

Abstract— The pervasive computing systems inside modern day

automobiles are made up of hundreds of interconnected, often
replaceable software components. In-vehicle multimedia
components and applications are becoming complex artifacts due
to advancement in technology and increased competition. There is
a growing need for software platform to enable efficient
deployment of multimedia services in automotive environment.

This paper presents a software framework, mCAR, to support
component based development of pervasive multimedia
applications. The framework is scalable and configurable. The
framework is aimed to run on an In-vehicle infotainment platform
to support efficient management of available multimedia
resources.

Index Terms— Context Aware, Pervasive Systems, In Vehicle
Multimedia.

I. INTRODUCTION

Many modern automobiles contain hundreds of embedded
microcontrollers [1] interconnected via vehicle network. The
automobile industry has seen a shift towards the use of more
on-board technology and, is becoming increasingly
software-dependant. From sophisticated navigation systems to
computer-controlled driver assistance safety systems and in-car
multimedia and entertainment, the amount of software written
for cars is increasing rapidly.

Though embedding multiple software components is more
cost-effective and facilitates more reuse than designing a central
control software system, there is an associated cost in additional
software complexity. Many components in these automobiles
are designed to be replaceable to ease future maintenance and
service extension of the vehicle. This means that a new
component will often have a different feature-set to the
component it replaces. Separate components need to be able to
work together despite not always being aware of each other’s
capabilities. It is also likely that this modularity will give rise to
a market for cheaper non-OEM components.

Kamal Kumar Sharma is Ph. D. student with Devi Ahilya University, Indore,
INDIA. (e-mail: kamal.sharma74@rediffmail).

Hemant Sharma is Software Architect at Delphi Delco Electronics Europe
GmbH, Bad Salzdetfurth, Germany. (e-mail: hemant.sharma @ delphi.com).

A. K. Ramani, is Professor at School of Computer Science, Devi Ahilya
University, Indore, INDIA. (e-mail: ramani.scs@dauniv.ac.in).

Further, the proliferation of multimedia capable mobile devices
such as novel multimedia enabled cellular phones has
encouraged users inside a vehicle to consume multimedia
content and services while on move. However, selecting and
enabling the presentation of the most appropriate content for the
given device is rather complicated due to the vast amount of
multimedia data available and the heterogeneity of systems
available. Appropriate software infrastructure is required and
being developed to enable automatic discovery and efficient
presentation of multimedia content. Context information can be
used to guide the applications and systems in selecting the
proper content and format for a given user (passenger or driver)
at a certain time, place and under a specific context.

Recent advances in computer and Internet technology in the past
decade have greatly shaped the evolution of in-vehicle
ubiquitous multimedia environment. On-board infotainment
system is able to access multimedia content from a CD changer,
iPod or Bluetooth enabled Cellular Phone. However, there are
still many challenges in this type of environment. One basic
problem of this multimedia service model is the dynamic
heterogeneity caused by the physical attributes of diversified
computing devices and vehicle networks. Device and user
mobility, another important problem of in-vehicle ubiquitous
computing, posses a great challenge to the management of
multimedia services.

The key contribution of this paper is the description of
framework architecture for pervasive multimedia services that
addresses the challenges mentioned above. It includes
mechanisms to access multimedia content as part of contextual
information. It is composed of core service components and
augmented by several enhanced components that comprise a
distributed service enabler space.

The rest of the paper is organized as follows: Section 2 provides
an overview of related research. Section 3 outlines the design
concepts for the framework. In section 4, the software
architecture of the framework has been described. Section 5
introduces application model for the framework. Section 6
concludes the paper.

II. BACKGROUND

Driving is a complex process which requires adaptable
interactions between three components: the driver, the car and

mCAR: Software Framework Architecture for
In-vehicle Pervasive Multimedia Services

Kamal Kumar Sharma, Hemant Sharma and A. K. Ramani

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

the environment. Driving is successful or safe when the
interactions between these three components are not faulty.
Relevant information required to perform the main driving task
are adapted (to the situation) and exchanged correctly, without
loss between the three components.

Developing context-aware applications continues to present
software engineering challenges. Well known solutions that
assist with acquiring and processing context information from
sensors have been proposed by Dey et al. [2], Schmidt et al. [3]
and Chen and Kotz [4]. In addition, a variety of context
management systems that maintain repositories of context
information and provide sophisticated query facilities to
context-aware applications have also recently appeared [5, 6].
These solutions focus on removing complex functionality from
the applications and placing it within shared infrastructure, but
do not place much emphasis on providing context modelling
techniques that are natural to use for the application developer.

Several novel developments are related to context-awareness in
general. Regarding context-aware multimedia systems and
services, recent trends consider mostly the location and time as
part of the context. Contextual information can be weaved into
the process of Authoring, Annotation, Retrieval, Adaptation,
Personalization and Delivery of Multimedia Content. As an
example, location can be used as context information to deliver
most appropriate multimedia information (such as a video, a
multimedia presentation or a commercial) related to the current
location of the user. Examples are location and context aware
museums or tour guides such as [8], [9]. Location and time can
also be used to annotate multimedia content or clips during their
creation. Contextual information can then be used to tag and
store the data as well as being used during the retrieval process.
Several projects such as Meaning [10], Context Watcher [11],
or Lifeblog [12] automatically associate such contextual
metadata with media captured on camera phones. When it
comes to presentation of the multimedia content, device
characteristics and bandwidth information can be used as
contextual information to adapt the multimedia content to the
device and network capabilities, as e.g. done within the
MPEG-21 framework and contextual extensions [13].
Regarding more interactive multimedia services such as IPTV
or video on demand (VoD), contextual information can be used
to personalize the content and much work needs to be done to
correctly estimate the context for proper personalization in
order to enrich the streamed content by adding more
information (such as personalized advertisements) or adapting
the presented information taking into account user context [14].
Finally, location information is also used as context source in
pervasive multimedia games. Here, context service
management models and components are used to manage game
related events and delivery of related multimedia data [15].
However, we are not aware of any integrated platform that aims
to deliver pervasive multimedia services in automotive
environment.

III. PERVASIVE IN-VEHICLE MULTIMEDIA

A. Overview

Innovative key factor for improving applications and services,
comfort and safety, and vehicle management are represented by
pervasive networked technologies in the automotive sector.
This networking enables:

� Innovation of in-vehicle multimedia system and
software architectures.

� Enhancement of the application and services offered to
end users.

Fig.1 presents typical in-vehicle pervasive network along with
the physical components and devices that could part of the
network.

Figure 1: Pervasive Vehicle Network with Multimedia
Devices.

The network contains a pure multimedia part, represented by
Multimedia Bus, and a control and external communication
part, represented by Networking for Automotive. Multimedia
Bus represents the wired multimedia resources. External
multimedia resources can form an ad hoc network via the
communication interfaces of the vehicle network.

In order to exploit the services, provided by available
multimedia resources, a software framework is necessary. This
framework must follow the design concepts outlined in the next
sub section.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

B. Design Concepts

In order to address challenges described in section 1, the
software architecture presented here incorporates the reflective
techniques into its design, in a sense that the system can reason
about and modify itself on a meta-object level. The architecture
considers the following design concepts:

� Open: the term has two-fold meaning in the context of
this system. First of all, the internal semantics of the
system objects are exposed to the applications on top.
Secondly, the system is open to the modification or
replacement of its constructing components.

� Component-based: the system is decoupled into
different sets of components, each having individual
functionalities. As the building blocks of the whole
architecture, they can be loaded or removed
dynamically.

� Active: the system environment updates and
application behavior changes, and has certain self
administrative power to accomplish the system
functionality.

� User-centric: we believe that user, not the application,
will be the ultimate client of pervasive multimedia
service delivery.

In the next section, we present the architecture of the
multimedia framework based on these design concepts. We
name the framework as mCAR.

IV. ARCHITECTURAL OVERVIEW

This section presents a high level overview of mCAR, the
context aware multimedia framework architecture, describing
briefly some of the design decisions taken for each part. The
framework is divided in three main modules; the mCAR Kernel,
the Communication Subsystem (CS) and the Content Module
(CM). The user of mCAR provides a set of decision modules and
multimedia protocol software to resolve the communication
with the vehicle infrastructure.

The Kernel defines a set of software interfaces that are used by
the decision modules for accessing both the CS and the CM.
This module also provides a set of mechanisms for handling
concurrent access to the data. The Kernel initializes the server
and the decision modules. To maintain low coupling between
the Framework and the decision modules, an extensible event
system has been developed. This low coupling approach allows
dynamically adding and removing listeners without changing
the predefined internal behavior of the Framework.

The decision modules and their dependencies are specified in a
configuration file that contains the id, the class that implements
the decision module and their execution dependencies. This

approach allows a declarative way for specifying the logic
components used by the system. The execution dependencies
are embedded as a list of decision modules that run before the
current one is executed. This defines a direct acyclic graph of
executing dependencies between all the decision modules. A
topologic sort over this graph provides the execution order for
each module. As previously stated, the modules are executed
when an event occurs, but it is also possible that the decision
module runs in parallel to the framework. The decision modules
are loaded in runtime, allowing the system to replace or modify
certain logic without stopping the execution of the multimedia
application. The architecture and components that integrate a
multimedia service implemented in the framework are presented
in Fig. 2.

Figure 2: Framework Architecture

The Communication System implements asynchronous
communication for the framework. It abstracts the network
protocol and the network link (wired or wireless). Thus, the
user of the framework defines the communication protocol used
at the application level. Applications open a data connection
with the framework and for each new connection established the
CS creates a content worker thread for handling the
communication with the specific multimedia resource. For
sending data to a resource, each worker contains a local queue
and the worker sends data messages stored in this queue to the
specific resource. The worker stores data received from the
resource in a general queue that is part of the CS.

The information of this queue is processed by certain number of
dispatcher threads, each dispatcher pass the data message to the
Multimedia Protocol component. The Multimedia Protocol
component is loaded at the startup of Framework. This
component processes the incoming messages of the resources

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

and may propagate events to the decision modules (or other
listeners) each time a new message arrives. Different types of
events can be defined and propagated by the user through this
component. The user application can provide different
implementations of the Multimedia Protocol (only one at a time
is used). The latter allows different application-level protocols
to operate with the Framework [2] [3]. The internal composition
of Communication System is presented in Fig. 3.

Figure 3: Communication System Structure

The proposed queue system, which is based on a
producer-consumer model, makes possible to achieve certain
level of asynchronous application - resource communication. It
is also possible to distribute the work of the dispatchers and the
workers under several resources, improving the scalability of
the system.

V. INTERFACE SPECIFICATION

This section will introduce the class and interface designs of the
Event System, Decision Modules and the Multimedia Protocol.
The interfaces are described using UML [7]. The user of the
framework provides some of these interfaces to implement
different system behaviors. The framework is currently
implemented in C++.

A. Event System

The event system used in the framework is defined using three
interfaces, the ICAREventProvider, ICAREventListener and
ICAREvent, the UML class diagram for these interfaces is
presented in Fig. 4.

ICAREventListener instances are registered to listen events
from a specific event source (ICAREventProvider instances).
Each ICAREventListener instance provides the list of

dependencies that should be executed before itself, defining a
partial execution order for all the listeners. ICAREventProvider
instances are active components that propagate certain mCAR or
user defined events (ICAREvent instances). Event source
instances can be linked in a chain of event propagation, using
the appropriate method of ICAREventProvider. When an event
is propagated, the following protocol steps should be respected
by each event source:

1. Executes default action event for the current event
source.

2. Executes the listenEvent method for all registered
listeners of the current event source, respecting the
predefined order.

3. Propagates the event to the parent of the current event
source (repeat the process from step 1).

Figure 4: Event System Interfaces

ICAREvent instances are the event objects that contain the event
source target and some data related to the event. The event
source target is the logic element of the framework that
generates the event, for example, if a vehicle logged in event is
propagated then the event source target is the resource
identifier.

B. Decision Modules

The framework instantiates decision modules using a factory
configurable by an XML configuration file. A default
implementation for the factory is provided by the framework;
this factory loads the XML information, resolves the
dependencies and allows the runtime instantiation of each
decision module. The UML class diagram for the decision
modules is presented in Fig. 5.

Each declared decision module in the XML is an instance of

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

ICARDecisionModule interface. All the decision modules are
initialized with the Kernel interface (API to the framework),
including the decision module name and dependencies list
(information declared in the XML). The ICARDecisionModule
instance may run in parallel of the Framework (for example as a
proxy to other legacy system), or be activated and executed only
under certain events propagated.

Figure 5: Decision Module Interfaces

C. Multimedia Protocol

The Multimedia Protocol component processes the
communication messages received from the vehicles,
propagating the corresponding events in each case. This
component is divided in three interfaces; ICARMessage,
ICARMessageFactory and ICARMultimediaProtocol.

Figure 6: Multimedia Protocol Interfaces

The ICARMessage interface represents a message to exchange
with the resources. The implementation of this interface
provides the methods marshal/unmarshal which receive Input
and Output Streams respectively. These methods allows the
message to be serialized and deserialized using different
formats provided by the application, making transparent to
workers and dispatchers, the real stream format exchanged over
the network protocol. The ICARMessageFactory instance,
provided as part of the Multimedia Protocol component by the
application, will be the creator of the ICARMessage instances.
The ICARMultimediaProtocol instance is responsible for
processing the messages received from the resources, before
different events may be propagated. A UML class diagram of
the Multimedia Protocol interfaces is presented in Fig. 6.

VI. APPLICATION MODEL

The Application Model of the mCAR framework (Fig. 7)
provides support for building and running pervasive multimedia
applications on top of the framework kernel. The application
model shall guide modeling of multimedia application
components with the use of interfaces of component of the
framework in an efficient manner.

Figure 7: mCAR Application Model

The applications access the framework functionality through an
IApplication interface. Each time an application is started, an
ApplicationSkeleton is created to allow interactions between the
framework and the application itself. In particular, application
interfaces allow applications to request services from the
underlying framework, and to access their own application
configuration profile through a well-defined reflective

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

meta-interface. The multimedia application is realized as
composition of components based on the component model of
the framework. The description component model is out of
scope of this paper.

VII. CONCLUSION

In the paper, the software architecture of mCAR has been
presented. The architecture is based on the design concepts
outlined in the paper to meet the multimedia service deployment
and management challenges.

This contribution also introduces the application model for
development of multimedia applications on the top of mCAR.
Applications shall use the provided interfaces of mCAR to use
the framework services. The framework behavior is
configurable via application specific configuration file.
Specification of application specific decision module makes the
framework open and scalable to accommodate support for wide
range application and multimedia resources.

Component and interface optimization is the first objective of
our future work. We anticipate two main directions:

� The use in framework dynamic context formation
based on context configuration information.

� Performance analysis of multimedia protocol for
different multimedia resources.

REFERENCES

[1] R. Bannatyne, “Microcontrollers for the Automobile” .Micro Control
Journal, 2004.

[2] A. K. Dey, D. Salber, and G. D. Abowd, “A conceptual framework and a
toolkit for supporting the rapid prototyping of context-aware
applications”, Human-Computer Interaction, 16(2-4):97–166, 2001.

[3] A. Schmidt, K. A. Aidoo, A. Takaluoma, U. Tuomela, K. Van Laerhoven,
and W. Van de Velde, “Advanced interaction in context”. In 1st
International Symposium on Handheld and Ubiquitous Computing,
volume 1707 of Lecture Notes in Computer Science, pages 89–101.
Springer, 1999.

[4] G. Chen and D. Kotz., “Context aggregation and dissemination in
ubiquitous computing systems”. In 4th IEEE Workshop on Mobile
Computing Systems and Applications, Callicoon, June 2002.

[5] G. Judd and P. Steenkiste, “Providing contextual information to pervasive
computing applications”, In 1st IEEE Conference on Pervasive
Computing and Communications, pages 133–142, Fort Worth, March
2003.

[6] H. Lei, D. M. Sow, J. S. Davis, G. Banavar, and M. R. Ebling. The design
and applications of a context service. ACMSIGMOBILE Mobile
Computing and Communications Review, 6(4):45–55, October 2002.

[7] Object Management Group. Unified Modeling Language Specification
v.2.0. www.uml.org, September 2003.

[8] Opermann, R., and Specht, M, “A Context-sensitive Nomadic
Information System as an Exhibition Guide.” Proc. of 2nd Intl.
Symposium on Handheld and Ubiquitous Computing, Bristol, 2000.

[9] Keith Cheverst, Nigel Davies, Keith Mitchell and Adrian Friday,
“Experiences of Developing and Deploying a Context-Aware Tourist
Guide: The GUIDE Project”, Proc. 6th annual international conference on
Mobile computing and networking, pp. 20-31, 2000

[10] The Meaning Project http://meaning.3xi.org/

[11] Context Watcher Application http://portals.telin.nl/contextwatcher/

[12] Nokia Lifeblog 2.0 http://europe.nokia.com/nokia/

[13] Asadi, M.K. and Dufourd, J.-C , “Context-Aware Semantic Adaptation of
Multimedia Presentations”, , in Proc. IEEE Multimedia and Expo,
Amsterdam, 2005

[14] Amit Thawani, Srividya Gopalan and Sridhar V., “Context Aware
Personalized Ad Insertion in an Interactive TV Environment ”, TV'04: the
4th Workshop on Personalization in Future TV - Methods, Technologies,
Applications for Personalized TV, 2004

[15] David Linner, Fabian Kirsch, Ilja Radusch, Stephan Steglich,
“Context-aware Multimedia Provisioning for Pervasive Games”, Proc.
7th IEEE International Symposium on Multimedia (ISM'05), pp. 60-68,
December 2005.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

