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Abstract:  Active vibration control of a smart beam with integrated 
piezoceramic actuator and sensor patches is considered. An analytical 
solution of this problem is worked out for the case of the controlled 
beam including  the mass and stiffness of the piezoceramic patches. 
The equation of motion for the controlled beam  includes Heaviside 
functions and derivatives of the Heaviside function due to finite patch 
lengths. This makes the problem difficult to solve using conventional 
methods. An integral equation is introduced, where the eigensolutions 
of the integral equation are eigensolutions of the differential equation 
of motion for the controlled beam. A finite element model of a 
controlled beam is also formulated. The model contains modified 
beam element mass and stiffness matrices to account for the piezo 
patches and control effect.  Two case studies are presented and the 
first three natural frequencies and mode shapes are found using the 
finite element and integral equation solutions. The results from the 
integral equation solution match very closely the results from the 
finite element solution. 
 
Keywords:  Displacement feedback control, piezoceramic actuators 
and sensors,  smart structures 
 

1. INTRODUCTION 
 
In the present work , an analytical solution is proposed  to find the 
natural frequencies and mode shapes for a controlled beam with 
piezoceramic sensor and actuator patches . Active vibration control is 
implemented using closed-loop displacement feedback with 
piezoceramic patches. Previous solutions neglect the mass and 
stiffness of the piezo patches, which can be significant if piezoceramic 
materials are used.   
The specific controlled structure to be studied is a cantilever beam 
with a piezoceramic sensor bonded to the top surface of the beam and 
a piezoceramic actuator bonded to the bottom surface of the beam. 
The sensor on the top detects a strain when the beam is vibrating and 
the output voltage signal of the sensor is amplified and sent to the 
actuator.  The signal sent to the actuator attempts to counteract the 
vibration of the beam and control its motion. Vibration control using 
piezoelectric patches is a widely researched topic.  However, there is 
no analytical solution available for an actively controlled beam with  
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finite length patches where the patch stiffness and mass are included 
in the equation of motion. In [1], Tzou derives the governing 
equations used in the analysis of an actively controlled structure.  The 
governing equations include the sensor voltage created due to a 
vibrating beam and the externally applied moment the piezo actuator 
creates on the beam.  The sensor voltage and the applied moment are 
the basis for active control and show up in the equation of motion. 
 
An equation of motion including the stiffness and mass of the piezo 
patches is derived by Banks et al. [2].  In [2], piezoceramic patches 
are used for the damage detection of a structure where the stiffness 
and mass have been changed due to damage.  The motive behind 
Banks et al. [2] is different than what is desired for active vibration 
suppression, but the equation of motion for a cantilever beam with 
piezo patches is the same for both cases. 
There have been several results (see e.g. [3]) for controlled beams 
using piezoceramic actuators. However, these results only use piezo 
patches as actuators and do not use them as sensors.  A constant 
voltage is applied to the actuators in these cases and closed-loop 
control is imposed where the sensor is continuously sending a 
changing signal to the actuator.  Tani et al. [4] performed an 
experiment using a gap sensor to detect the displacement of the beam 
and the information is converted to voltage and fed to piezoceramic 
actuators. 
 Analytical solutions have been obtained using an integral equation 
approach for an actively controlled beam [5-6].  Sloss et al. [5] derive 
an analytic solution to find the natural frequencies for finite length 
piezo patches, but does not include the mass and stiffness of the patch.  
The solution for using multiple piezo sensor and actuator patches, also 
not including the stiffness and mass of the patches, is  
found in [6]. 
 

 
2.  PROBLEM FORMULATION 

 
The cantilever beam is uniform with rectangular cross section and is 
clamped at x=0 and has a free end at x=l.  Piezoceramic patches are 
bonded to the top and bottom surfaces of the beam as shown in Figure 
1.  

 
Fig. 1:  Schematic of sensor and actuator patch locations 
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The piezoceramic layers are considered to be perfectly bonded to the 
top and bottom surfaces of the elastic beam and the physical 
properties of the bonding material are not considered. Also, the 
effective axis of the piezoelectric layers is aligned with the x-axis to 
ensure the maximum piezoelectric effects in sensor and actuator 
applications. The location of the sensor is given by xs1 ≤ x ≤ xs2 and 
the location of the actuator is given by xa1 ≤ x ≤ xa2.The transverse 
deflection of the beam is represented by w(x,t) and the  equation of 
motion of the actively controlled beam with collocated sensor and 
actuator patches is 
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where the operator L is defined by 
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where the primes refer to differentiation with respect to x and α(x),  
ρ(x) , )(xS  andξ are given by 
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for 0 < x < l and t > 0, where the subscripts b, a and s refer to the 
properties of the beam, the piezoceramic actuator material and the 
piezoceramic sensor material, respectively, and ρ is the density, A is 
the cross section area, E is the elastic modulus, I is the moment of 
inertia, b is the beam width, and H(x) is the Heaviside function. In 
equations  (2.3)-(2.4), the patch properties are now given by 
Ep=Ea=Es, Ip=Ia=Is, ρp=ρa=ρs, and Ap=Aa=As because the sensor and 
actuator have the same size and are of the same material. In equation 
(2.6),  ra=(ha+h)/2 is the effective moment arm, d31,a is a piezoelectric 
constant of the actuator, rs=(hs+h)/2, h31,s is a piezoelectric constant of 
the sensor, h is the beam thickness, and hs is the sensor thickness.  
The output voltage of a piezoelectric sensor is given by Tzou [1] 
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order to achieve more effective vibration control, the sensor signal is 
amplified by a gain G and the resulting signal sent to the actuator is 
 

( ) ( )a st G tϕ ϕ=                             (2.8) 
 
The cantilever beam is clamped at x=0 resulting in zero displacement 
and slope. The beam is free at x=l giving zero shear and zero resultant 
moment.  This results in the following boundary conditions for t > 0 
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3. FREE VIBRATION ANALYSIS 
 
Standard free vibration analysis is performed on the beam. The 
transverse motion of the beam is a function of both position and time 
and is given by  
 

( , ) ( ) tw x t x eλψ=                   (3.1) 
 
where λ=iω. Taking the partial derivatives of w(x,t) and substituting 
them into the equation of motion gives 

 
[ ]2 ( ) ( ) ( ) 0x x L xλ ρ ψ ψ+ =                                                (3.2) 

 
 

4. INTEGRAL EQUATION SOLUTION 
 
An analytic solution to equation (3.2) for a beam with collocated 
piezo sensor and actuator patches is proposed. An integral equation is 
introduced and it will be shown that the eigensolutions of the integral 
equation are eigensolutions to the equation of motion. Consider the 
following integral equation 
 

0
( ) ( ) ( , ) ( )

l
x s K x s s dsσψ ρ ψ= ∫                                 (4.1) 

 
where σ = ω-2 and the kernel is given by 
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where G(x,s), p(x), and q(s) are auxiliary functions. The auxiliary 
functions are chosen such that they satisfy the following conditions  
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4.1 Equivalence 
 
Using the relationship (4.3a), it can be shown that the eigensolutions 
to the integral equation are eigensolutions of the differential equation 
of motion given by equation (3.2). This is demonstrated in the 
following manner: 
Assume ψ(x) to be a solution of the integral equation (4.1) and apply 
the L operator  to both sides of the integral equation (4.1), then one 
obtains 
 

[ ] [ ]
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l

L x L K x s s s dsσ ψ ρ ψ= ∫                                      (4.4) 

 
Using the condition (4.3a) and  the fundamental property of the delta 
function, the equation (4.4) can be reduced to 
 

[ ]( ) ( ) ( )L x x xσ ψ ρ ψ=                                   (4.5) 

 
which takes the same form as the differential equation given by (3.2). 
Hence with an appropriately chosen kernel and auxiliary functions 
G(x,s), p(x), and q(s), the eigensolutions of the integral equation are 
eigensolutions of the equation of motion. 
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4.2 The q(s) Function 
 
To determine q(s), the relationships defined in equations (2.2), (4.2) 
and (4.3b-c), are used to  write L[K(x,s)] as 
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                                                    (4.6) 
 
Solving equations (4.3a)- (4.6)  for q(s) yields the following 
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4.3 The p(x) Function 
 
To determine the patch function p(x), the following relationship is 
used 
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Upon integrating equation (4.8) twice results in 
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with the constants of integration being equal to zero. The solution of 
equation (4.9) is a piecewise function comprised of the following 
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where p1(x) is a quadratic function and p2(x) is a linear function. The 
functions p1(x)  and p2(x) are given by 
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which are only valid for aligned sensor and actuator patches (xs1 = xa1 
and xs2 = xa2). 
 
4.4 The G(x,s) Function 
 
The last auxiliary functions to be determined are the G(x,s) and g(x,s) 
functions. Let g(x,s) be defined as 
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The function ĝ(x,s) is chosen such that gxxxx(x,s) = δ(x−s). For a 
cantilever beam, a function for ĝ(x,s) which satisfies this condition is 
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Using the following relationship, G(x,s) can be determined 
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Integrating equation (4.15) twice results in the following 
 

1( , ) ( , ) ( )xxG x s g sηη η α η−=                                (4.16a) 

1

0
( , ) ( , ) ( )

x

xG x s g s dηη η α η η−= ∫                              (4.16b) 

1

0
( , ) ( ) ( ) ( , )

x
G x s x g s dηηη α η η η−= −∫                               (4.16c) 

 
where the integration constants are equal to zero. 
 

5. METHOD OF SOLUTION 
 

a. Choose a complete orthonormal set of functions. 
b. Expand the kernel in terms of the Fourier series of the 
   orthonormal functions. 
c. Reduce the integral equation to an infinite set of linear 
    equations. 
d. Determine the number of terms N such that successive solutions 
    differ by a negligible amount. 
e. Consider the integral equation in which the kernel is replaced by 
    the N-term Fourier series expansion of the kernel. 
f. The new integral equation is reduced to solving a linear system 
    of N+1 equations with N+1 unknowns. 

 
For the solution of the integral equation, a set of orthonormal 
eigenfunctions φn(x) is chosen which are those for an uncontrolled 
beam with no control moment term. The  mode shapes of a standard 
cantilever beam with boundary conditions for a fixed end at x = 0 and 
a free end at x = l are 
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where the eigenvalues are defined by 
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The orthonormal eigenfunctions are given by 
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The function G(x,s) can be expanded in terms of the eigenfunctions 
φn(x) of the uncontrolled beam  
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where 
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Equation (4.1) in terms of the auxiliary functions and  equations  (4.2) 
and (5.6) gives 
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To convert equation (5.7) into a set of linear equations capable of 
being solved, multiply by ρ(x)φn(x) and integrate from 0 to l. Also, 
equation (5.7) can be multiplied by ρ(x)q(x) and integrated from 0 to l 
resulting in 
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for n=1,2,…,∞. 
 
The set of equations can now be solved to determine the eigenvalues 
(natural frequencies).  However, there are an infinite number of terms 
for the system of equations. An finite number of terms must be 
selected resulting in a finite set of linear equations. Now the integral 
equation has been reduced to solving a linear system of N+1 equations 
with N+1 unknowns. Once the eigenvalues are obtained, the mode 
shapes can be found using equation (5.7). 
 

6. FINITE ELEMENT SOLUTION 
 
The finite element method is used as an alternative to the analytic 
solution obtained from the integral equation approach. A finite 
element model of a controlled beam is constructed and the 
corresponding mass and stiffness matrices of the controlled structure 
are derived. Standard beam elements are used as a foundation for the 
model and are modified to include the mass and stiffness of the piezo 
patches and also account for the control moment induced by the piezo 
actuator patch.  
 
The natural frequencies and normal modes of the controlled beam are 
obtained by solving the matrix equation 
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A harmonic solution is assumed for {U} in the form 
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resulting in 
 
[ ] [ ] { } { }2 0K M Uω⎡ ⎤− =⎣ ⎦

                 (6.3) 

For there to be a nontrivial solution, the determinant of the coefficient 
matrix of {Ū} must be zero 
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The polynomial of equation (6.4) can now be solved to determine the 
natural frequencies of the system and the mode shapes can then be 
determined from equation (6.3). 
 
6.1 Finite Element Model 
 
The finite element model uses a combination of beam elements and 
patch elements. Patch elements are modified beam elements, which 
are necessary to account for the added stiffness and mass of the piezo 
patches along with the control effect created by the piezo actuator. 
Standard beam elements are used for the section of the beam where 
there are no piezo patches. The approximating function for w(x,t) is 
given  by 
 1 1 1 2 2 3 2 4( ) ( ) ( ) ( ) ( )w x w N x N x w N x N xθ θ= + + +  
                              (6.5) 
 
where w1 and w2 are the  nodal transverse displacements and θ1 and θ2 
are the nodal  rotations.  The shape functions are the standard beam 
element shape functions 
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where le is the element length. 
 
 
6.2 Mass Matrices 
 
The consistent mass matrix for a uniform two-node beam element is 
given by 
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where [N]=[N1(x) N2(x) N3(x) N4(x)] and is a row matrix containing 
the shape functions. 
 
(i) Beam Element Mass Matrix with no Piezo Patches 
 
The integral in equation (6.7) can be carried out using ρbAb for the 
beam density and area and the following matrix is obtained 
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(ii)Patch Element Mass Matrix with Piezo Patches 
 
This is similar to the mass matrix obtained in equation (6.8) but the 
masses of the sensor and actuator patches are added to the mass of the 
beam resulting in 
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6.3 Stiffness Matrices 
 
The stiffness matrix for a beam element is obtained using the integral 
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where [B] is the second derivative of [N] with respect to x. 
 
(i) Beam Element Stiffness Matrix with no Piezo Patches 
 
The integral in equation (6.10) can be evaluated using EbIb as the 
stiffness of the beam to determine the stiffness matrix for a beam 
element with no piezo patches 
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(ii) Patch Element Stiffness Matrix with  Piezo patches 
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where [ ] )(e

bendingk  is given by (6.11) and [ ] )(e
controlk will be derived in the 

following section. 
 
 
6.4 Control Matrix 
 
To determine the control component of the stiffness matrix, the 
control term is multiplied by the shape functions and integrated 
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for i=1,2,..,Nn where Nn is the number of nodes and ( )iN x  are the 
interpolating functions defined over the entire domain. Substituting 
the derivatives of the shape functions into the approximating function 
and evaluating at xs1 and xs2 which in terms of local element 
coordinates is η = 0 and η = le where η = (x − xs1) 
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For a one element patch 
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Substitute  equations (6.14)-(6.15) back into the original integral given 
in equation (6.13) and integrate the result by parts to obtain 
 

( )2 1 00
( ) ( ) ( ) ( )

l l
i ib N x S x dx N x S xξ θ θ ⎡ ⎤′ ′ ′− −⎢ ⎥⎣ ⎦∫                  (6.16) 

 
 
Using equations (6.16) and the fact that S′(0)=S′(l)=0, 
S′(x)=[δ(x−xa1)−δ(x−xa2)], and η=0 and η=le with η=(x−xa1), the 
control component of the stiffness matrix becomes the following for a  
single element piezo patch 
 

[ ]( )

0 0 0 0
0 0
0 0 0 0
0 0

e

control

b b
k

b b

ξ ξ

ξ ξ

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥−⎣ ⎦

              (6.17) 

 
 
The patch element stiffness matrix with stiffness (6.11) and control 
components (6.17) is then determined by equation  (6.12). 

 
7. NUMERICAL RESULTS 

 
To validate the integral equation solution, the results obtained from 
the integral equation solution will be compared with the finite element 
results. An example with collocated piezoceramic (PZT) sensor and 
actuator patches will be studied. The first three natural frequencies, 
first three mode shapes, and tip displacement given initial 
displacement and velocity will be shown.  
Computer simulations using the Maple 9.5 software package are 
performed to obtain the results. The set of equations from equations 
(5.9) and (5.10) must be truncated to a finite set of equations in order 
to achieve a numerical solution. It is found that a six term solution 
(N=5) produces accurate results. A finite element code is also written 
in Maple 9.5 to find the natural frequencies of the controlled structure. 
A ten element model is used where the beam is divided up into 0.1l 
element lengths. It was found that when ten elements are used, the 
frequencies were converging and not changing much when more 
elements are added. The mode shapes for the first two case studies are 
also found using a Maple 9.5 program. 
The structure consists of an aluminum beam with PZT-5H sensor and 
actuator patches.  The material properties and dimensions of the beam 
and piezo patches are similar to the experiment performed by Xu and 
Koko [7] and are listed in Table I.  For the analysis performed, only 
collocated sensor and actuator positions are considered. The sensor 
and actuator also have the same physical properties, i.e. Ep=Ea=Es, 
ρp=ρa=ρs, and hp=ha=hs. 
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Table I: Properties of beam and piezo patches 
Beam Properties   
Elastic Modulus Eb 68 GPa 

Density ρb 2800 kg/m3 
Width b 0.025 m 
Height hb 0.965 mm 
Length l 0.226 m 

PZT Properties   
Elastic Modulus Ep 61 GPa 

Density ρp 7500 kg/m3 
Width b 0.025 m 
Height hp 0.75 mm 

Piezo Constants d31 274x10-12 V/m 
 h31 5.5x108 V/m 

 
CASE I. The Piezo Patches at Collocated Locations xs1=xa1=0.1l 
and xs2=xa2=0.3l. 
 
The frequencies found from the integral equation and the finite 
element solutions for this case are presented in Table II.  The first 
three natural frequencies for various gain values are shown. 
 

Table II: Natural frequency results 
Gain  

 
Integral 
Equation 
(rad/sec) 

Finite 
Element 
(rad/sec) 

0 ω1 120.13 120.11 
 ω2 515.57 516.75 
 ω3 1455.44 1469.50 

50 ω1 122.27 122.26 
 ω2 515.62 516.80 
 ω3 1480.31 1494.96 

250 ω1 122.77 122.76 
 ω2 515.64 516.82 
 ω3 1486.18 1500.95 

500 ω1 122.85 122.84 
 ω2 515.64 516.82 
 ω3 1487.11 1501.91 

 
 
The first three mode shapes for this case using displacement feedback 
control determined from the integral equation solution and the finite 
element solution are displayed in Fig. 2. The finite element mode is 
represented by dashed line while a solid line represents the mode 
shape obtained from the integral equation. 
 

 
 

Fig. 2  First Three Mode shapes 

CASE II:  Various Patch Configurations 
 
The first three natural frequencies using the integral equation solution 
for collocated patches starting near the base of the beam with 
xa1=xs1=10−6l and extending in 0.1l increments are listed in Table III. 
 
 

Table III: Natural frequencies for various patch locations (rad/sec) 
     xa2 = xs2 Patch Locations         

Gain  0.2l 0.3l 0.4l 0.5l 
0 ω1 141.27 176.15 220.25 265.71 
 ω2 852.93 939.60 838.16 721.46 
 ω3 2225.05 3559.43 1849.16 2258.34 

50 ω1 146.08 188.42 249.99 337.63 
 ω2 904.31 1111.54 1099.97 842.23 
 ω3 2482.14 2205.17 1852.44 2355.77 

100 ω1 147.23 191.51 258.09 360.90 
 ω2 917.36 1163.39 1247.12 919.34 
 ω3 2544.33 2432.96 1855.53 2421.69 

500 ω1 147.42 192.01 259.42 364.84 
 ω2 919.47 1171.87 1278.02 936.05 
 ω3 2553.89 2483.27 1856.38 2436.40 

 
8. CONCLUSION 

 
Analytic and finite element solutions are obtained for two case studies 
using displacement feedback control. The first three natural 
frequencies and mode shapes are found for the integral equation and 
finite element solutions. No analytic solution existed previously for a 
controlled beam that includes the mass and stiffness of the piezo 
patches or no experiment has been performed to find the natural 
frequency of a controlled structure with piezoceramic patches. Since 
there was no experimental data to compare the analytic solution to, a 
finite element model is used to verify the integral equation solution. 
The natural frequency results for the two case studies obtained from 
the integral equation solution matched very closely with the finite 
element solution, therefore verifying the analytic solution. The mode 
shapes found for Cases I and II using the integral equation solution 
also matched very closely with the finite element solution. 
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