
An Approach towards Automation of
Requirements Analysis

Vinay S, Shridhar Aithal, Prashanth Desai

Abstract-Application of Natural Language processing to
requirements gathering to facilitate automation has
only limited explorations so far. This paper describes a
Natural Language based tool which aims at supporting
the analysis stage of software development in an object
oriented framework. This paper is built on the
foundation of existing mappings between natural
language elements and Object oriented concepts. The
tool named R-TOOL analyses software elicited
requirements texts written in English to generate actors,
use cases, classes, attributes, methods and relationship
between the classes leading to the generation of class
diagrams. This paper discusses initial experimental
results which are encouraging and outlines further
research plan to help to improve the system which will
have the potential to play an important role in the
software development process.

Index Words- Object oriented technology, Natural
language processing, Requirements Engineering, Use
case.

 I. INTRODUCTION

 Requirements engineering (RE) is concerned with
the identification of the goals to be achieved by the
envisioned system, the operationalization of such
goals into services and constraints, and the
assignment of responsibilities for the resulting
requirements to agents such as humans, devices, and
software. The processes involved in RE include
domain analysis, elicitation, specification,
assessment, negotiation, documentation, and
evolution. Getting high quality requirements is
difficult and critical. Recent surveys have confirmed
the growing recognition of RE as an area of utmost
importance in software engineering research and
practice.

 Manuscript received Jan 01st, 2009.
 Vinay S, Senior Lecturer, N.M.A.M Institute of Technology,
Nitte, India and research scholar at MIT, Manipal,
India.(Ph:+919986515835, E-mail:vinaymanyan@gmail.com)
 Sridhar Aithal is currently guiding research scholars at Manipal
University, Manipal. (E-mail: drsaithal@gmail.com)
 Prashanth Desai, PG student at Dept of CSE, N.M.A.M.I.T, Nitte,
India. (E-mail: prashanth_desai@yahoo.com)

Object-Oriented Technology (OOT) has become a
popular approach for building software systems.
Many object oriented methods have been proposed
and in these methods, Object-Oriented Analysis
process is considered one of the most critical and
difficult task [1]. It is critical because subsequent
stages rely on Object Analysis and it is difficult
because most of the input to this process is in the
form of natural language English which is inherently
ambiguous [2].

During the analysis phase of software development,
requirements analyst interview clients about system
process, gather data and write a description in
English of the system under development. A
graphical Computer Aided Software Engineering
(CASE) tool is typically used to document the output
of the analysis. Such a tool helps developers assess
whether the software requirements Specification
(SRS) contains any inconsistency or incompleteness
that might negatively impact subsequent object
modeling which is one of the most crucial and
difficult task in software engineering.

The Artificial Intelligence (AI) subfield of Natural
Language Processing (NLP) suggests approaches
which may assist software engineers in the analysis
of software development [2]. Many researchers have
begun to see potential benefits from adding natural
language processing (NLP) capabilities to CASE
tools. The objective is to create an NLP module that
helps automatically identify classes, attributes,
methods and relationships implied in the software
requirements specification [3].

In this paper we describe an attempt towards
automation of use case driven requirements analysis.
Section 2 describes the existing NLP based CASE
systems and analyses its strengths and weakness.
Section 3 deals with our approach towards
automation of object-oriented systems and its
implementation and section 4 discusses the results of
R-TOOL by taking an ATM system as case study.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

Section 5 describes evaluation methodology of our
system followed by conclusions and future work.

II. RELATED WORK

We present a brief survey of existing NLP based
approaches for providing automated tools to support
analysis and design phase of software development.

Abbot [4] proposed a technique attempting to
produce a systematic procedure to produce design
models from NL requirements. It produced static
analysis and design modules which required high
user intervention for making decisions.

Saeki et. Al. [5] described a process of incrementally
constructing software modules from object-oriented
specifications obtained from NL requirements. Nouns
were considered as classes and their corresponding
verbs as methods. These were automatically extracted
from the informal descriptions but the importance of
the words under the given context was not given
adequate importance for the construction of the
formal specification.

NL-OOPS [6] and CM-BUILDER [2] directed at
construction of object oriented analysis models from
natural language specifications. But the major
hindrance is the informal nature of natural language
where in the input descriptions often lack
preciseness, completeness and consistency. Hence the
output is only an initial Object Oriented model which
necessitates further communication with stake
holders to resolve ambiguities [7].

An approach to write software specifications from a
controlled subset of a natural language was
undertaken by ASPIN [8]. Controlled language
approach imposes restrictions on the authors of
software requirements documents as they must learn
and use a specialized language controlled [2].

REVERE [9] makes use of a lexicon to clarify the
word senses. It obtains a summary of requirements
from a natural language text but do not attempt to
model the system.

We can draw the following inference from the survey
of the related work. A completely automated tool that
aims to replace the analyst is unlikely in the near
future given the present state of the language
processing technology. A tool can assist the analyst
by making proposals in an effective manner. Without
the participation of stakeholders such NLP based

systems will not make the desired impact on software
development.

In this paper, we outline our approach to the problem
in the next section which is mainly use case driven
and discuss initial results obtained from R-TOOL.

III. APPROACH OF R-TOOL

The goal of object-oriented analysis is to understand
the domain of the problem and the system’s
responsibilities by understanding how the users use
or will use the system. The object oriented analysis
phase of software development is concerned with
determining the system requirements and identifying
classes and their relationship to other classes in the
problem domain. Ivar Jacobson [10] came up with
the concept of Use case, his name for a scenario to
describe the user-computer system interaction. Thus
use case became the driving point for gathering
requirements in an object oriented way.

The R-TOOL NLP based CASE tool takes a
requirements elicited document as input and produces
the elements of object oriented systems namely
classes, attributes, methods and relationships between
classes leading to the generation of the class diagram
as output. Our approach draws inspiration from [2]
and [7]. The basic block diagram of NLP based R-
TOOL is shown in fig 1.

Fig 1: R-TOOL Block Diagram

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

The basic steps in R-TOOL can be summarized as
follows.

• The input to R-TOOL is a problem
description of the application to be
developed in English

• NLP rules are used to syntactically and
semantically analyze the input document

• Produce a class diagram comprising classes,
attributes, methods and relationships
between classes.

3.1 The Elicited Input Document

R-TOOL takes a plain test file containing the elicited
requirements written in English. We impose no
restrictions on the input document.

3.2 R-TOOL NLP System

It includes five major processing steps numbered 1 to
5 in the block diagram shown in fig 1.

1.Tokenizer: The tokenizer splits a plain text file into
tokens. This includes separating words, identifying
numbers.

2. Pronoun Resolver: The presence of pronouns poses
difficulty in identifying actors and use cases. This
ambiguity is resolved by scanning the input
document for pronouns and replacing the pronoun
with the noun or the subject in the previous sentence.

Consider the sentence Bank Manager takes the daily
stock of money available in the ATM. He is
responsible for loading the money into the ATM.

While scanning the word he creates ambiguity. This
is identified with the pattern missing noun in the
sentence. He is then substituted with the noun in the
previous sentence which in this case is Manager.
Alternatively the system raises a question, who is
responsible for loading the money into the ATM? In
this way pronoun ambiguity is resolved by R-TOOL.

3. Identify Actors and Use cases: Nouns in the input
document become candidate actors. The list of
candidate actors is pruned by the frequency of
occurrence and the final list of actors is obtained.

The input document is scanned again by looking for
each actor and its role. The associated verb part of the
actor becomes the candidate Use case. This process is
repeated for all the actors identified leading to
identification of all the use cases.

4. Identifying Responsibilities and generating use
case report: Once a use case is identified, the
responsibilities and the descriptions of that use case
are determined by using keyword based search in the
input document.

This keyword based search is performed by taking
the root word. Consider an identified Use case
Withdraw money. We need to identify responsibilities
or functionalities of this Use case. We scan the input
document for the keyword withdraw. For example, a
verb form like “Withdrawing” will be analyzed as
“withdraw + ing”. The document is scanned for
withdraw keyword and the corresponding sentence
becomes the responsibility or describes the
functionality of that use case. For example, a
sentence specifying the conditions of withdrawal now
becomes part of the Withdraw money use case.

All the identified use cases along with its
functionality are generated to form a Use case report.
This Use case report is then fed into Classifier.

5. Classifier: The input to Classifier is the generated
Use case report. The processing steps of Classifier
can be summarized as follows.

i) For every identified class find its frequency in the
text (i.e. how many times it is mentioned) The most
frequent candidates suggest a class. Redundant
classes, adjective classes are eliminated. A statement
of purpose is identified for each of the class
identified.

ii) A simple set of rule is used to find out which
nouns are classes, and which form the attribute. In
Noun-Noun, if the first noun is already been chosen
as the class then the second noun is taken as the
attribute. The attributes are decided based on the verb
phrase.

iii) A noun, which does not have any attributes, need
not be proposed as a class.

iv) Attributes can be found using some simple
heuristics like the possessive relationships and use of
the verbs to have, denote, identify. Attributes also
correspond to nouns followed by prepositional phrase
such as cost of the soup.

v) Relationships between classes can be of three
types: Association, Aggregation and Generalization.

A dependency between two or more classes may be
an association. Association is corresponds to a verb
or prepositional phrase such as “ part–of ”, “ next–to
”, “ father–of ”, “works–for ”, “ contained–in ”. For

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

example, the sequence Client has an account,
matches the pattern noun-verb-noun. Client and
account being the class, has becomes the association.
Determiners are used to identify the multiplicity of
roles in an association.

Generalization: A Top down approach is followed
looking for noun phrases composed of various
adjectives in a class name. For example, consider the
sentence A client can have a savings account and a
checking account. It denotes a case for inheritance
with account being the base class and two types of
accounts being the sub class.

Aggregation: Sentence pattern such as something
contains something, something is part of something,
something is made up of something denote
aggregation relationships.

3.3 Implementation

The R-TOOL software is developed using
open source technologies. JAVA SWING and
MySQL are used for developing R-TOOL. Swing is a
graphical user interface (GUI) toolkit for Java.

IV. A CASE STUDY

We have taken the elicited requirements
document of bank ATM system as a case study. We
then compare the performance of our system with
that of result obtained manually in this section. The
extract of the description of bank ATM requirements
is as follows:

4.1 Extract of the Problem Statement

The bank client must be able to deposit an amount to
and withdraw an amount from his or her accounts
using the bank application. Each transaction must be
recorded, and the client must have the ability to
review all transactions performed against a given
account. Recorded transactions must include the
date, time, transaction type, amount and account
balance after the transaction.

A bank client can have two types of accounts. A
checking-account and a saving-account. For each
checking account, one related saving-account can
exists. The application must verify that a client can
gain access to his or her account by identification via
a personal identification number (PIN) code.

Neither a checking-account nor a saving-account can
have a negative balance. The application should
automatically withdraw funds from a related saving-
account if the requested withdrawal amount on the

checking-account is more than its current balance. If
the saving-account balance is insufficient to cover the
requested withdrawal amount, the application should
inform the user and terminate the transaction.

4.2 Comparison of results

The following tables compare the result obtained for
manual and automated analysis approach.

Table I: Identifying actors

Manual Result Automated Result

Bank client
ATM-card
ATM-machine
System

Bank
Card
Customer
Machine
System

Table 2: Identifying use cases

Manual Result Automated Result

Bank ATM transaction
Approval process
Deposit amount
Deposit savings
Deposit checking
Withdraw amount

Make cash withdrawal
Make deposit
Transfer money between
account
Make balance enquiry

Table 3: Identifying classes

Manual Result Automated Result

ATM machine
Bank Client
Bank
Account
Saving-account
Checking-account
Transaction

Machine
Customer
Bank
Account
Savings-account
Checking-account
Transaction
System

4.3 Attributes, Methods and Relationships

i) Class: Machine, Attributes: address

ii) Class: Customer, Attributes: Name, Card Number,
PIN number, Methods: Verify password

iii) Class: Bank

iv) Class: Account, Attributes: number, balance,
Methods: Withdraw, Deposit, Transfer

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

v) Class: Savings account

vi) Class: Checking account

vii) Class: Transaction, Attributes: date, time, type,
balance, amount

Aggregation: Bank class is an aggregation of account
and Machine class.

Account is the base class and Checking and Savings
account are its derived class.

A customer can have 1 or 2 account depicts
association between customer and account along with
its multiplicity.

4.4 Use case responsibilities or description

Consider the use case Withdraw Money. The
responsibility or the functionality of this use case
identified by R-TOOL is as follows:

The bank client must be able to deposit an amount to
and withdraw an amount from his or her accounts
using the bank application. The application should
automatically withdraw funds from a related saving-
account if the requested withdrawal amount on the
checking-account is more than its current balance. If
the saving-account balance is insufficient to cover the
requested withdrawal amount, the application should
inform the user and terminate the transaction.

4.5 Discussion

By comparing the results, we can infer the following:

• The system is able to identify actors, use cases,
classes satisfactorily.

• The use cases obtained in the manual approach
are more in number after applying the concepts
of include and extend association.

• We also have made use of the concept of
repository, which keeps track of classes obtained
in previous projects and when a class in the
present working project is similar to an existing
class in the repository, the system not only
displays the particular class information but also
provides an option to add certain or all the
information about the class in the present
working project.

V. EVALUAITON OF R-TOOL

Generating requirements using NLP based approach
is an active emerging research area. R-TOOL differs

from the existing tools by focusing on ensuring that
use cases and its responsibilities are clearly identified
which then makes the task of identifying classes,
attributes and methods much easier.

The R-TOOL identifies few irrelevant classes during
analysis. This drawback can be overcome by
imposing following constraints in the input document
or developing NL rules to overcome following
constraints.

• The sentence must be in active voice.

• Compound sentence must be split into two
simple sentences rather than joining them
using a conjunction

We can infer the following benefits from R-TOOL

• R-TOOL can supplement the manual
approach and serve as a useful tool in
identifying inconsistencies between manual
approach and automated approach, there by
making sure that system requirements are
identified properly.

• Reusability is ensured by maintaining
Repository of classes of different projects.
The user can search for a particular class and
can tailor the class identified from the
repository to his needs.

VI. CONCLUSION AND SCOPE FOR FUTURE
WORK

Using NLP to generate correct requirements is a
difficult task considering the inherent ambiguity in
natural language. Identifying effective use cases is
the key to generating complete list of classes
eliminating irrelevant classes.

The R-TOOL system developed using open source
technologies Java and MySQL is under constant
improvement and future enhancements are being
carried out in the following areas.

• Providing support for creation of different
UML diagrams.

• Identifying goals (higher level strategic
objectives of a system) from the elicited
documents and linking the identified goals
with Use cases. Mapping of use cases to
goals helps in ensuring that the requirements
are complete and provides requirements
traceability.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

• Using efficient algorithms in NLP to reduce
generation of unnecessary classes.

• Providing a comprehensive evaluation
methodology to qualitatively evaluate the
effectiveness of NLP tools.

REFERENCES

[1] G. Booch, Object-Oriented Analysis and Design with

applications, The BC publishing company Inc., second
edition, 1994

[2] Harmain, H.M. and Gaizauskas R. “CM –Builder: An
Automated NLP-based CASE Tool”, The Fifteenth IEEE
International Conference on Automated Software
Engineering, 2000.

[3] Generating Clas Models through Controlled Requirements,
Reynaldo Giganto, NZCSRSC 2008 April, Christchurch,
New Zealand.

[4] Abbot R J, “Program design by informal English
description”, ACM Vol 26, 1983, 882-894

[5] Saeki, M., Horai, H., Toyama K., Uematsu, N., and Enomoto
H. “Specification framework based on natural language”, In
Proc. of the 4th Int’l Workshop on Software Specification
and Design, 1987, pp. 87-94.

[6] Mich, L. and Garigliano R. “NL-OOPS: A Requirements
Analysis tool based on Natural Language Processing”. In the
Proceedings of Conference on Data Mining 2002, Vol. 3, pp.
321- 330, Southampton, UK:WIT Press.

[7] K Li, R G Dewar, RJ Pooley, “Computer-assisted and
Customer-oriented Requirements elicitation”, 13th IEEE
International Conference on Requirements Engineering, 2005

[8] W Cyre, “A requirements sublanguage for automatic
analysis”, International conference of Intelligent systems,
10(1), 665-689, 1995

[9] Sawyer P, Rayson, Garside, “REVERE: support for
requirements synthesis from documents”, Information
systems Frontiers Journal, Vol 4, 2002, 343-353

[10] Jacobson, I., Booch G., Rumbaugh, J. The Unified Software
Development Process, Addison-Wesley, USA.1999. pp 135

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

