
Abstract— Software systems need to evolve, and systems
built using model driven approaches are no exception. The
role of the models are increasing and becoming more and more
important in the software development and evolution. So, the
Model-Driven Software Evolution (MoDSE) is prominent.
Several stakeholders are involved in the process of evolution.
These user groups (stakeholders) have different concerns
relevant to the models to be evolved in MoDSE. Multiple views
provide a means to visualize complex information and are also
a way to fulfill the concerns of different user groups. In this
paper the concept of multiple views for the MoDSE is
introduced and shows how these multiple views addresses the
stakeholders concerns. The different viewpoints are identified
to construct the multiple views. This paper also shows an
analytical support how the proposed views are closer to the
Lehman’s laws of software evolution.

Index Terms— Laws of software evolution, Model-Driven
Software Evolution, stakeholders, views, viewpoints.

I. INTRODUCTION

Software development is becoming more and more model
centric, such that modeling languages have gained a much
broader use. The introduction of Model Driven Engineering
(MDE) needs a new style of evolution i.e. Model-driven
Software Evolution. The first fundamental premise [1] for
Model-Driven Software Evolution is that evolution should
be a continuous process. The second premise is that
reengineering of legacy systems to the model-driven of the
paradigm should be done incrementally. Model driven
engineering (MDE) introduces a multitude of languages that
are themselves artifacts of the development process. Due to
these multitude languages in MoDSE, there is a need to have
the model interaction, integration, mapping and
transformation. Further there should be possible views to
capture this information about models during the evolution.

 One or more stakeholders1 are involved in MoDSE. Each
stakeholder typically has interests in, or concerns relevant to
that system. The ability of models to evolve gracefully is
becoming a concern for many stakeholders. Due to different

 Manuscript received September 19, 2008. Accepted October 8,2008.

 Madhavi Karanam, Research Scholar in Computer Science and

Engineering , Jawaharlal NehruTechnological University, Hyderabad,
Andhra Pradesh, India.(Phone: 91-9811377031, email:
bmadhaviranjan@yahoo.com)
 Dr.Anandrao Akepogu , Professor & Vice-Principal, JNTUCE,
Jawaharlal Nehru Technological University, Anantapur, Andhra Pradesh,
India.(Phone: 91-9000493404, email: akepogu@yahoo.co.in)

and interrelated models used to design an entire system in
MoDSE, the concerns of stakeholders are changes in
models, model elements, model migration, model
transformation, model interaction and integration etc., So,
there is a need to have migration, model transformation,
model interaction and integration etc., So, there is a need to
have viewpoints and multiple views which captures the
stakeholders concern.

This paper proposes the viewpoints and multiple views
for model driven software evolution and need for the same.
Section 2 discusses the related work about views and
viewpoints in software evolution. Section 3 provides the
concepts such as viewpoints, views and concerns .It also
discusses the identified viewpoints to construct the proposed
multiple views. Section 4 lists the laws of software
evolution and shows how the proposed views are closer to
the mentioned laws. Section 5 outlines the conclusions and
future work.

II. RELATED WORK.

This section reviews related work about the views and
viewpoints in the area of software evolution.

iACMTool [2] is a prototype tool to tackle the impact
analysis and change management of analysis/design
documents in the context of UML based development. This
taxonomy consist views such as static (class diagram) view,
interaction (sequence diagram) view and the state chart
diagram view. These views support the UML models.

Christain F.J.Lange, et.al. proposed a framework [3],[4]
consisting of UML model elements, their properties, and
software engineering tasks, that form a basis to develop new
views of UML models and related information. Based on
this framework they proposed eight views to support
different tasks. These views are UML based views, which
maintains model evolution and quality.

 Multiview Software Evolution (MVSE) is a UML based
framework for Object-Oriented software [11].In MVSE,
evolution of complex systems is a process in which
transformations are successively applied to multiple views
of software (represented by models), until objective criteria
are satisfied. A stakeholder view reflects the perspective of a
stakeholder on a systems application and behavior.

1 A stakeholder is an individual, team, or organization (or classes thereof)
with interests in, or concerns relative to, a system. (IEEE 1471 standard)

Model-Driven Software Evolution: The
Multiple Views

Madhavi Karanam, Anandrao Akepogu

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

In MVSE stakeholders initiate changes to systems and
describe these changes in the context of stakeholder views.

Rene Keller et.al. [10] introduces the concepts of
multiple viewpoints and multiple views in engineering
change management.

Change prediction Method (CPM) tool implements the
change prediction. Stephen Cook et.al. [12] proposed an
approach to understand software evolution. This approach
looks at software evolution from two different points of
view. One is dynamic view point, which investigates
software evolution trends in models and the second is static
view point which studies the characteristics of software
artifacts to see what makes a software system more
evolvable.

The above mentioned tools and frameworks describe the
multiple views and viewpoints for traditional software
evolution and change management, in which only the UML
models are considered. Hence, there are no such views and
viewpoints exist in the literature, to address the stakeholders
concerns during evolution of the different, unrelated models
in MoDSE. The following section discusses the viewpoints,
and construction of proposed views to satisfy the
stakeholders concerns.

III. MULTIPLE VIEWS FOR MODSE.

This section outlines the three underlying concepts of our
proposed views for MoDSE. The concepts are viewpoints,
views, and concerns. Reasons for multiple views also listed
in the section 3.2.

A. Viewpoints, views and concerns

Views offer visual representations of a model. View is a
vested interest to visualize how the system is used and
evolved. A view2 in this paper is defined as a visible
projection of a model to fulfill a stakeholders concern,
which is an evolution task. Concerns are those interests
which pertain to the system’s development and
evolution.[13].In MoDSE, the concerns of stakeholders are
considered as changes in models and model elements, model
migration, model transformation, model interaction and
integration, mapping etc.,

IEEE Standard also allows for the definition of an
arbitrary number of views as well as viewpoints [14]. A
viewpoint3 defines a number of important aspects and
concerns that are addressed by that viewpoint. .A viewpoint
establish the conventions by which a view is created,
depicted and analyzed. In this way, a view conforms to a
viewpoint. So, the views are constructed from the identified
viewpoints which address the stakeholders concerns. The
three underlying concepts such as viewpoints, views,
concerns and their relations are illustrated in Figure 1.

B. Reasons for multiple views

There are two reasons for using multiple views [11]:

 The amount of information in a complex product is too
large to be displayed in one single graph. The
information has to be broken down into smaller chunks
that can be visualized and analyzed much easier.
Different graphs (diagrams or models) can show
different information, revealing structure that cannot be
shown in one diagram. Some representations are good
or some purposes and not for others.

 Different people are involved in the development
process. This user group come from different objective
world and has a different background and task focus
and sees the productive in a different way. So these
people have different viewpoints and demand different
views on the product data.

C. Proposed Views

MoDSE consists of multitude of languages. There should be
an interaction, integration, mapping and transformations etc.
between these different models as well as code also. The
stakeholders have various roles as well as concerns
regarding the creation and evolution of the models in the
system. To resolve this, the multiple views are proposed
which addresses the stakeholders concerns and also
conforms to view points.

 Address Satisfy

 Conforms Construct

Figure 1. The three underlying concepts and their
relations

(i) Context View
Models define what is variable in a system. The context

of model element consists of model and all model elements
relates to it. The elements are scattered over different
models. It often occurs that only a limited number of model
elements can be viewed at a time and understanding the
entire model and its elements at a stretch is not an easy task.
To understand a model completely, it might be necessary to
know its context. Therefore, Context View is proposed. The
context view is shown in Figure 2. The model element
whose context is viewed in a context view is centered. All
model elements that are directly related to the particular
model elements are viewed around the model element, for
example, class and its subclasses as shown in Figure 2.
Viewpoints: Expressivity, scope
Concerns: Complete understanding of the model and its
surrounding elements, and the impact analysis4 of the model
elements.

2
View is a representation of a whole system from the perspective of a

related set of concerns. (IEEE 1471 Std).
3 Viewpoint is a specification of the conventions for constructing and using
a view. A pattern or template from which to develop individual views by
establishing the purposes and audience for a view and the techniques for its
creation and analysis. (IEEE 1471 Std).
4 Impact analysis is defined as the process of identifying the potential
consequences of a change, and estimating what needs to be done.

Concerns

Views

Viewpoints

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

(ii) Inter-Model View
The inter-model relations are visualized in this view.

These dependencies provide the overview of the model and
make it possible to show the relations between the different
models. Further it is possible to have an interaction and
integration between models. Therefore, Inter model View is
proposed.
Viewpoints: Dependency, Integrity.

 Figure 2. Context view

Concerns: The overview of the system, dependencies
between models and elements, knowledge about impact
analysis, interaction and integration of the models.

(iii)City View
The Inter-model view is an instance of a City view. This

view is similar to a geographical map of a city. Especially in
large systems, it can be very difficult to find a specific piece
of information and is often spread over multiple models.
The entire system is visualized in terms of models. The
models are visualized in 3D dimensions in this view, from
which traceability and extendibility of a model is visualized
easily as shown in Figure 3.
Viewpoints: Extendibility, Traceability.
Concerns: The overview of the models in an entire system,
search, trace, and highlight the change, extend the models
by having additional elements, and the relationships
between the models.

(iv) Metric View
In MoDSE, the models are the origin for evolution. So

there is a need to have a set of metrics to have data values,
which estimates the major issues in MoDSE such as Quality,
complexity, and impact analysis. Metric set should be
possible here to measure above mentioned major issues.
Therefore, Metric View is proposed. The discussion of
metric set and data set are out of the scope of this paper.
Viewpoints: Metric set, Data values
Concerns: Metrics for quality, complexity and impact
analysis (change prediction and propagation) of the models,

data values and data structures for maintaining theses
values.

 Figure 3. City view

(v) Transformation View
 MoDSE requires many types of transformations due to

different and interrelated models. Transformations include
model to code, model to model (migration of models or
mapping from higher level models to lower levels), and
code to model. The key challenge is to transform platform
independent models to platform specific models. Therefore,
Transformation View is proposed.
Viewpoints: Consistency
Concerns: Transformation techniques, rules, tools, and
languages, the model migration and mapping, characteristics
of a model language Transformation techniques and
languages are not discussed here.

(vi) Evolution View
 MoDSE requires multiple dimensions of evolution.

Stakeholder need to know the evolution type for example,
platform evolution. To know what kind of evolution,
Evolution View is proposed. This view is the combination of
all the above proposed views because change in a single
model or model element may be the cause of the evolution.
Viewpoints: Viewpoints that are identified in the above
proposed views.
Concerns: Trends, causes, and dimensions for evolution, the
side effects such as introduction of a new notation in a
modeling language, introduction of a new modeling
language, change in development platform, monitoring the
quality and complexity of models at multiple dimensions.

(vii) Evaluation View
 There is a need to validate and verify the evolution of

models. The information captured in all the above proposed
views should be verified for its accuracy. This view is also
responsible to collect and check the feedback of the
participants in the evolution of models in MoDSE. Based on
the stakeholders’ feedback, evolution process can be
verified. Therefore, Evaluation view is proposed.
Viewpoints: Validity
Concerns: The evaluation trends and techniques which
validates the evolved models, improving the quality,
controlling complexity of models, stakeholders’ feedback.

The above proposed views are sufficient for the
stakeholders to gain enough knowledge and visualization of
the models during evolution process. Knowledge such as
context, metrics, model interaction, integration, mapping

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

and transformation etc., of models and model elements will
be available for the user groups to produce more evolvable
model based software systems. And all these views support
the entire software development and evolution process. The
advantages of proposed views are as follows:
 Provide visualization of evolution process.
 Stakeholders concerns will be addressed by these views

and viewpoints.
 Stakeholders gain enough knowledge required for

evolution of models in the MoDSE.
 Establish the communication between the

stakeholders.
The proposed views also satisfy the Lehman’s laws of
software evolution and it is discussed in section 4.

IV. LAWS OF SOFTWARE EVOLUTION

The well known Lehman’s laws of software evolution
[8],[9] are listed as follows:
I. Continuing Change
II. Increasing Complexity
III. Self Regulation
IV. Conservation of organizational stability
V. Conservation of Familiarity
VI. Continuing Growth
VII. Declining Quality
VIII. Feedback System

A. Analytical support

This section analytically describes how the proposed views
are closer to the Lehman’s Laws of Software Evolution

(i) Continuing Change
The first and fundamental premise of the MoDSE says

the evolution should be a continuous process. So, there is a
continuous change. Generally the stakeholders initiate the
change. The aim of the context view is to provide the
different context of the models and model elements in the
system and the continuous change can be viewed. Hence,
the context view satisfies the first law. The inter model view
satisfies the first law by providing the continuing change in
terms of dependency between the models and model
elements. City view also satisfies the first law which
provides the information about change in models such as
extendibility and traceability. Metric view provides the
numerical values which can be used to manage the
continuous change. So, the metric view satisfies the first
law. Transformation view satisfies the first law where
different types of transformations like model to model or
platform independent to platform specific model are
required when change occurs. Evolution view provides the
causes for change. Hence, this view satisfies the first law.
Evaluation view is responsible to check whether the changes
have done properly or not. Therefore, this view also
supports the first law.

(ii) Increasing Complexity
Complexity is one of the major issues in MoDSE. Any

single complex model or model element can be visualized
by knowing its context in the context view. So, this view
satisfies the second law. A single change in a model or
model element may affect the complexity of the other
models which are directly related to the changed model. The
relation or dependency of the models can be visualized from

the inter model view. Hence, inter model view satisfies the
second law. Change in models may extend the models exist
in the system. Extendibility may affect the complexity and it
can be visualized from the city view which satisfies the
second law. To control or maintain the complexity,
measures and metrics are required. The purpose of the
metric view is to provide the metrics set and the data values
which are used to estimate the complexity. So, the metric
view satisfies the second law. Transformation view satisfies
the second law where there will be an increase in
complexity after the transformation of models. Evolution
view is also has its own role to control and monitor the
complexity. As a system evolves its complexity increases
unless work is done to maintain or reduce it. So, evolution
view satisfies the second law by providing the causes and
trends for the evolution. Evaluation view satisfies the second
law by verifying the increased complexity from the
stakeholders satisfaction and feedback.

(iii) Self Regulation
The evolution of a model-based system involves a team

of stakeholders within the organization. The interests, goals,
purpose, tasks and objective of the team differs from each
other. They together establish systematic parameters for
more evolvable software. They also determine the growth
and other development characteristics of the evolving
product. The context view provides the different context of
the evolvable system. The overview and complete
understanding of the system can be derived from the
context, inter model and city views. The extendibility and
traceability can be determined from the City view. The
Metric view provides the parameters for systematic
evolution, and it requires data values which help to estimate
issues like quality and complexity etc. The evolution and
evaluation views provide the cause for evolution and user
satisfaction in terms of feedback. Therefore, all the proposed
views support the third law.

(iv) Conservation of Organizational Stability
The proposed views are aim to provide the knowledge

during model driven software evolution which satisfies the
concerns of the stakeholder. But these views are not
intended to measure the organizational stability or invariant
work rate. So, this law is not applicable for the proposed
work. This is shown in the Table.1 as ‘NA’.

(v) Conservation of Familiarity
Software undergoes continuous change during its life

time. Due to this continuous change it is not possible for the
stakeholders to retain the familiarity of these changes for a
longer period. The proposed views capture the familiarity
time to time, but not for a longer time. All these proposed
views support fifth law.

(vi) Continuing Growth
This law, Continuing Growth, appears little different to

the first law, Continuing Change. For example,
accommodating a new requirement often necessitates
substantial changes to system architecture and
implementation, which leads to system uncertainties. The
sixth law addresses change deriving from a different source.
According to the second premise of the MoDSE, evolution
should be done incrementally. So, evolution is a process of a
continuing change and continuing growth also. Continuous

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

growth can be visualized and traceable in the inter-model
and City views. So, these two views satisfy the sixth law.
The context of the model which is continuously growing can
be visualized by using the Context view. So, context view
satisfies the sixth law. The metric view provides the
numerical values which represents the growth (change) of
models, where by, metric view satisfies the sixth law.
Transformation view provides the knowledge relevant to
transformation of models, which indicates the growth of the
models. By this transformation view satisfies the sixth law.
Evolution and Evaluation are also possible to provide the
sufficient information regarding the continuous growth of
the model. Thus, all the proposed views support the sixth
law.

(vii) Declining Quality
Quality is another major concern in MoDSE. Ultimately

quality must relate to user satisfaction and also with the
stakeholders feedback. A system that has performed
satisfactorily for some period of time suddenly exhibit
unexpected behavior, unexpected results. There are several
causes to explain this, but here it is considered as due to
change. So there is a chance of declining quality at least for
a moment. Evolution view satisfies this law by providing
the causes for declining quality. Among the above proposed
views, the metric view has much responsibility to achieve
the desired quality in the case of declining quality during
evolution. Thus metric view satisfies the seventh law.
Evaluation view satisfies the seventh law by identifying the
declined quality with user satisfaction and feedback.
Transformation of models from source to target done in the
transformation view and here there is a chance of loosing
the quality in models. Hence, this view satisfies the seventh
law. Context view, inter model view, and city view are not
intended to provide the knowledge about quality. So, these
three views do not support the seventh law.

(viii) Feedback system
Systems are evolvable due to the feedback of the

stakeholders. Feedback is collected from the different user
groups. MoDSE is a feedback evolution process and it
consists of multiple users, models, dimensions of evolution.
Evolution and evaluation views capture the stakeholders’
satisfaction and feedback also. Therefore these two views
satisfy the eighth law. The remaining proposed views such
as context view, inter model view, city view, metric view,
and transformation view are not intended to collect the
feedback from the user groups. Hence, these views do not
satisfy the eighth law.

 Table 1.Analytical Support

Analytical support of the proposed views with the laws
of software evolution described above and same is shown in
the Table.1. In the table, ‘√’ mark represents the proposed
view satisfy the respective law , the ‘×’ mark represents the
proposed view does not satisfy the respective law and ‘NA’
represents the respective law is not applicable for the
proposed work. In the table, columns are numbered as I, II
so on to represent the eight laws of software evolution and
rows are named as V1, V2 so on to represent the seven
proposed views. In the table it is observed that majority of
the entries are ‘√’ mark, which represents most of the laws
are satisfied by most of the proposed views. From this
observation it is proved that the proposed views are very
closer to the laws of software evolution and they are
sufficient to capture the information during MoDSE.

V. CONCLUSIONS AND FUTURE WORK

The seven multiple views for Model Driven Software
Evolution are proposed. Viewpoints are identified to
construct each view. Different concerns of the stakeholders
are satisfied by each view, providing sufficient knowledge
regarding model driven software evolution. The analytical
support of all these proposed views for the eight laws of
software evolution was discussed. From the table it is
observed that all the proposed views support majority of
laws. So, the proposed views are sufficient for the
stakeholder to capture the information and the laws are also
important for Model Driven Software Evolution.
Development of framework consisting of the proposed
views for visualizing the MoDSE process and the evaluation
of the framework with case tools and the stakeholders
concerns is the subject of future research.

REFERENCES

[1] Arie van Deursen, Eelco Visser, and Jos Warmer. “Model-
Driven Software Evolution: A Research Agenda”, In Dalila
Tamzalit (Eds.). Proceedings 1st International Workshop on
Model-Driven Software Evolution, University of Nantes, 2007. pp.
41-49.

[2] Briand L.C, Y.Labiche, O’ Sulliavan. “Impact Analysis and
Change Management of UML Models”, Proceedings of the
International Conference on Software maintenance (ICSM’03),
IEEE, 2003.

[3] Christian F.J. Lange, Martijin A.M. Wijins, Michel R.V.
Chaudron. “A Visualization Framework for Task-Oriented
Modeling using UML”, Proceedings of the 40th Annual Hawaii
International Conference on System Sciences (HICSS’07), IEEE,
2007.

[4] Christian F.J. Lange, Martijin A.M. Wijins, Michel R.V.
Chaudron. “Metric View Evolution: UML-based Views for
Monitoring Model Evolution and Quality”, Proceedings of the 11th

European Conference on Software Maintenance and reengineering
(CSMR’07), IEEE, 2007.

[5] Jaun F Ramil. “Laws of Software Evolution and their Empirical
Support”, Proceedings of the International Conference on Software
Maintenance (ICSM’02), IEEE, 2002.

[6] Kazi Farooqui, Luigi Logrippo, Jan de Meer. “The ISO
reference Model for Open Distributed Processing – An

 Laws
Views

I II III IV V VI VII VIII

V1 √ √ √ NA √ √ × ×
V2 √ √ √ NA √ √ × ×
V3 √ √ √ NA √ √ × ×
V4 √ √ √ NA √ √ √ ×
V5 √ √ √ NA √ √ √ √
V6 √ √ √ NA √ √ √ √
V7 √ √ √ NA √ √ √ ×

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

Introduction”, Special issue on ISO reference model for open
distributed processing, 1985, ACM Portal, pp.1215-1229.

[7] M M Lehman, J F Ramil, D E Perry et.al. “Metrics and Laws of
Software Evolution – The Nineties View”, 4th International
Software Metrics Symposium (METRICS’97), 1997, IEEE
Computer Society.org.

[8] M M Lehman. “Rules and Tools for Software Evolution
Planning and Management”, Annals of Software Engineering,
Volume 11, Number 1/November, 2001, pp.15-44.

[9] M M Lehman. “ Laws of Software Evolution Revisted ”,
Springer Verlag,Position Paper, EWSPT96, LNCS 1149, October,
1996, pp. 108-124.

[10] Rene Keller, Claudia M.Eckert, P.Jhon Clarkson. “Viewpoints
and Views in Engineering Change Management”, Workshop on
Complexity in Design and Engineering, Glasgow, 2005.

[11] Robert France and James M. Bieman. “Multi-View Software
Evolution: A UML-based Framework for Evolving Object-
Oriented Software”,17th IEEE International Conference on
Software Maintenance (ICSM'01),2001, pp..386.

 [12] Stephen Cook, He Ji and Rachel Harison. “Dynamic and
Static Views of Software Evolution”, 17th IEEE International
conference on Software Maintenece (ICSM’01), 2001, pp. 592.

[13] Tom Mens, Michel Wermelinger, Stephen Duacasse et.al.
“Challenges in Software Evolution”, Proceedings of the 8th

international Workshop on Principles of Software Evolution
(IWPSE’05), IEEE, 2005.

[14] IEEE Recommended Practice for Architectural Description of
Software-Intensive Systems, IEEE Std 1471, 2000.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

