIRO), 24,
1990, pp. 295-305.
M. Kimura, S. Yamada, and S. OsakiSoftware
Reliability Assessment for an Expdign S-shaped
Reliability Growth PhenomenorComputers and
Mathematics with Applications, 24, 1992, pp. 71-78.
P. Zeephongsekul, G. Xia, and S. KumarS¢@ftware
Reliability Growth Model Primary ErsorGenerating
Secondary Errors under Imperfect Defngf, |IEEE
Transactions on Reliability,R-43(3),1994, pp. 408-413.
Chang, Y. C. and Leu, L. Y., “A state spawodel for
software reliability”Ann . of the Inst. Sat. Math., Vol.
50, 1998, pp. 789-799.
M. Ohba, “Inflection S-shaped SoftwaReliability
Growth Model”, In: Osaki S. and Hotoyam. (Eds.),
Lecture Notesin Economicsand Mathematical Systems,
Springer-Verlag, 1984.
S. Yamada, Y. Tamura, and M. Kimura, Qoftware
Reliability Growth Model for a Distribude Developm-
ent EnvironmentElectronicsand Communications
in Japan, Part 3,83(12), 2000, pp. 1446-1553.
D. Satoh and S. Yamada, “Parameterintagion of
Discrete Logistic Curve Models for Softed&eliability
AssessmentJapan J. of Industrial and Applied
Mathematics, 19-1 2002, pp. 39-53.
F. Z. Zou, “A change-point perspective or thoftware
failure process’Software Testing, Verification and
Reliability, 13,2003, pp. 85-93.
H. J. Shyur, “A stochastic software rbllay model
with imperfect debugging and change-pinJournal
of Systems and Software, 66, 2003, pp. 135-141.
C. Y. Huang, “Performance analysié software
reliability growth models with test-effoand change-
point” Journal of Systems and Software, 76, 2005, pp.
181-194.
P. Paiand W. Hong, “Software reliabilifprecasting
by support vector machines with siaed annealing
algorithms”The Journal of Systems and Software, 79,
2006, 747-755.
K. Chen, “Forecasting systems reliapili based on
support vector regression with genealgorithms”,
Reliability Engineering and System Safety, 92, 2007 ,
pp. 423-432.
K. Ohishi, H. Okamura, T. Dohi, “Gomper&oftware
Reliability Model: Estimation Algorithrmd Empirical
Validation”, The Journal of Systems and Software,
2008, doi: 10.1016/j.js5.2008.11.840.

IMECS 2009

