
  
Abstract--The Lyapunov stability analysis method for 

nonlinear dynamic systems needs a positive definite function 
whose time derivative is at least negative semi-definite in the 
direction of the system’s solutions. However merging the both 
properties in a single function is a challenging task.  In this 
paper some linear combination of higher order derivatives of 
the Lyapunov function with non-negative coefficients is 
resulted. If the resultant summation is negative definite and all 
the derivatives are decrescent then the zero equilibrium state 
of the nonlinear system is asymptotically stable. If the higher 
order time derivatives of the Lyapunov function are not well-
defined, then some well-defined smooth functions may be used 
instead. In this case a linear combination of time derivatives of 
all functions, with non-negative coefficients, must be negative 
definite. The new conditions are then reformed to be applied 
for stability analysis of nonlinear homogeneous systems. Some 
examples are presented to describe the approach. 

Index Terms--nonlinear systems, stability analysis, 
Lyapunov functions, higher order derivatives, 
homogeneous systems. 

NOMENCLATURE 
|| ||⋅  A given norm on n\  

0 0x(t, t , x )  A trajectory starting at 0 0x(t ) x=  
u  The underline variable means a vector 

quantity 
n mV : × →\ \ \  vector function of dimension m (VF) 

Kφ ∈ ( Kφ ∞∈ ) φ  is a function of class K(K infinity) [2] 
(i)v (t, x)  The i-th total time derivative of v(t, x)  

func. 
a b≤  component-wise inequality 

I. INTRODUCTION 
Consider the following n-dimensional nonautonomous 

dynamic system with a zero equilibrium state (ZES): 
nx f (t, x) t 0, x= ≥ ∈� \  (1) 

The advantage of the Lyapunov method is the use of 
Lyapunov functions (LF) or energy like functions. The 
Lyapunov stability analysis method for uniform asymptotic 
stability (u.a.s.) of ZES of nonlinear dynamic systems needs 
a locally decrescent (LD)locally positive definite function 
(LPDF) v(t, x)  whose time derivative v(t, x)�  is negative 
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definite in the direction of the system’s solutions. When the 
derivative is negative semidefinite, stability rather than 
asymptotic stability (a.s.) follows. When the complexity of a 
nonlinear system is increased, selecting a suitable LF having 
at least negative semi-definite derivative is an involving 
task, See  [1] and  [2]. 

Gunderson  [3] considered the stability analysis of (1), 
using a LF v(t, x)  with the inequality 

(m) (m 1)
mv (t, x) g (t, v, v, , v )−≤ � " , for some positive integer 

m, where all the higher order derivatives (i)v (t, x)  were 
computed with respect to time t along the trajectories of (1). 
S/he compared this inequality by a nonlinear co-system 

(m) (m 1)
mu (t) g (t, u,u, , u )−= � " . If the map mg ( )⋅  is of class 

W (non-decreasing) and the co-system has an a.s. ZES then 
the ZES of (1) is also a.s. The method uses a special Vector 
Lyapunov functions (VLF) 

T
1 2 mV(t, x) [v (t, x), v (t, x), , v (t, x)]= …  (2) 

defining (i 1)
iv (t, x) v (t, x)−� , for i 1, ,m= … , but only the 

first component of V(t, x)  is positive definite function 
(PDF) and the other components might be indefinite. This is 
different from ordinary VLFs with all positive semi-definite 
components and generating a linear combination 

m
i ii 1k v (t, x)=∑ , ik 0>  which is PDF,  [4] and  [5]. 

We call the VLF used by Gunderson  [3], derivatives 
vector Lyapunov function (DVLF). Then we generalize the 
definition and refer to any vector function V(t, x)  a DVLF 
as far as having a first component which is a PDF 1v (t, x)  
and the remainder components are possibly indefinite 
functions. 

Butz  [6] considered the autonomous system x f (x)=�  
together with a LPDF v(x)  satisfying 

3 2a v(x) a v(x) v(x) 0+ + <��� �� � , x 0∀ ≠  ( ia 0≥  for i 2,3= ) 
and concluded a.s. of the ZES. 

The previous researches  [7] and  [8] used a differential 
inequality V V≤ A�  for a DVLF to analyse the stability of 
ZES of (1). The A matrix was in controllable canonical 
form with a Hurwitz characteristic equation, i.e. 
det(sI ) 0− =A . 

In  [9] we extended the result of Butz  [6] to analyse the 
u.a.s. of ZES of (1) using the higher order time derivatives 
of a time varying LPDF 1v (t, x) , i.e. if 

m i i
mi 1i 1a (d dt )v (t, x)=∑  is negative definite when all 

mia 0≥ , then the ZES of (1) is u.a.s.. The new method 
could take care of the cases where the LPDF 1v (t, x)  and/or 
the systems are not smooth enough and the higher order 
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time derivatives of the LF are not well-defined. We 
considered a more general form of differential inequality for 
a DVLF V(t, x) , and the ZES of (1) would be u.a.s. as far 

as m
mi ii 1a v (t, x)=∑ �  is negative definite and 

i iv (t, x) (|| x ||)α<  for i Kα ∈  and i 1, 2, , m= … . 
Now let us consider the homogeneous nonlinear systems 

which contain a wide group of nonlinear systems, and have 
been popular during the last three decade. A nice property 
about homogeneous systems is that, they act some how in 
between linear and nonlinear systems. Also a lot of subjects 
concerning the nonlinear systems first have been applied to 
homogeneous systems or are most related to them, such as: 
controllability and local approximation  [10], exponential 
stabilization  [11], control by adding power integrator 
technique  [12], and finite time stabilization  [13]. 

The first theorem of this paper summarizes the main 
results of  [9] about the higher order time derivatives of LF 
without proof. Then we focus on the applications of this 
theorem to stability analysis of homogeneous nonlinear 
systems. This theorem is shown to be useful only for 
stability analysis of nonlinear zero degree homogeneous 
systems, hence a new theorem for general nonlinear 
homogeneous systems is developed. We assume the reader 
is familiar with the Lyapunov stability methods [1-2]. 

This paper is organized as follows. The preliminary 
definitions and results about homogeneous systems are 
given in section  II. The main theorem on stability analysis 
of homogeneous systems is presented in Section  III. Some 
examples are given in  IV. Concluding remarks are given in 
Section  V. 

II. THE PRELIMINARY DEFINITIONS AND RESULTS 

A. The Higher Order Time Derivatives of LF 
If a function v(t, x)  and the nonlinear system (1) are 

smooth enough, then the higher order total time derivatives 
(i)v (t, x) , for i 1, 2,= …  along the solutions of (1) are 

computed iteratively, using ( (0)v (t, x) v(t, x)= ) 
(i) (i 1) T (i 1)v (t, x) [ v x] f (t, x) v t− −∂ ∂ + ∂ ∂�  (3) 

Definition 1  [9]: An arbitrary scalar function v(t, x)  (may 
be indefinite) 

i. is called locally decrescent (LD) if there exist r 0>  
and Kα ∈  such that for every || x || r<  

v(t, x) (|| x ||)α<  (4) 
ii. is called globally decrescent (GD) if (4) satisfies 

globally. ▀ 
In the following a general theorem for analyzing the 

stability of (1) is introduced. 

Theorem 1  [9]: Consider the m-vector 1C  function V(t, x)  
of the form (2) with the following properties: 

i. The first component 1v (t, x)  of V(t, x)  is radially 
unbounded (RU) and PDF, i.e. 1v (t,0) 0= , t 0∀ ≥  
and there exists some 1 Kφ ∞∈ , such that: 

n
1 1v (t, x) (|| x ||) x , t 0φ≥ ∀ ∈ ∀ ≥\  (5) 

ii. All the iv (t, x)  components are GD, i.e. there exist 

i Kα ∈  for i 1, , m= …  such that 
n

i iv (t, x) (|| x ||) x , t 0α≤ ∀ ∈ ∀ ≥\  (6) 

a) If the following differential inequality satisfies for all 
iv (t, x)  along the solutions of (1): 

11 1 2

21 22 2 3

ij

m 1,1 m 1,m 1 m 1 m

m1 m,m 1 mm m 2

a 0 0 0 v v
a a 0 0 v v

a 0 0

a a 0 v v
a a a v (|| x ||)φ

− − − −

−

≤

−

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

�"
�#

# % # #
�"
�"

 

(7) 

where 2 Kφ ∈  with the domain of 
2

D [0, )φ = +∞  and 

ij m mA [a ] ×= is a lower triangular matrix with the 
following properties: 

ij

0 , if i j
a 0 , if i j

0 , if i j

= <⎧
⎪> =⎨
⎪≥ >⎩

 

(8) 

then the ZES of (1) is globally uniformly asymptotically 
stable (g.u.a.s.). 

b) If the above conditions hold only locally, i.e. for 
|| x || r<  for a given r 0>  then the ZES of (1) is u.a.s.▄ 

Corollary 1  [9]: Consider the smooth enough time varying 
system (1) and a smooth enough RU and PDF v(t, x) . If the 

higher order derivatives (i)v (t, x)  for all i 0,1, , m 1= −…  
are GD and there exist ia 0≥  for i 1, , m= …  and 2 Kφ ∈  
such that 

m (i) n
i 2i 1a v (t, x) (|| x ||) , xφ= ≤ − ∀ ∈∑ \  (9) 

hen the ZES of (1) is g.u.a.s. ▄ 
Proof: use the Theorem 1 with (i 1)

iv (t, x) v (t, x)−�  for 
i 1, , m= … . ▄ 

Remark 1: For m 1=  the above corollary is reduced to the 
Lyapunov direct method for the stability analysis of the ZES 
of (1). 

B. The Homogeneous Systems 

Consider a function nv : × →\ \ \  and the vector field 
f (t, x)  of the nonlinear system (1), we briefly recall the 
notion of homogeneity for v and f from  [14]: 

For a sequence of positive weights 1 nr (r , , r )= … , ir 1≥  
and a non-negative variable 0λ ≥ , a dilation is defined as a 
linear map 1 nr rr

1 n(x) ( x , , x )λ λ λ∆ � … . Then the v(t, x)  
function and the f (t, x)  vector field are defined to be 
homogeneous of order p with respect to (w.r.t.) the dilation 

r
λ∆ ,  if r pv(t, x) v(t, x)λ λ∆ =  and r p rf (t, x) f (t, x)λ λλ∆ = ∆  

respectively. In this case we briefly define v and f are ∆-
homogeneous of order p and symbolize with pv H∈  and 

pf n∈ . 

The special weights r (1,1, ,1)= …  are referred as standard 
weights, hence v(t, x)  and f (t, x)  are said to be standard 

homogeneous of order p  if pv(t, x) v(t, x)λ λ=  and 
p 1f (t, x) f (t, x)λ λ +=  respectively. 
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For ip 2 max r≥  the ∆-homogeneous p-norm is defined by 
in p r 1 p

,p ii 1|| || ( | x | )∆ =⋅ ∑� . It is clear that ,p 1|| || H∆⋅ ∈ , while 
this is not a true norm, because it doesn’t satisfy the 
triangular inequality. 

Considering a ∆-homogeneous LF in the Lyapunov direct 
method for the stability analysis of a given ∆-homogeneous 
vector field is a usual task in the literature  [15]. In the 
following we concentrate on the applications of higher order 
time derivatives of ∆-homogeneous LFs to              ∆-
homogeneous systems. 

Example 1  [9]: Consider the following nonlinear dynamic 
system: 

( )
1 2

2 2
2 1 2 2 1 2

x x

x ax x b x x x

=⎧
⎪
⎨ = − − + +⎪⎩

�

�
 

(10) 

with the following parameters 
a 0.1 , b 1.2= =  (11) 
which is continuous at 1 2x x 0= =  and has a ZES. This 
system is obviously of the standard zero order homogeneous 
form. Let us rewrite the dynamic equation (10) in the polar 
coordinate form R(t)  and (t)θ  using 1x R cos RCθθ= �  
and 2x R sin RSθθ= � : 

2

2 2

R RS [S bS C (a 1)]

S aC (b S )S C
θ θ θ θ

θ θ θ θ θθ

⎧ = − + + −⎪
⎨

= − − − +⎪⎩

�

�
 

(12) 

Using the LF candidate 2 2 2
1 2v(x) x x R= + = , one has 

2 2v(x) 2RR 2R S [S bS C (a 1)]θ θ θ θ= = − + + −��  (13) 

which is indefinite for the parameter values (11), and thus 
the Lyapunov direct method fails in proving g.u.a.s. of ZES 
using this LF. The higher order time derivatives of v(x)  
function would be as follows: 

2 2

3 5 6 2 4

v(x) R v(x) R v(x) R [11.56 0.6C 13.74C

2.4C 1.8C 2C S (9.6 1.68C 7.2C 2.4C )]

θ θ

θ θ θ θ θ θ θ

θ θ= ∂ ∂ + ∂ ∂ = + −

− + + + − − −

���� � �
 (14) 

2 2 3 4

5 6 7 8

2 3 4 5 6 7 8

v( x ) R [ 48.624 5.76C 58.392C 0.48C 7.2C

19.2C 14.4C 12.96C 16.8C S ( 45.56 5.256C

27.98C 1.8C 14.04C 19.8C 11.78C 12.6C 8C )]

θ θ θ θ

θ θ θ θ θ θ

θ θ θ θ θ θ θ

= − − + − −

+ + − − + − −

+ − + + + − −

���

 (15) 

These derivatives will be used in the stability analysis. Note 
that (i) 2v (x) R for each i 0,1, 2,3=  is a periodic function 
only of θ . It was shown in  [9] for 1 2 3a 1 , a 2.43 , a 2= = =   
that 

3 (i) 2
ii 1a v (x) R 0 θ= < ∀∑  (16) 

Hence 3 (i)
ii 1a v (x)=∑  is negative definite and the 

conditions of Corollary 1 are satisfied for the nonlinear 
autonomous system (10) and thus the ZES is g.u.a.s. ▄ 

In the above example the nonlinear system was 
homogeneous of zero order, and all the higher order 
derivatives of LF v(x)  (see eq. (13)-(15)) were 
homogeneous of order two. The phenomenon of same order 
of homogeneity for (i)v (x)  is not accidental, and it is a 
consequence of the following important fact about the ∆-
homogeneity: 

Lemma 1  [10]: If the function pv(t, x) H∈  and the vector 

field kf (t, x) n∈  w.r.t. some dilation r
λ∆ , then the scalar 

multiplication p kv f n +⋅ ∈ , and the total time derivative of v 

along the solutions of f, i.e. p kv(t, x) H +∈� . Therefore by 

induction i
pi k[v(t, x)] f (t, x) n +⋅ ∈  and (i)

p kiv (t, x) H +∈  for 

i 1, 2,= … . ▄ 
In the previous example 2v(x) H∈  and 0f (x) n∈ , and 

thus (i)
2 0 iv (x) H + ⋅∈  for i 1, 2,= … . Therefore any linear 

combinations of (i)v (x)  for several i are homogeneous 
functions of order two, and we could easily obtain this sign 
using the polar coordinate. However the following remark 
shows some difficulties for homogeneous nonlinear systems 
of order k 0> . 

Remark 2: If the nonlinear system is homogeneous of order 
k 0> , then the higher order derivatives of a homogeneous 
LF v(x)  are homogeneous of different order and we can 
not easily determine the sign of their linear combinations. 

Moreover in this case it could be shown that if 
m (i)

ii 1a v (x) 0 x 0= < ∀ ≠∑  and 1a 0≠  then v(x) 0≤�  very 
near the origin, because the first derivative dominates the 
other derivatives in a very small neighborhood of zero (see 
Lemma 1). Thus the Lyapunov direct method is useful for 
this case, and the Theorem 1 is meaningless for 
homogeneous nonlinear systems of order k 0> . ▄ 

III. THE MAIN RESULTS 
It was shown in the previous section that the Theorem 1 is 

not useful for stability analysis of nonlinear homogeneous 
systems of order k 0> . Hear we do some small changes in 
Theorem 1 and make it useful for stability analysis of 
nonlinear homogeneous systems of arbitrary order. For 
simplicity we consider only autonomous case, i.e. the 
following nonlinear system: 

nx f (x) , x= ∈� \  (17) 

Let kf n∈  for some k 0>  in (17) and || x ||∆  is a given 

homogeneous norm w.r.t. a given dilation r
λ∆ , define the 

following nonlinear system: 
kf (x) || x || , x 0x f (x)

0 , x 0
∆⎧ ≠⎪= = ⎨

=⎪⎩
��  (18) 

It is clear that 0f n∈�  and f (x)�  is continuous at zero. The 
described mapping from nonlinear system (17) to the 
nonlinear system (18) was first used in  [14] for 
implementing the invariant homogeneous cones in stability 
analysis, but we use this mapping for a different purpose. 

Lemma 2: The ZES of (17) is g.u.a.s. iff the ZES of (18) is 
g.u.a.s. 
Proof: It is clear from the definition that any nonlinear 
homogeneous system of non-negative order such as (17) 
and (18) has a ZES. Moreover since || x || 0∆ ≠  for x 0≠ , 
then the nonlinear system (17) has not any non-zero 
equilibrium point iff the other system (18) has not either. 
Moreover the solution curves of both systems coincide with 
each other, but with different velocities at each point. Hence 
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we consider the solution curves of both systems as 
reparameterizations of each other. The phase portraits of the 
two systems are equivalent and some qualitative 
performances such as g.u.a.s. of ZES are equivalent. ▄ 

Now consider a given 1C function g(x) , we want to 
compare the time derivative g(x)�  along the solutions of 
(17) and (18) at each point x . This is simply done, by using 
(3), (17) and (18). Let t and t�  be the time variables in (17) 
and (18) respectively, and thus 

T

T k k

dg(x) dt [ g(x) x] f (x)

[ g(x) x] f (x) || x || dg(x) || x || dt∆ ∆

= ∂ ∂ =

∂ ∂ =

��
 

(19) 

Let us view that both systems (17) and (18) are equivalent 
using the same state vector x  and the variable time scaling 
(depending on state), because 

k kdx dt f (x) f (x) || x || (dx dt) || x ||∆ ∆= = = ⇒��  
kdt || x || dt∆=�  (20) 

The relationship (20) shows the relativity of time scaling 
in two systems. It depends on the homogeneous norm of the 
state vector x. Also (20) gives a new interpretation of (19). 
Since 0f n∈� , the Theorem 1 may be helpful in proving the 
g.u.a.s. of ZES of (18). 

A. The Main Theorem 
The following theorem concerns the stability analysis of 

(17), and uses (20) and Lemma 2 in its proof. 

Theorem 2:  Consider the nonlinear homogeneous system 
(17) ( kf n∈ ) and a m-vector 1C  function 

T
1 2 mV(x) [v (x), v (x), , v (x)]= … . If the following 

conditions are satisfied: 
i. 1v (x)  is RU, PDF. 

ii. All iv (x)  are GD and i pv H∈  for i 1, , m= … . 
iii. the following differential inequality satisfies for 

derivatives along the solutions of (17): 
11 1 2

21 22 2 3
k

ij

m 1,1 m 1,m 1 m 1 m

m1 m,m 1 mm m m 1

a 0 0 0 v v
a a 0 0 v v

a 0 0 || x ||
a a 0 v v
a a a v v

∆

− − − −

− +

≤

−

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

�"
�#

# % # #
�"
�"

 

(21) 

where m 1 pv (x) H+ ∈  is a PDF and ij m mA [a ] ×= is a matrix 
with the property (8), then the ZES of (17) is g.u.a.s. ▄ 
Proof: Using (19) yields k

i i(dv dt) || x || dv dt∆ = �  for the 
time derivatives of each iv (x)  along the solutions of (17) 
and (18). Moreover implementing i pv H∈  and kf n∈  

yields i p k(dv dt) H +∈  for i 1, , m= … . Each term in (21) is 

a homogeneous function of order p k+ . Dividing (21) by 
k|| x ||∆  and using k

i i(dv dt) || x || dv dt∆ = �  results the 
following relationship, component vise: 

T
2 m m 1A dV(x) dt [v (x), , v (x), v (x)]+≤ −� …  (22) 

Hence the conditions of Theorem 1 are satisfied for g.u.a.s. 
of ZES of (18). Using Lemma 2 results the g.u.a.s. of ZES 
of (17). ▄ 

B. The homogeneous polar coordinate 
Although the Theorem 2 is applicable for arbitrary order 

homogeneous systems, but we need some designing tools to 
find the useful iv (x)  functions for a given nonlinear 
system. In the previous example we used the polar 
coordinate. The usual polar coordinate is useful only for 
standard nonlinear homogeneous systems, but not for 
general homogeneity. Here a new polar coordinate w.r.t. 
given weights 1 2r (r , r )=  for n 2=  is introduced. We 

designate to each point T
1 2x [x , x ]=  a pair (R, )θ  as ∆-

polar coordinate. Considering a given ∆-homogeneous 
norm ,p|| ||∆⋅  let 

11

22

2r pr
1

2r pr
2

x R C

x R S

θ

θ

⎧ =⎪
⎨
⎪ =⎩

 
(23) 

Defining 1 22r p 2r p Tu [C , S ]θ θ θ�  we have ,p|| u ||θ ∆ =  

1 21 22r p 2r pp p r p r(C ) (S ) 1θ θ+ =  and r
Rx uθ= ∆ , and thus 

,p|| x || R∆ =  and 1R H∈ . Moreover each pv(x) H∈  and 

kf (x) n∈ could be decomposed as: 
p

k r
R

v(x) R v(u )

f (x) R f (u )

θ

θ

=

= ∆
 

(24) 

The decomposition of R and θ  is very important and will 
be used in this paper. Differentiating (23) w.r.t. time and 
solving for R�  and θ�  we obtain: 

( )

( )

1
1 2

1
2

1 2

1 1 1 2r p
r r 1r

p p R1 2r p 22r 2r

c s c 0 xR 0R
x0 1 s c 0 s

θ θ θ

θ θ θ
θ

−

−

−

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎢ ⎥ ⎢ ⎥= ∆⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦

� �
� �

 

(25) 
Using (17) and (24) we have 1 1

r r
R R

x f (x)− −∆ = ∆ =�  

1
k r k

RR
R f (u ) R f (u )θ θ−∆ = . Substituting this into (25) 
yields: 

( )

( )

1
1 2

2
1 2

1 1 1 2r pk 1 r r

p pk 1 2r p
2r 2r

c s c 0R 0R
f (u )

s c0 R 0 s

θ θ θ
θ

θ θ θ
θ

−+

−

⎡ ⎤ ⎡ ⎤⎡ ⎤⎡ ⎤ ⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

�
�  (26) 

The last equation is the ∆-polar differential equation of the 
nonlinear system with kf (x) n∈ . The extension of ∆-polar 
coordinates to n 2>  is straightforward; Just set 

ii
i

2r pr
ix R Cθ=  for i 1, , n= …  where 

i
n 2
i 1C 1θ= =∑ . 

C. Theorem 2 Implementation 
An important question is : How to use the ∆-polar 

coordinates to implement the Theorem 2? 
Answer: Using the assumption kf (x) n∈  and the ∆-polar 

coordinates we have k k
,p|| x || R∆ = . In our procedure of 

implementing the Theorem 2, we Construct (21) one row 
after another. Let us be at the i’th iteration, i.e. jv (x)  for 

j 1, 2, , i= …  are previously defined and we aim to find 

i 1v (x)+  and ija  for j 1, , i= …  and construct the i'th row of 

(21), i.e. i k
ij j i 1j 1a v (x) R v (x)+= ≤∑ �  or equivalently 
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ji i 1
ijj 1 k p p

v (x) v (x)
a ( )

R R
+

= +
≤∑

�
 

(27) 

According to the assumption j pv (x) H∈ , j k pv (x) H +∈� , 

therefore for j 1, , i= …  the functions k p
j 0(v (x) R ) H+ ∈�  in 

(27) are independent of R, i.e. they are known periodic 
functions only of θ . Hence using numerical methods such 
as plotting k p

jv (x) R +�  versus θ , one can find a linear 

combination of them and a new function p
i 1 0(v (x) R ) H+ ∈  

such that (27) satisfies. 

IV. SOME EXAMPLES 

Example 2: The nonlinear system 
3

1 11 12 1
3

2 21 22 2

x a a x
x a a x

⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

�
�

 
(28) 

is standard homogeneous of order two, i.e. 2f n∈ . 

Similarly to Example 1 we change (28) to the polar 
differential equations. When 1 2r r 1= =  and p 2=  are used, 
the ∆-polar coordinates for standard homogeneity, coincide 
with the usual polar coordinates. Substituting 

Tu [C , S ]θ θ θ= , k 2= , 1 2r r 1= = , and p 2=  for (26) we 

have: 
33

11 12
32

21 22

C S Ca aR 0R
S C a a S0 R
θ θ θ

θ θ θθ

⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

�
�  

(29) 

Let k 2|| x || R∆ =  to apply Theorem 2 for this example. 

Starting with 2 2 2
1 1 2v (x) x x R= + = , we use the following 

special form of (21) for stability analysis: 

1 2

2 3
2

m 1 m

m1 m,m 1 mm m m 1

1 v v
0 1 v v

0 R
0 0 1 v v

a a a v v
−

− +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦

�
�

# % # #
�"
�"

 

(30) 

Hence for i 1, 2, , m 1= −…  

i i i
i 1 2 2

v (x) v (x) v (x) R 1v (x)
RR Rθ θ+

⎡ ⎤∂ ∂⎡ ⎤= ⎢ ⎥⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦

��
� �  

(31) 

Substituting (29) into (31) we have for i 1,2, ,m 1= −…  
3

11 12i i
i 1 3

21 22

C S Ca av v
v (x) R

S C a aR S
θ θ θ

θ θ θ
θ+

∂ ∂
=

−∂ ∂

⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦

 
(32) 

All the higher order derivatives are well-defined, 1C  
everywhere and belong to 2H , e.g. 

3
11 1221

2 2 3
21 22

Ca av (x)
v (x) 2R C S

a aR S
θ

θ θ
θ

⎡ ⎤⎡ ⎤
= = ⎢ ⎥⎡ ⎤⎢ ⎥⎣ ⎦

⎢ ⎥⎣ ⎦ ⎣ ⎦

�
 

(33) 

We considered the parameter values 0.2 1
1 1

A ⎡ ⎤− −
⎢ ⎥

−⎢ ⎥⎣ ⎦
= , and 

computed 3v (x)  using (32) as well. Although 1v (x)  is 
PDF, but for this parameters 1v (x)�  is not negative definite, 
and thus the Lyapunov direct method fails to prove g.u.a.s. 
of ZES of (28). We have found numerically that 

31 4
4 4 2

v (x)v (x) v (x)

R R R
0.1+ −�� �  is a negative function only of θ  

(see (27) for our method). Letting m 3= , the relationship 
(30) (and thus (21)) is satisfied. Moreover all iv (x)  are GD, 
and thus the ZES of (28) is g.u.a.s. ▄ 

Example 3: The nonlinear system 
33

1 11 12 11 1 12 21
2 5 2

2 21 221 2 21 1 22 1 2

1 0x a a a x a xx
x a a0 x x a x a x x

⎡ ⎤⎡ ⎤ ⎡ ⎤ +⎡ ⎤ ⎡ ⎤
= = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

+⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

�
�

 (34) 

is ∆-homogeneous of order two w.r.t. weights 
1 2r (r , r ) (1,3)= = , i.e. 2f n∈ , because 

3 3
11 1 12 2r

5 2 3
21 1 22 1 2

3
11 1 12 22 2 r

3 5 2
21 1 22 1 2

a ( x ) a ( x )
f ( x)

a ( x ) a ( x ) ( x )

0 a x a x
f (x)

0 a x a x x

λ

λ

λ λ

λ λ λ

λ
λ λ

λ

+
∆ =

+

+
= = ∆

+

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

 

We use the ∆-polar coordination 
33

1 2(x , x ) (R cos , R sin )θ θ=  and the ∆-homogeneous 

norm 6 26
,6 1 2|| x || x x R∆ = + =  for this system. Substituting 

1 2(r , r ) (1,3)= , p 6= , T3u [ C , S ]θ θ θ=  and k 2=  into 
(26) then we obtain the ∆-polar differential equation as 
follows: 

3 1
11 122/3 3

2
21 22

C S Ca aR 0R
C

Sa a3S C0 R
θ θ θ

θ
θθ θθ

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤
= ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥

−⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦

�
�  

(35) 

The PDF 6 6 2 6
1 ,6 1 2v (x) || x || x x R∆ = + =�  and the equation 

(30) will be used to stability analysis of ZES of (34) using 
Theorem 2. substituting (35) into (31) we will have for 
i 1,2, ,m 1= −…  

1
11 122 / 3 i i 3

i 1
21 22

C S Ca av v
v (x) C R

Sa aR 3S C
θ θ θ

θ
θθ θθ+

∂ ∂
=

∂ ∂ −

⎡ ⎤ ⎡ ⎤⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦

 
(36) 

All the higher order derivatives are well-defined, 
1C everywhere and belong to 6H . We have considered the 

parameter values 0 1
2 1

A ⎡ ⎤−
⎢ ⎥

−⎢ ⎥⎣ ⎦
= , and for this parameters 1v (x)�  

is not negative definite, therefore the Lyapunov direct 
method fails to prove g.u.a.s. of ZES of (34). Letting 
m 3= ,  2

i i 1v (x) v (x) R−= �  for i 2,3=  are computed. 

Then we have found numerically that 31 4
8 8 6

v (x)v (x) v (x)

R 60R R
+ −�� �  

is a negative function only of θ  (see (27) for our method), 
and thus 21

1 3 460v (x) v (x) R v (x)+ −� � �  is negative definite. 

Moreover all iv (x)  are GD, and thus the ZES of (34) is 
g.u.a.s. ▄ 

V. CONCLUSION 
The new method introduced in this paper is briefly 

summarized as follows: Suppose the a.s. of ZES of a given 
homogeneous dynamic system using the Lyapunov direct 
method is under consideration. First one tries to guess the 
correct homogeneous LF candidate with negative definite 
first order derivative. If the first order LF derivative was not 
negative definite, then the Lyapunov direct method is failed 
using the given LF, even if the LF candidate is chosen very 
expertly.  
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By the use of Theorem 2, some approximations of the 
higher order time derivatives of the LF are used to 
compensate the role of non-negative definiteness of the LF 
first order derivative in the stability analysis. Some 
examples are given to show the validity of the approach. 
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