

Ada's Vital Role in New US Air Traffic
Control Systems

Alok Srivastava (Member IAENG), Fredrick Woodard, and Jeff O’Leary

Abstract — Development of high-integrity software requires a

programming language that promotes good engineering across
domains in highly reliable real-time systems. The new Ada 2005
has introduced more robust capabilities based on user experience.
The language offers particular innovations which helps make
safety assurance less costly and further improves high integrity
features in all major facets. The US Federal Aviation
Administration’s (FAA) current operational core En Route air
traffic control (ATC) systems Display System and User Requested
Evaluation Tool use Ada as the primary language. The
replacement of the huge En Route Host System, called En Route
Automation Modernization (ERAM) is currently completing
development and beginning deployment with a majority of critical
real-time applications in Ada. These systems were completed
ahead of schedule and under budget. The paper discusses the
evolution of Ada 2005, its vendor support and several excellent
academic initiatives. Discussions include the architecture and
software of the ATC systems developed in Ada. Since the FAA has
a long-term vested interest in the language for mission-critical
systems with a very high availability requirement, it continuously
monitors the long-term supportability of Ada and trends in its
commercial product evolution.

Index Terms — ATC, Ada, Reliability, Safety, Security

I. INTRODUCTION
A. Ada’s Evolution
Many languages, such as Sun’s Java, Microsoft’s C#, and

Visual Basic are in a great deal prejudiced by companies.
Languages such as Ada are instead specified by ISO with no
direct control or enforcement mechanism other than market.
The Ada language standard was originally designed in early
1980s (Ada 83) to meet demands of high-integrity systems
and a revision in the mid-90s (Ada 95) enhanced its support
to full Object Oriented Programming (OOP). Over the
decades, the developers of programming languages have
been learning from Ada. It has influenced the development of
Java, C++, Visual Basic, and even the Microsoft .NET
Framework.

In June 2006, an international open forum of International

Organization for Standardization (ISO), the Joint Technical
Committee (JTC) with 28 participating countries, and
another 42 countries as observer and its sub group Working

Group (WG) 9, approved the specifications of Ada 2005 with
major objective to enhance Ada’s position as a safe, high
performance, flexible, portable, interoperable, concurrent,
real-time, and object-oriented language. Now it offers more
safety and portability than Java, and better efficiency and
flexibility than of C/C++. In addition, it is an open
international standard for real-time and high-integrity system
development. Ada implementations, tools, and libraries are
available on a wide variety of platforms. Nevertheless, Ada
has not enjoyed the commercial success or publicity of other
languages [1] most likely due to misperceptions with the
relaxing of U.S. and NATO defense industry language
mandates.

Alok Srivastava, Ph.D., Northrop Grumman Corporation, 475

School Street, SW, Washington DC 20024 (USA) Tel.
1+202-314-1419 Alok.Srivastava at auatac.com

 Fredrick Woodard, Northrop Grumman Corporation, 475
School Street, SW, Washington DC 20024 (USA)

Jeff O’Leary, US Federal Aviation Administration, 800
Independence Avenue, SW, Washington DC 20591 (USA)

The new features of Ada 2005 further enhanced the Ada 95
capabilities in areas such as Extension to the Open,
Predefined Libraries, Interface Approaches, Enhanced
Encapsulation, Access Types and Dependency issues. Ada
2005 adds to the standard packages: environmental variables,
time access and manipulation, file/directory manipulation,
containers and sorting, wider characters and linear algebra to
the standard packages. The version also enhances the earliest
deadline first, real-time scheduling, round-robin real-time
scheduling, and most importantly The Ravenscar
high-integrity, run-time profile. It now supports the notions
of interface used in languages such as Java and C#, and
architectures such as CORBA. Other enhancements include
active and passive synchronized interface types and
module/object encapsulation. Addressing a fairly common
user need, Ada 2005 adds support for cyclic dependence
between types in different packages [2].

B. US Air Traffic Control
The FAA’s mission is to provide the safest, most efficient

aerospace system in the world by promoting aviation safety
and mobility through operating the United States air traffic
control system. FAA controls more than half of world’s air
traffic. Because of its preeminence in high availability and
high reliability domains, the Ada software language has
become a strategic technology in developing and sustaining
those systems [3]. In fact, the FAA’s major recent ATC
initiative, the vast ERAM program, leverages and
significantly expands upon previous Ada based systems so
that the FAA has a vital interest in Ada language technology
now and for the foreseeable future. The software of the large
ERAM System, one of the largest, latest civilian system
development projects contracted by the US government has
recently been developed ahead of schedule and within the
budget.
http://www.faa.gov/news/fact_sheets/news_story.cfm?news
Id=7714 The major En Route air traffic control systems are

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

Display System (DS), User Requested Evaluation Tool
(URET) and ERAM and have been developed mainly in the
Ada programming language. Lockheed Martin is the prime
contractor of these systems with Computer Sciences
Corporation (CSC) as major mission subcontractor for the
DS and URET. ERAM development team is led by Lockheed
Martin with Raytheon and CSC as major subcontractors.
Northrop Grumman’s role is to act as Technical Advisor with
responsibility to acquire the ATC systems for the FAA.

II. EN-ROUTE AIR TRAFFIC CONTROL SYSTEMS

A. Display System (DS)

The Display System (DS) is a major element of the FAA’s

modernization program which replaced the 30 year old
display channel computer complex and dedicated
workstations with a local area network-based client-server
network of air traffic controller workstations connected to a
Host Computer System (HCS). The US $1B plus DS project
was completed on time and within budget in May 2000.
These displays are used by En Route air traffic controllers at
Air Route Traffic Control Centers (ARTCC) nationwide. Its
computing infrastructure can support more than 200
workstations and 65 operational sectors of airspace in a
single ARTCC. This increase in operational capacity allows
the FAA to handle rising traffic loads while maintaining
current high levels of service. The three types of DS consoles
as shown in figure 1.

Figure 1 - Three types of DS consoles

The system’s fault tolerant software, in combination with
redundant hardware and networks, achieves high availability
consistent with its critical mission. The new system
management functionality includes comprehensive system
status and performance monitoring and control, continuous
on-line data recording for resource problem determination
and trend analysis, and access to both primary and backup
networks from any system management console.

The total software size of DS at the time of initial deployment
was 794,000 SLOC. The operational environment includes
444,000 SLOC in Ada83 plus a small amount of C code in a
distributed UNIX Environment. The support environment

includes 350,000 SLOC, the majority in Ada83 plus C,
FORTRAN and UNIX Shell languages.

B. User Requested Evaluation Tool (URET)

 Current ATC operations in many areas of the United States
are highly structured and restrictive. This is in conflict with
airspace user’s desires for more flexibility, i.e., the freedom
to fly more preferred routes and altitudes from origin to
destination. The URET is a software program to alert the
controllers of potential conflicts or loss of safe separation.
The program tool includes: a Conflict Probe (CP) function
and a set of automated tools to assist with problem resolution,
alternative route planning, and information management. It is
installed in the controller’s D-Position of the DS console.
URET is also better known to controllers as "electronic flight
progress strips". It drastically alters the way that air traffic
controllers receive and process flight plan information.

URET detects and alerts the air traffic controllers of
aircraft-to-aircraft conflicts up to 20 minutes in advance. This
"conflict probe" feature uses the system’s flight plan and
track database, which captures data from the ARTCC’s
National Airspace System (NAS) host computer and from
URET in neighboring control centers. The URET also gives
controllers an alert 40 minutes in advance of when an aircraft
is predicted to penetrate restricted or prohibited airspace.

The URET incorporates unique Fault Tolerance features. Its
console design and system architecture minimize operational
impact from system problems. The URET installation
involved both the system’s commercially available hardware
and more than 620,000 SLOC mainly in Ada 95. This system
is allowing freedom to pilots to fly more preferred routes and
altitudes resulting in significant fuel and time savings and
superior conflict probe.

C. En Route Automation Modernization (ERAM)

 The current Host Computer System (HCS) operating in the
FAA’s twenty En Route centers has been the backbone of the
US National Airspace System (NAS) for thirty five years.
However, the HCS software, primarily written in Jovial and
Basic Assembly languages, and its architecture, place
increasing limits on the ability of the NAS En Route domain
to accommodate growth and new functionality. Finally in
2003 the FAA awarded a contract with initial worth of US
$2.2 Billion to replace the existing NAS Host and Direct
Access Radar Channel (DARC). ERAM adds improved
capabilities of NAS Architecture, Free Flight Initiatives,
Advanced Communication, Navigation, Surveillance,
Information Management, and Decision Support
Technologies that can now be applied to Air Traffic
Management (ATM). It will replace the existing
mainframe-centric host architecture with a state of the art
open and supportable environment.

The 1.3 million SLOC software developments with majority
application in Ada have been completed ahead of schedule.
The system is currently undergoing through rigorous testing
by the air traffic controllers. The operating system software
and the interface between application software and operating

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

system conform to the Portable Operating System Interface
(POSIX) standard. The system provides enhanced security
through a defense-in-depth architecture. The overarching
requirements are to provide data confidentiality, data
integrity and system availability. The architecture provides
multiple layers of security including controls on the external
networks, network perimeter, internal networks, operating
system, security middleware, and application programs. The
software is also designed to verify the syntactic and semantic
correctness of commands, inputs, and data from external
systems, whenever possible. This verification prevents data
triggered software failures and the corruption of valid data.
To meet the Reliability, Availability and Maintainability
(RMA) requirements of down time of few seconds in a year
under emergency mode, the system provides two fully
redundant channels. The architecture provides separate
platforms for safety critical versus efficiency critical versus
routine services to align with the separate availability and
recovery time requirements. Accordingly, the architecture
provides separate networks for operation control versus
maintenance function communication. Product supportability
advantages led to the selection of the IBM P series
processors, the AIX operating system, and CISCO switches.
The system interfaces with a variety of external systems.
From airspace users, ERAM receives proposed flight plans.
For aircraft that cross facility boundaries, ERAM shares
flight data and flight coordination and control data with U.S.
and non–U.S. ATC facilities. ERAM transmits active flight
data to U.S. government agencies that monitor flights at U.S.
borders. Flight data is also transmitted to other systems in the
ARTCC. The system receives radar target reports as well as
radar precipitation reports from surveillance sources. It
receives non–surveillance weather data from the Weather
and Radar Processor and the Weather Messaging Switching
Center Replacement. ERAM receives Notices To Airmen
(NOTAMs) from the Consolidated NOTAM System IP
Server.

Each external interface is owned by a single ERAM
Subsystem; functioning of that Interface Control Domain is
confined to the owning subsystem. ERAM communicates
with external interfaces independent of language in which the
external system or ERAM interface proxy is developed. The
subsystems are decomposed into Computer Software
Configuration Items (CSCIs) with clearly defined interfaces
and dependencies. The following considerations are used to
determine the functional allocation to CSCIs.

From a logical view perspective ERAM software

encompass
• Functional cohesion (i.e., do not combine unrelated

functions) and encapsulation
• Loose coupling between CSCIs (helps limit the impact

of changes to a single CSCI)
• Extensibility and reuse considerations
• Simplicity of interfaces between CSCIs.

From a physical view perspective it can be encapsulated as

Failure modes of the CSCI in relation to other elements (i.e.,
ability to fail independently from other components in order
to minimize the number of reconstitutions needed with
external systems); failure mode considerations can have the

additional benefit of isolating the amount of function that is
failed from the user’s perspective. In addition to CSCIs,
significant elements of the architecture are common shared
services (CSSs) which are design–level entities used by
multiple CSCIs to provide common services.
Software layers are enforced from a software dependency
perspective: each layer may use services only from its own
layer or lower. Services have application programming
interfaces (APIs) that are invoked either synchronously or
asynchronously, via dynamic dispatching (or callbacks).
Since the system is distributed, there is data passing between
nodes in the network architecture; the messages are
encapsulated into functional components, thus shielding the
users of the services from implementation details and from
changes in data layout. Client-side library code is provided
by each functional component and is bound in with the client.
It is the client-side library code that presents the APIs. These
support Ada and C++ clients for ERAM; other languages
could be added if the need were to present itself.

D. Publisher Frame Work Methodology

 One of the challenges in building ERAM with distributed
fault tolerant systems is keeping application code size and
complexity down. This has been done by capturing the
nuances of distributed Publisher Frame Work (PFW) [4]. The
Publisher Frame Work (PFW) provides a framework for
uniform, consistent development of software components.
The design pattern as shown in Figure 2, implements support
for:

• A server to publish objects to subscribers and to process

requests from clients.
• An agent acting as a local subscriber to receive published

objects, translate them into messages and multicast them
to all remote subscribers.

• A proxy to receive multicast messages, translate them
back into objects and republish them to local clients.

• A mirror to augment the proxy by retaining a copy of the
data published by the server for use in local queries.

In ERAM there is a plethora of requirements implemented by
PFW on behalf of all components that are less interesting to
describe in this paper, yet helpful to the component
implementers just the same; one example is invoking the
recording service and error reporting service (to log
commonly recorded events and data) for detected errors.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

Figure 2 - Publisher Frame Work Concept

E. Some Lessons Learned in ERAM’s Software

Development
The positive lessons learned in using components are that
Factoring out common behavior saved code overall.
Especially the Reuse of Proxy/mirror code in many clients
saved all those clients from developing similar code many
times over, saved those clients from debugging that code
many times over. In addition “Clean” one-way dependency
rules between components help build the system in an orderly
fashion. On the other hand Interfaces between components
Application Program Interfaces (APIs) are still volatile, still
changing as features are added, learning what should be in
the API vs. internal to a component is ongoing. Structuring a
component such that the minimum sufficient information is
in the API is still ongoing (could have set up stricter
controls/rules up-front to facilitate better decision-making).
Lessons learned specific to developing systems in Ada
includes Ada Semantic Interface Specification (ASIS)
interface is very useful and utilized heavily for data exchange
specially in

• Operational software (recording data) and Support

software (interpreting recorded data)
• Support software (generating adaptation data in

compact, binary data) and operational software (reading
in the adaptation data)

• Ada software exchanging data with C++ software
(crossing language boundary and passing data along)

Ada results in code that is easier to debug due to strong
typing/range checking. Much easier to debug an index being
out of range when an exception is raised on the first attempt
to use it as opposed to stomping on random areas of memory.

On the other hand
• Junior personnel perceived that they are working with

“aged” technology, that the skill acquired is not
transferable/marketable

• Passing exception across language boundaries (between

Ada and C++) is a lot of work; Pragma Interface didn’t
consider this aspect.

• There is a related issue about calling languages (like C)
that do not support exceptions – one has work on all of
those, map to return codes.

III. FAA’S MONITORING OF ADA

Since the FAA has a long-term vested interest in Ada, it
monitors the developments in the Ada world. The Ada related
annual conferences such as the ACM SIGAda Conference,
Ada-Europe are occurring regularly and successfully. New
Ada events such as European Ada Working Group
conference held in the United Kingdom (UK) in late 2007
was attended by some 120 participants. It is encouraging to
note that membership retention rate of ACM’s Special
Interest Group on Ada (SIGAda) is 80%, the highest among
all ACM SIGs and has been financially and technically
thriving. Positive feedback in conference evaluation forms
indicate that people come for technical sessions, to hear
presentations by recognized speakers, and to network with
others. It is attracting new vendors to the exhibit hall and has
a mix of technical papers, workshops, sponsor presentations,
and invited presentations with international participation.
The Ada Europe conference has been held for 19 consecutive
years. These events appear to be very successful with wide
participation from academia, industry, government agencies
and IT associations such as ISO.

A. Research in Ada Software Engineering

 Research and Development in Ada Software engineering
is ongoing. The main journal on Ada published in the USA,
ACM Ada Letters, in addition to providing technical articles,
publishes Ada Issues (queries and clarifications of the Ada
standard), Proceedings of the SIGAda Conference, and
Proceedings of the events such as International Real-Time
Ada Workshop. Another major Ada Journal is “Ada Users
Journal” published by Ada-Europe, which is a federation of
several national Ada societies of major European countries
including UK, France, Spain, Italy, Belgium, Denmark,
Netherlands, Sweden, Switzerland and Germany. This
journal has been published regularly four times a year with a
wide variety of papers on the Ada programming language, its
use, general Ada-related software engineering issues and
activities related to Ada.

B. Availability of Ada Programmers

 A recent research report in IEEE Software by Chen [5]
weighed a multitude of factors and determined that Ada is not
likely to decline in popularity among programmers in the
near future. The divisions of major FAA contractor Lockheed
Martin, CSC, Raytheon and other contractors developing
Ada based systems have not reported any difficulty in finding
or training in-house software professionals to program in
Ada. Teaching Ada to programmers who know other
languages has proven to be straightforward.

C. Academic/Industry Joint Ada Programs

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

Ada academic community and vendors offer several free

excellent initiatives because it is whispered that Ada is the
right choice for courses in elementary programming, data
structures, software engineering and for more advanced
courses in compiler construction. Ada embodies the best
contemporary ideas in software technology, and students
exposed to Ada at an early stage of their career become more
skilled and principled programmers. An increasing number
of programs offered by Ada vendors encourage university
students to gain Ada experience prior to entering the work
force. For recent data shows that AdaCore [6] has a major
academic initiative with more than one hundred and forty
universities in 25 countries participating. Fifty-five U.S.
universities including Massachusetts Institute of Technology,
New York University, Carnegie Mellon University,
Pennsylvania State, George Mason University and the
University of Texas participate in this program.

Prof. Michael Feldman, Chair, ACM Ada Education
Working Group lists many of the Real-World Projects in
wide areas from web applications, medical industry to data
communications, developed in Ada at the website
http://www.seas.gwu.edu/~mfeldman/ada-project-summary.
html

The developer of the subset (simplified) version of Ada
“Spark Ada” Praxis High Integrity Systems UK
http://www.praxis-his.com/sparkada/index.asp have also
reported in significant growth in their academic participation
program. They have been appointed by UK’s National Air
Traffic Services (NATS) to develop software for a large new
system called iFACTS which will trigger the biggest change
in ATC since the introduction of radar. Prof. John
McCormick has reported a steady growth in selling of his
book “Ada plus Data Structures: An Object-oriented
Approach book” with significant boost in India. FAA is
pleased to learn that Boeing’s recent aircrafts including
Boeing 787 and others continue to broadly use Ada in their
on-board systems. It is also true for the Airbus’s A380 and
other modern commercial and military aircrafts. Boeing and
Airbus both have announced major assembly and flight
simulation training facilities in China and India.

IV. CONCLUSION

The FAA’s core En Route air traffic control systems DS
and URET were developed in an unprecedented short time
and within the budget using Ada programming language.
These systems are performing very well at every En Route
center. Software development of the new, larger ERAM
system has also been completed on schedule and within
budget. Ada code is easier to debug due to strong
typing/range checking and facilitated in FAA’s drive to find
the defects earlier in the development. The FAA does not
endorse any specific programming language but worldwide
Ada appears to meet the expectations of those requiring a
high integrity reliable software language for real-time
systems. Ada based systems are the mainstay to FAA’s En

Route air traffic control systems in the twenty first century. It
also appears Ada 2005 is well posed to meet the more
advanced and robust systems demand in the future.

ACKNOWLEDGEMENT

 Authors wishes to thank FAA ERAM Program Manager
Daniel Watts, FAA ERAM Engineering Manager Robert
Hanes, Lockheed Martin Software Engineering Leads Judith
Klein and Ross Rader for permission to share the
information, data inputs and valuable suggestions.

REFERENCES

[1] Ben Brosgol, Ada 2005: A Language for High-Integrity
Applications, CrossTalk, August 2006

[2] Richard Conn (Microsoft), Ada 2005, CrossTalk,
August 2006

[3] Jeff O’Leary of FAA, Keynote Presentation at 2007
ACM SIGAda Annual International Conference,
November 4-8, Washington DC, USA

[4] Judith Klein (Lockheed Martin) and Drasko Sotirovski
(Raytheon Corp), Publisher Framework (PFW), ACM
Ada Letters, August 2007, pp 12-22,

[5] Chen, Y et al. An Empirical Study of Programming
Language Trends. IEEE Software 22, 3 (May/June 2005:
pp72-79)

[6] AdaCore, a GNAT Pro Company, New York, NY

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

	INTRODUCTION
	En-route Air Traffic Control Systems
	FAA’s monitoring of Ada
	CONCLUSION
	Acknowledgement
	References

