
 
 

 

  
Abstract—This paper presents a monocular lane-vehicle 

detection and tracking system comprising of (i) lane boundary 
detection, (ii) lane region tracking, and (iii) vehicle detection 
with a proposed vertical asymmetry measurement. First, a traffic 
scene image is divided into possible road region. Lane boundaries 
are then extracted from the region using lane markings 
detection. These detected boundaries are tracked in consecutive 
video frames using a linear-parabolic tracking model. Therefore, 
an approximate lane region is constructed with the estimated 
model parameters. By integrating the knowledge of lane region 
with vehicle detection, vehicle scanning region is restricted to the 
road area so as to detect the shadow underneath a vehicle 
continuously with less interference from the road environment 
and non-vehicle structures. A self-adjusting bounding box is used 
to extract likely vehicle region for further verification. Besides 
horizontal symmetry detection, a vertical asymmetry 
measurement is proposed to validate the extracted region and to 
obtain the center of frontal vehicle. Preliminary simulation 
results revealed good performance of lane-vehicle detection and 
tracking system. 
 

Index Terms— Driver assistance systems, Lane detection, 
Lane tracking, Vehicle detection. 
 

I. INTRODUCTION 

Advancement of vision-based vehicle detection has 
triggered recent development of autonomous vehicular 
technology in order to automatically localize moving vehicles 
in complex traffic scene. Generally, the main task of 
vision-based vehicle detection is to sense a leading vehicle and 
thus spontaneously alert a driver of precritical conditions with 
the preceding vehicle, in case he/she makes a sudden break, 
slowdown driving or  uniform movement [1]. Moreover, 
vehicle detection can be developed to track and follow a 
preceding car, and at the same time increase the efficient use 
of driving space. In consequence, an effective visual scanning 
of frontal road conditions is highly required for vehicle 
detection system to identify the position of frontal vehicle.  

Numerous vision-based techniques have been developed 
over the past decade to detect vehicles in various road scenes, 
as described in [1]-[11]. Tzomakas and Seelen [2] detected 
vehicles based on the shadows underneath them. With the use 
of entropy, a free driving space was determined and therefore, 
an adaptive threshold was applied to extract vehicle edges. 
Chang et al. [3] presented a preceding vehicle detection  
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and tracking system by finding the footprint of a vehicle on 
road area and tracking the vehicle using the continuity 
measurement of two consecutive frames.  Kate et al. [4] 
combined the knowledge-based methods such as shadow 
detection, entropy analysis and horizontal symmetry 
measurement for mid-range and distant vehicle detection 
without prior knowledge about the road geometry.   

 Besides that, Khammari et al. [5] applied a horizontal 
Sobel filter on the 3rd  level of the Gaussian pyramid to obtain 
local gradient maxima  where a vehicle candidate is located.  A 
temporal filter was used to further remove unwanted pixels 
and then a bounding box extraction was employed to retrieve a 
possible vehicle region for symmetry verification. Broggi et 
al. [6] presented a multi-resolution vehicle detection method 
to localize vehicles with variable sizes. They computed the 
symmetry property of vehicles in different sized bounding 
boxes on all the columns of the regions. Liu et al. [7][8] 
detected vehicle region based on the shadow underneath a 
vehicle and symmetry edges. Additionally, they combined 
knowledge-based and learning-based methods for vehicle 
verification. In vehicle tracking, templates were dynamically 
created on-line and tracking window was adaptively adjusted 
with motion estimation.  

On the other hand, Hoffman [9] performed a multi-sensor 
fusion approach incorporating 2-D visual features such as 
shadow and symmetry, with 3-D ground plane information 
such as camera height for vehicle detection. These fusing 
features were tracked using Interacting Multiple Model 
method. Bertozzi and Broggi [10] used stereo vision-based 
method to detect both generic obstacles and lane positions in a 
structured environment.  They utilized Inverse Perspective 
Mapping technique to remove perspective effect and 
reconstruct a 3-D mapping when the camera parameters and 
the knowledge about road are known. Giachetti et al. [11] 
developed first-order and second-order differential methods to 
detect vehicle based on the motion. 

However, the presence of non-vehicle structures such as 
over-bridge, fly-over roadway, tunnel, buildings, sign boards 
etc, in traffic scene may decrease the performance of 
knowledge-based vehicle detection since these non-vehicle 
structures posses the horizontal/vertical characteristics 
identical to vehicle’s edges [2]-[8]. Moreover, a complex road 
environment may complicate the process of vehicle detection 
as there are many possibilities of human activities along the 
road side [4]. Frontal vehicle with little relative motion change 
or stand still has increased the difficulty of vehicle detection 
based on motion flow [1][11]. Furthermore, the requirement 
of 3-D transformation and the knowledge of hardware 
parameters for stereo-based vehicle detection method have 
highly increased the computational cost and reduced the 
processing speed [9][10].     
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Fig. 1: Proposed lane-vehicle detection and tracking system. 

 
To solve abovementioned problems, a novel monocular 

lane-vehicle detection and tracking system is proposed in this 
paper, as the flow diagram is depicted in Fig. 1. Lane boundary 
detection is performed on road image to locate the left-right 
lane edges by separating the sky-road region, and analyzing 
road region to extract the prominent road features such as lane 
markings. A linear-parabolic lane model without the 
requirement of camera parameters is constructed to estimate 
lane geometry. This is followed by lane region tracking to 
restrict the vehicle searching region on the ground for every 
continuous frame. As the vehicle region is bounded, vehicle 
detection based on the shadow underneath a vehicle is 
repeatedly performed in tracking lane region. In addition, a 
bounding box extraction method is used to obtain a likely 
vehicle region for further verification. Besides horizontal 
symmetry detection, a proposed vertical asymmetry 
measurement is applied to verify the extracted region and at 
the same time, the center of vehicle is found.  

 Section II discusses about the lane boundary detection 
while Section III explains the lane region tracking technique. 
The vehicle detection with proposed verification technique is 
discussed in Section IV. Some simulation results are shown in 
Section V and followed by conclusion and future works. 
 

II. LANE BOUNDARY DETECTION 

Lane boundary detection is important to locate the left-right 
edges of driving path on a traffic scene image. In this section, a 
three-stage lane boundary detection is performed, i.e. (i) 
vertical mean distribution, (ii) lane region analysis, and (iii) 
lane marking detection. 

  

A. Vertical Mean Distribution 
In lane detection process, sky region is not a region of 

interest (ROI). At the preliminary stage, a traffic scene image 
I(x,y) is divided into sky region and road region using vertical 
mean distribution [12]. Vertical mean distribution is measured 
by averaging the gray values of each row on road image and 
the row means are plotted in the graph depicted in Fig. 2(a). 
The threshold value of horizon line is obtained through a 
minimum search along the vertical mean curve, where the first  

  

 
Fig. 2: (a) Vertical mean distribution, (b) Road region image (Rroi). 

minimum occurs from the upper curve is the regional dividing 
line. This is because sky region usually possesses higher 
intensity than road pixels, and it might have a big jump of 
intensity difference as sky pixels approaches ground. The 
horizon line threshold is applied to generate a road image (Rroi) 
as demonstrated in Fig 2(b), where all vertical coordinates 
below the threshold are discarded. 

 

B. Lane Region Analysis 
Lane region analysis is performed to further classify road 

region and lane markings. Usually, the bottom region in a road 
image contains road pixels. By acquiring a few rows from the 
bottom of image, the gray value range of road color can easily 
be obtained and therefore, this color range is applied to further 
remove road pixels from the Rroi map.  The lane region 
analysis steps are shown as follows: 

Step 1:  Pick 30-60 rows from bottom to avoid the 
possible existence of inner part of a vehicle at the 
edge of image. 

Step 2:  Build a vote scheme; namely VOTE for the 
selected rows and the maximum vote of the row 
pixels is recorded. 

Step 3:  Record a global maximum value for the selected 
rows, as MAXTHRES. 

Step 4:  Define the road color range as [VOTE-25; 
MAXTHRES+25]. Pixels that fall within this 
range are denoted as road pixels and a binary map 
(Rbin) is formed as shown in Fig. 3(a). 

Step 5:  Generate a difference map (Dmap) by differencing 
Rroi and Rbin maps. The positive pixel values are 
retained while the negative values are set to zero. 
The difference map is illustrated in Fig. 3(b).    

 

 
Fig. 3: (a) Lane binary map (Rbin), (b) Difference map (Dmap). 

 

C. Lane Marking Detection 
The difference map obtained in the previous stage is, 

therefore used for lane marking detection. Lane markings are 
the salient features on road and they are usually used to extract 
the boundary of road region. Initially, an edge detection using 
Sobel filter is applied to Dmap. The gradient magnitude 

),( yxDmap∇ and orientation ),( yxθ  are calculated in the 

following equations  [13]: 
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Fig. 4: The edge distribution function.  

 
With reference to the constructed gradient map and its 

corresponding orientation, a histogram called edge 
distribution function [13] is build, with its x-axis representing 
the orientation ranging from [-90º; 90º] and its y-axis 
representing the gradient value of each orientation bins. The 
maximum peak acquired in the graph on the negative angle 
denotes the left boundary angle. Conversely, the maximum 
peak at the positive region denotes the right boundary angle. 
Next, these angles are used to determine the weighted-gradient 
Hough Transform [13] for line construction. In the Hough 
Transform measurement, the lane’s radius r(�) is generated 
based on the following expression: 

 
θθθ sincos)( oo yxr +=  (3) 

 
where xo and yo are the coordinates corresponding to the 
angles �(xo ,yo) for both left and right lane boundaries. The 
voting bins for each radius are cumulated with the gradient 
edge values and the maximum vote is selected. Finally, the 
measured angles and radii are used to build the left-right lane 
boundary.  
 

III. LANE REGION TRACKING 

As illustrated in Fig. 5, the left right lane of interest (LOIs) 
is given and drawn in black lines up to sky-road dividing line 
with T1-pixel thick where T1 is a varied width for the lane 
boundaries. These LOIs are lane masks used to obtain possible 
lane edges in continuous video frame. At this stage, a simple 
linear-parabolic tracking model proposed in [13]-[15] is used 
to construct tracked lane region. Initially, an image is split into 
near and far-field where ym is the border between near and 
far-fields. A linear model is applied to follow the straight line 
in the near-field while a parabolic model is used to mimic the 
far-field lane border. 

 

 
Fig. 5: Detected LOIs in road image 

The left lane boundary model  f(y)is defined as [14]:  
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after the imposition of continuity and differentiability 
conditions on the function f(y).  

Let (xni,yni) and Mni for mi ,,1 �= , denote the m 
coordinates of the non-zero pixels of the edge image and its 
corresponding magnitudes in near-field. On the other hand, let 
(xfj,yfj) and Mfj for nj ,,1 �= represents the n coordinates 
and the n edge pixels in far-field. Subsequently, the expression 
in (4) can be rearranged into the n+m formula below: 
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The approximated solution can then be found by minimizing 
the error function as in (6). 
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The error is minimized when the following 3×3 linear system 
is solved: 
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Hence, the left boundary parameters are estimated and used 

to construct the left lane model. A similar operation is 
employed to the right boundary. After the tracking system is 
completed, the construction of lane region is needed to limit 
the vehicle detection boundary. The linear tracking model is 
applied to construct the lane region as demonstrated below: 
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where (al,bl) and (ar,br) are the estimated parameters for left 
and right linear lane models while I(x,y) denotes the original 
image. The detected lane region of interest (LROI) is used to 
restrict the vehicle searching area, which largely reduces the 
computational time. 
 

IV. VEHICLE DETECTION 

After the retrieval of the lane region from the lane region 
tracking in Section III, the system proceeds to vehicle 
detection in order to locate the position of frontal vehicles. 
Three stages are needed in identifying a vehicle: (i) shadow 
detection, (ii) bounding box extraction and (iii) proposed 
verification.  

   

A. Shadow Detection 
The LROI produced in previous section is used to detect the 

shadow underneath a vehicle. At first, a gradient edge 
transformation is applied to the LROI image with a certain 
edge threshold as the binary image is shown in Fig. 6(a). The 
remaining region might be a shadow or some noise produced 
by lane edges. Further steps are taken to remove the noise. A 
group of connected pixels which has more than T2 pixels in 
horizontal is defined as the possible shadow region where T2 

denotes as the threshold value for shadow detection. 
Therefore, this process removes the pixels connectivity that is 
less than T2 pixels remaining those possible pixels that are 
larger than T2 pixels and those remaining pixels are defined as 
pixels of interests (POIs), as depicted in Fig. 6(b). 

 

 
Fig. 6: (a) Shadow detection, (b) POIs after noise filtering   

 

B. Bounding Box Extraction 
Vehicle verification is an important process in order to test 

the detected region whether it is vehicle or non-vehicle. First, 
an extracting box is used to determine the vehicle’s ROI, 
where the POIs exist. Since the bottom pixels of possible 
vehicle’s shadow are detected, the height from the detected 
shadow pixels to the top image is calculated as Hpix while the 
image height is defined as Himg. So the ratio of the image is 
calculated as follows: 

img

pix
ratio H

H
V =   (9) 

�

�
Fig. 7:  Vehicle’s ROI after the adaptive bonding box extraction. 

The ratio has the advantage that, if the car is at far-field, the 
ratio is smaller and if the car is getting nearer, the ratio 
becomes larger. This adaptive ratio is then multiplied with a 
threshold (T3) to obtain the possible vehicle ROI’s height and 
width for evaluation, as depicted in Fig. 7.  
 

C. Proposed Verification 
For further verification of vehicle’s ROI, symmetry 

detection is performed horizontally and followed by the 
vertical symmetry detection. The horizontal grayscale 
symmetry axis can be found in [3] with the formula below:  
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where HS(j) is the horizontal symmetry measurement with the 
symmetry axis located at x=j. As illustrated in Fig. 8, the 
horizontal symmetry axis of the possible vehicle region occurs 
at the local minimum where the point x = 31. 

 
Fig. 8: The horizontal symmetry measurement. 

 
The same idea is applied on the vertical asymmetry 

detection with some modifications. Instead of analyzing the 
grayscale symmetry, the vehicle region is turned into an edge 
difference map by differencing all the columns to its first 
column of the possible ROI and the difference map formula is 
defined as follows:     
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where VS(i) is the vertical asymmetry measure with the 
asymmetry axis located at y=i. 
 

 
Fig. 9: (a) Vertical asymmetry measurement, (b) Vehicle’s difference map. 
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As illustrated in Fig. 9(b), the color distribution at the center 
row has the largest intensity compared to others due to the 
great dissimilarity of vehicle’s region to surrounding 
environment. The sum of each row is plotted on the graph, and 
at the same time, the global maximum in the graph is selected 
as the vertical asymmetry axis. As depicted in Fig. 9(a), the 
peak occurs at the center of vehicle region where the vehicle 
center is largely differentiated to others at the point y = 34. 
Finally, the results of symmetry and asymmetry axes are 
plotted on the vehicle’s ROI as shown in Fig. 10. The center of 
vehicle can easily be obtained after the horizontal symmetry 
and vertical asymmetry analysis and it can be extended for 
vehicle tracking.  
 

 
Fig. 10: Detected vehicle regions with symmetrical and asymmetrical axes.  

V. SIMULATION RESULTS 

All results were generated using Matlab 2006b with the Core 
2 Duo processor at 1.8GHz with 1GB RAM. A video sequence 
was captured under sunny day condition at around 12 p.m. in a 
highway environment using Canon IXUS 65. The first image, 
as depicted in Fig. 11(a), was used for the lane boundary 
detection while the consecutive 12 video samples showed in 
Fig. 12 and Fig. 13 were used for the evaluation of lane 
tracking model and the vehicle detection. Initial values of the 
following parameters, T1 = T2 = 8 and T3 = 100 were set in 
these experiments. 

The application of lane detection on road image is a critical 
step since it determines the results and performance of the 
following stages - lane tracking and vehicle detection. The 
detection results demonstrated in Fig. 11(a) retrieved the 
driving path successfully in frontal view. The detected lane 
boundaries were therefore used to estimate the left-right LOIs 
in the next step. Some other lane detection results were 
demonstrated in Fig. 11(b) & (c) (obtained from WWW.) and 
left-right lane boundaries were expected in the images. 

The employment of previously detected lane outputs on the 
  

 �

 
Fig. 11: The result of lane detection (a) for the first sample of video frame, 

(b) before tunnel, (c) in city.  

first frame has activated the lane tracking process. The 
purpose of lane tracking system is to predict the possible lane 
model based on the detection result in order to reduce the 
computational cost in a video frame. The linear-parabolic lane 
model was applied to the video sequence. As a result, the lane 
tracking algorithm extracted the lane region successfully, as 
depicted in Fig. 12. However, the lane tracking method was 
only an estimation using a lane model and it could not follow 
the path exactly. As we could observe in Fig. 12(b)-(g), the 
lane boundary was slightly above the lane markings, but at this 
stage, road region was of interest since it was used to restrict 
the vehicle searching region. With this knowledge of lane 
region, the presence of vehicle could be detected in continuous 
frames.  

After the lane region was obtained and tracked for every 
frame, vehicle searching area was limited to ground area 
because vehicles were always found on the roadway. This 
greatly reduced frontal vehicle scanning time and removed 
noises that looked similar to be the priori knowledge of vehicle 
regions such as horizontal/vertical structures of buildings and 
edges. As demonstrated in Fig. 13, the vehicle region was 
successfully detected in every frame and each frame indicated 
the vehicle region with a self-adjusting bounding box. The 
drawing of a box is based on an adjustable image ratio and it 
was always well fitted to the vehicle region. At the same time, 
the horizontal symmetry and vertical asymmetry measurement 
described in Section IV were analyzed for vehicle verification. 
The intersection of horizontal symmetry axis and vertical 
asymmetry axis denoted as the vehicle’s center. Every video 
frame obtained the center of vehicle correctly with the 
symmetry analysis except for the Fig. 13(i).  

 

VI. CONCLUSION 

A monocular lane-vehicle detection and tracking system has 
been presented in this paper with an integration of three 
components, i.e. (i) lane boundary detection, (ii) lane region 
tracking, and (iii) vehicle detection with a proposed vertical 
asymmetry measurement. The advantages of lane-vehicle 
detection and tracking system are, (i) the reduction of vehicle 
searching time, and (ii) the increase performance of the 
vehicle detection based on the priori knowledge regardless to 
the environmental interference caused by non-vehicle 
structures and sky region. At the same time, lane detection and 
tracking system without any camera parameter can be applied 
to other driver assistance function for the determination of 
ROIs. Furthermore, horizontal symmetry analysis with an 
assistance of vertical asymmetry analysis can easily obtain the 
center part of vehicle and this center point can be used for 
vehicle tracking in future. In the future, further investigation 
will be carried out on lane-vehicle detection and tracking 
system under various road conditions.   
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Fig. 12: Lane region tracking results in frame sequences. 
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Fig. 13: Vehicle detection results in frame sequences. 
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