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Handling Emergency Goals in HT'N Planning

Hisashi Hayashi *f Seiji Tokura **

Abstract— Integration of deliberation and reac-
tion has been an important research topic concerning
agents in view of the need for an agent to react ten-
tatively and immediately to the changing world when
unexpected events occur while executing a plan. An
agent is not supposed to think for a long time be-
fore reacting. Also, its reaction is not supposed to
change the world greatly. However, there are some
cases where deliberation is necessary for achieving an
emergency goal or where the emergency plan execu-
tion prevents the resumption of the suspended plan
execution. This paper presents a new concept of on-
line interruption planning that integrates deliberation
and emergency deliberation. When an emergency
goal is given while executing a plan, our agents sus-
pend the current plan execution, make and execute
an emergency plan, and resume the suspended plan
execution. Because our agents continuously modify
the suspended plans while executing an emergency
plan, they can resume the suspended plans correctly
and efficiently even if the world has changed greatly
due to the emergency plan execution.

Keywords: planning, agent, robotics

1 Introduction

Handling asynchronous “emergency” goals is a very im-
portant subject of research in planning. Asynchronous
goals are inputted to the planning agent even while ex-
ecuting a plan for another goal. The simplest way of
handling asynchronous goals is to plan and execute goals
in a first-come-first-served manner. However, in this ap-
proach, even when receiving an emergency goal, it will be
served last.

A better approach for handling asynchronous emergency
goals is to prioritize multiple goals where the goal with
the highest priority is served first. Intention scheduling
in BDI (Belief, Desire, Intention) agents is researched
in [33]. Here, intentions are committed plans for dif-
ferent goals. Priorities and interferences between goals
are taken into consideration. Most current BDI agents
[3, 7, 18, 21, 24] are based on PRS [14]. However, the
problem to use PRS-like BDI agents is that they can nei-
ther plan nor replan. Instead, they reactively select and
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commit to ready-made plans.

There is a planning agent called ROGUE [15] that can
make plans for multiple asynchronous goals with prior-
ities. ROGUE uses an on-line partial-order backward-
chaining planner called PRODIGY. When ROGUE re-
ceives a new goal while executing a plan, it adds the
new goal to the search space of the current plan. Then,
PRODIGY incrementally expands the plan for the new
goal without invalidating the current plan. The execu-
tion order is calculated based on the priorities of goals.
It seems that this approach is promising. However, in the
case of emergency, the agent should suspend the current
plan execution, execute the emergency plan immediately,
and modify the suspended plan accordingly. When plan-
ning for the emergency goal, it is not necessary to keep
the suspended plan valid as in PRODIGY. Although we
share a similar motivation with ROGUE and PRODIGY,
we would like to execute the best plan (in terms of costs)
for the emergency goal rather than an incrementally ex-
panded plan for multiple asynchronous goals. Therefore,
the motivation is rather different.

In this paper, we will present the new concept of “in-
terruption planning” for asynchronous emergency goals.
Here, interruption planning means that when the plan-
ning agent receives an emergency goal, it suspends the
current plan execution, makes emergency plans, executes
an emergency plan immediately, and resumes the sus-
pended plan execution. In our new interruption planning,
while executing a plan for the emergency goal, the agent
keeps and continuously updates the emergency plans and
the suspended initial plans. This means that our inter-
ruption planning is on-line planning. Unlike ROGUE,
in our interruption planning, we make the best plan (in
terms of cost) for the emergency goal without trying to
reuse any parts of plans for the suspended goals. Also, in
most planning systems including PRODIGY, actions are
treated as the primitive tasks that cannot be suspended.
In our new interruption planning, in order to handle an
emergency goal immediately, the planning agent tries to
suspend the current action execution if it does not con-
tribute to the achievement of the emergency goal. This
is especially important if it takes time to execute an ac-
tion. We will also show that this action suspension is
effective for realizing interruption planning in stratified
multi-agent systems. In stratified multi-agent planning,
the parent agent makes and executes rough plans, and
the child agent makes and executes detailed plans. An
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action of the parent agent corresponds to a whole plan
of the child agent. This means that the action execution
time of the parent agent is generally long and changes the
world greatly. Therefore, it is very important to suspend
unnecessary action execution of the parent agent.

2 Museum Guide Scenario

In this section, we introduce a museum guide scenario
as an example to illustrate interruption planning. Subse-
quently, this scenario will also be used for experimental
evaluation. Figure 1 shows the map of a museum where
the robot moves. Nodes are places where the robot lo-
calizes itself relative to the map with the help of, for
example, markers which can be recognized through im-
age processing. Especially, nodes are set at intersections
of paths or points of interests. The robot moves from one
node to the next node along an arc. When the user spec-
ifies the destination (node), the robot takes the person
there.

The museum is divided into some areas. Given the des-
tination, the robot first searches a rough route that con-
nects only areas. Then the robot searches a detailed
route in the first area that connects nodes. For example,
when moving from nl (areal) to n40 (area8), the robot
first makes a rough plan: areal — aread — aread —
area?’ — area8. The robot then thinks about how it
should move to the next area: nl — n6 — n10.

While taking a person to a node, suppose that the robot
is told to go to a toilet. This is an emergency goal and
the user cannot wait until the tour guide ends. Therefore,
the robot should suspend the current plan execution, take
the person to the toilet node, and resume the tour guide.

Note that we use this scenario to evaluate not the ef-
ficiency of route planning but the efficiency of on-line
interruption planning.

3 On-line Planning in Dynagent

In order to implement interruption planning, we will use
an on-line forward-chaining HTN planning agent called
Dynagent [16] in our pilot implementation. Here, an
on-line planning agent means an agent that interleaves
planning, belief updates, and execution. When new in-
formation is found and the belief is updated unexpectedly
the on-line planning agent modifies its plans even while
executing a plan.

HTN planning [6, 22, 26, 28, 32] is different from standard
planning which just connect the “preconditions” and “ef-
fects” of actions. It makes plans, instead, by decomposing
abstract tasks into more concrete subtasks or subplans,
which is similar to Prolog that decomposes goals into sub-
goals. Forward-chaining HTN planning [16, 22] is espe-
cially suitable for a dynamically changing world because
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Figure 1: The Map

some task decompositions can be suspended when plan-
ning initially and resumed, using the most recent knowl-
edge, just before the abstract tasks are executed. Other
merits of HTN planning, such as efficiency, expressiveness
of domain knowledge and planning control knowledge are
discussed in [9, 22, 30].

Dynagent keeps several alternative plans and incremen-
tally modifies the alternative plans while executing a
plan. These alternative plans can contain abstract tasks
but only the first task of each alternative plan has to be
an executable action. As shown in Figure 5, in order to
implement on-line interruption planning based on Dyna-
gent, the agent has to maintain not only the plans for the
emergency goals but also the plans for the suspended ini-
tial goal. Dynagent estimates the cost of each plan using
A*-like heuristics and searches the best plan in terms of
costs.

4 When Suspending an Action

When an emergency goal is given, the agent should sus-
pend the current plan execution. If the time for action
execution is short, for the planning agent to wait till
the action executor finishes the action execution poses
no problem. However, the action execution time is gen-
erally long in such areas as robotics, and we would like
to suspend the current action execution immediately and
start the execution of the emergency plan. Therefore, as
Figure 2 shows, before executing a plan for an emergency
goal, the planning agent asks if the action executor can
suspend the current action execution. If it is possible,
the planning agent tells the action executor to stop the
current action execution. After the action suspension,
the planning agent updates its belief. For example, if the
planning agent suspends the action to go from nl to n6
along arch, then the location of the robot will be on arc5s.
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Figure 2: Action Suspension

We assume the planning agent knows the effect of action
suspension.

If the execution of an emergency plan does not affect
the suspended plan, then the agent can resume the ini-
tial plan execution after resuming the suspended action.
If the suspended plan is invalidated by the effect of ac-
tion suspension, then the plan has to be changed to an
alternative plan, in which case we need to rollback the
suspended action if necessary.

Figure 3 shows how to replace the suspended action in
a plan with the “resuming action.” We assume that the
planning agent knows the precondition and effect of the
resuming action. For example, if the planning agent sus-
pends the action to go to n6 along arch, then the pre-
condition of the resuming action is that the location of
the robot is on arch, and the effect is that the location of
the robot becomes n6. The resuming action might have
the effect that invalidates the rest of the plan. Also the
precondition of the resuming action needs to be checked.
Therefore, we need to recheck the satisfiability of the pre-
conditions of actions in the modified plan.

On the other hand, the “rollback action” should be added
to each alternative plan, as shown in Figure 4, if the first
action is different from the suspended action. We assume
that the planning agent knows the precondition and effect
of the rollback action. For example, if the agent suspends
the action to go to n6 along arc5, then the precondition of
the rollback action is that the location of the robot is on
arch, and the effect is that the location of the robot be-
comes nl. The rollback action might have an effect that
invalidates the rest of the plan. Also the precondition of
the rollback action needs to be checked. Therefore, we
need to recheck the satisfiability of the preconditions of
actions in the modified plan.

Considering the effects of action suspension, the resum-
ing actions, and rollback actions, we define the following
algorithm for the modifications of the belief and plans
when suspending an action. In the following algorithm,
we assume that there exists the resuming action for each
suspendable action. We do not care even if rollback ac-
tions do not exist, in which case we do not add the roll-
back actions to alternative plans.
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Algorithm 1 (Modifications of Belief B and Plans PS
when Suspending Action A.)

1. (Belief Update) Update the current belief B based on
the effect of suspension of the action A.

2. (New Plan Creation) If new valid plans can be cre-
ated, then add the new valid plans to PS. (To find
new valid plans, we use the algorithm of Dynagent

[16].)

3. (Plan Modification) For each plan P in PS, modify
P as follows:

(a) (Adding Resuming Actions) If the first action
of the plan P is identical to A, then replace the
occurrence of A in P with the resuming action
resumne(A) of A.

(b) (Adding rollback Actions) If the first action of
the plan P is not identical to the suspended ac-
tion A, and if there exists the rollback action
rollback(A) of A, then add rollback(A) to the
top of the plan.

(¢) (Removing Invalid Plans) Based on the current
belief B, if a precondition of an action in P is
not satisfied, then remove P from PS.

5 Agent Algorithm

In this section, we define the agent algorithm for on-line
interruption planning. Two types of goals are given to
the planning agent: normal goals and emergency goals.
Normal goals are kept in a waiting goal list and the plan-
ning agent handles them sequentially as usual. On the
other hand, when the planning agent receives an emer-
gency goal, the current plan execution is interrupted as
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soon as possible to handle the emergency goal. Normal
goals are handled by Algorithm 4. Emergency goals are
handled by Algorithm 3. The algorithm for planning and
plan execution is defined in Algorithm 2. Although we
definitely need to handle normal goals by Algorithm 4,
the originality can be found only in Algorithm 3 and in
Algorithm 2.

As Figure 5 shows, the agent keeps the suspended goal,
the suspended plans, and the suspended action in “the
stack for suspended goals.” While executing an “emer-
gency plan,” the agent continuously updates not only the
plans for the emergency goal but also the plans in the
stack. To modify these plans, when updating the belief
or executing an action, we can use the algorithm of Dy-
nagent [16].

Also, in order to resume the suspended action, the action
executor might keep some information while handling an
emergency goal. When the action resumption becomes
no longer necessary, because of the change of the plan,
then the planning agent tells the action executor to clear
the recorded state for the action resumption.

Now we define an algorithm for planning and plan exe-
cution. This algorithm is started from Algorithm 3, Al-
gorithm 4, or Algorithm 5 and is defined below. This al-
gorithm is also used when resuming the suspended plan
execution. In this case, the suspended plans and the sus-
pended action are recorded in association with the given
goal. Note that when another thread (Algorithm 3 or
Algorithm 5) makes the status of the goal “suspended,”
the following algorithm is finished.

Algorithm 2 (Planning and Plan Ezecution)

1. (Goal Input) A goal is given as an input.

2. (Input of Suspended Plans/Action) If the status of
the given goal is “suspended,” then the suspended
plans and the suspended action (if it exists) are also
given as inputs.

3. (Planning) Make the plans for the goal. (Use the
HTN planning algorithm of Dynagent [16].)
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4. (Plan Selection) Select a plan to execute from the
alternative plans.

5. (Clearance of the Suspended Action) If the status of
the goal is “suspended,” there exists a suspended ac-
tion, and the suspended action is different from the
next action of the selected plan, then tell the action
executor to abandon the recorded state for the action
resumption.

6. Set the status of the goal to “active.”

7. (Plan Ezecution Loop) Repeat the following proce-
dure while the status of the goal is “active:”

(a) (Action Ezecution) Following the se-
lected plan, tell the action executor
to execute the next action and wait
for the result (“success”, “failure”, or
“suspended”) that is reported from it.

(Update of the Belief and Plans) If
the result of the action execution is ei-
ther “success” or “failure,” then mod-
ify the belief and all the plans, in-
cluding the plans recorded in the stack
for suspended goals, following the plan
modification algorithm' of Dynagent
[16].

(Update of the Belief and Plans) If the
result of the action execution is “sus-
pended,” then modify the belief and all
the plans, including the plans recorded
in the stack for suspended goals, fol-
lowing Algorithm 1.

(Successful Plan Execution) If one of
the plans is successful, then change the
status of the goal to “success.”

(e) (Plan Execution Failure) If no alter-
native plan exists, then change the
status of the goal to “failure.”

(f) (Plan Selection) If the status of the
goal is “active,” then select a plan
from alternative plans.

(b)

(c)

(d)

8. Output the status of the goal (“success”, “failure”,
or “suspended.”)

9. If the status of the goal is “suspended,” then output
the suspended plans and the suspended action (if it
exists.)

IThe plan modification of Dynagent includes deletion of invalid
plans, addition of new valid plans, and deletion of the executed
action.
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The following algorithm shows how to process emergency
goals. When an emergency goal is given, the planning
agent tries to suspend the current plan execution to ex-
ecute a plan for the emergency goal as soon as possible.
The suspended plan will be resumed after the emergency
plan execution. Note that when the following algorithm
changes the status of the goal to “suspended,” the plan
execution process (Algorithm 2) is finished.

Algorithm 3 (Emergency Goal Handling)

1. (Goal Input) An emergency goal A is given as an
mnput.

2. (Normal Plan Execution) If there does not exist a
goal whose plan is being executed by Algorithm 2,

then start the plan ezecution process (Algorithm 2)
for A.

3. If there exists a goal B whose plan is being executed,
then execute the following procedure:

(a) Change the status of B to “suspended.”

(b) (Action Suspension) If an action is being exe-
cuted, ask the action executor if it is possible
to suspend the action that is being executed. If
the action can be suspended, then tell the action
executor to suspend the action execution.

(¢) (Plan Suspension) Wait till the plan execution

process (Algorithm 2) for B is finished and re-

ceive the suspended plans and the suspended ac-
tion (if it ewists.)

(Pushing to Stack) Push the set of the sus-

pended goal B, the suspended plans, and the

suspended action (if it exists) to the stack for
suspended goals.

(d)

(e) (Emergency Plan Execution) Start the goal han-
dling process (Algorithm 2) for A and wait for

the result.

(f) (Popping from Stack) Pop the set of the sus-
pended goal B, the suspended plans, and the
suspended action (if it exists) from the stack for
suspended goals.

(9)

(Plan Resumption) Restart the plan execution
algorithm (Algorithm 2) for B, inputting the
suspended plans and the suspended action (if it
exists) with B.

The following algorithm shows how to process normal
goals. As explained before, normal goals are kept in a
waiting goal list and the planning agent handles them
sequentially as usual. This algorithm is necessary. How-
ever, in terms of originality, it is not important.
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Algorithm 4 (Normal Goal Handling)

1. A normal goal A is given as an input.
2. Add A to the waiting goal list as the last element.

3. Wait till A becomes the first element of the waiting
goal list and no goal is being processed by Algorithm
2, and the stack for suspended goals becomes empty.

4. Remove A from the waiting goal list.

5. Start the plan execution process (Algorithm 2) for A.

6 Stratified Multi-agent
Planning

Interruption

In stratified multi-agent planning systems, the parent
planning agent executes a rough plan by giving subgoals
(= actions of the parent planning agent) to its child plan-
ning agents. Given a subgoal, the child planning agents
make and execute a detailed plan. For the parent plan-
ning agent, the child planning agents are just action ex-
ecutors, and the parent planning agent does not know
how its action executors or child planning agents are im-
plemented. The child planning agent can handle the sub-
goal using the algorithm defined in the previous section.
On-line planning in a stratified multi-agent system is re-
searched in [17]. However, interruption planning has not
been incorporated into stratified multi-agent systems.

In stratified multi-agent systems, an action of the parent
agent corresponds to a whole plan of the child planning
agent. Therefore, it is important to suspend meaningless
action execution. As shown in Figure 6 (compare with
Figure 2), a plan suspension instruction from the parent
planning agent causes another action suspension of the
child planning agent. Similarly, a plan resumption (or
clearance) instruction causes another action suspension
(respectively, clearance) of the child planning agent. The
following algorithm shows how this can be done. In the
same way, it is possible to use a grandchild planning agent
which is a child of the child planning agent. It is also

1. Emergency Goal

14. Update the belief

Parent Planning Agent and plans.

2. Confirmation of | 3. Suspension 13. Result.
suspendability Command

12. Update the belief
and subplans and
suspend the subplans.

Child Planning Agent

4. Confirmation of| 5. Suspension  [11. Result.
suspendability Comrand
1

‘Grandchild Planning Agent 10. Update the belief
) . - and subplans and
6. Confirmation of| 7. Suspension 9. Result
suspendabilityl Com;j;and I suspend the subplans.
‘ Action Executor 8. Suspend the action.

Figure 6: Subplan Suspension
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possible for the parent planning agent to have more than
two child planning agents. However, because Dynagent
does not execute actions in parallel, two child planning
agents do not work at the same time. Note that when
the following algorithm changes the status of the goal to
“suspended,” the plan execution process (Algorithm 2) is
finished.

Algorithm 5 (Subplan Suspension)

1. (Instruction Input) A suspension instruction of the
current goal G is given as an input (from the parent
planning agent.)

2. Change the status of G to “suspended.”

3. (Action Suspension) If an action is being executed,
ask the action executor if it is possible to suspend
the action that is being executed. If the action can
be suspended, then tell the action executor to suspend
the action exvecution.

4. (Plan Suspension) Wait till the plan execution pro-
cess (Algorithm 2) for G is finished and receive the
suspended plans and the suspended action (if it ex-
ists.)

5. (Pushing to Stack) Push the set of the suspended goal
G, the suspended plans, and the suspended action (if
it exists) to the stack for suspended goals.

6. (Instruction Waiting) Wait for the resumption or
state clearance instruction of G from the parent plan-
ning agent.

7. (Popping from Stack) Pop the set of the suspended
goal G, the suspended plans, and the suspended ac-
tion (if it exists) from the stack for suspended goals.

8. (State Clearance) When receiving the state clearance
instruction of G, abandon the suspended goal, the
suspended plans, and the suspended action and tell
the action executor to abandon the recorded state for
the action resumption.

9. (Plan Resumption) When receiving the resumption
instruction of G, restart the plan execution algorithm
(Algorithm 2) for G, inputting the suspended plans
and the suspended action (if it exists) with G.

7 Experiments

This section evaluates the efficiency of replanning when
resuming the suspended plans by means of experiments
based on the museum guide scenario explained in Sec-
tion “Museum Guide Scenario”. However, it is not the
aim of the experiments to measure the efficiency of route
planning. Our planning algorithm can be used for other
purposes.
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We use two stratified planning agents. The parent plan-
ning agent is in charge of the area movement planning
and makes a plan to move from one area to another. (See
Figure 1.) The parent planning agent tells the child plan-
ning agent to execute the action to move to the next area
or a node inside an area. The child planning agent is in
charge of the node movement inside an area and makes a
plan to move from one node to another. When moving to
the next area, the child planning agent also updates the
area map in the memory, following the instructions from
the parent planning agent. For the planning agent, the
child planning agent is an action executor. We assume
that the doors are always open. However, these agents
can dynamically change the plans, as shown in [17], if a
door on the route is closed during the plan execution, but
that is not what we wish to show in this paper.

Initially the robot is at 140 in area8. We give the goal to
go to nlin areal to the parent planning agent. While the
robot is moving from n40 in area8 to n35 along arc9,
we give an emergency goal to go to another place (n38 in
area8 or n28 in area4 or n29 in area7). After executing
an emergency plan and visiting the node, the parent plan-
ning agent resumes the initial plan to go to nl in areal.
We measure this replanning time for the plan resumption.
We compare the naive replanning method to plan from
scratch and our on-line replanning method. We measure
this replanning time for the plan resumption. Ideally,
we would like to compare our on-line interruption plan-
ning technique with other on-line interruption planning
techniques. However, because the concept of interruption
planning is new, our agent is the only on-line interruption
planning agent.

We conducted similar experiments. Initially the robot is
at nl in areal. We give the goal to go to n40 in area8
to the parent planning agent. While the robot is moving
from nl in areal to n6 along arcd, we give an emergency
goal to go to another place (n13 in area2 or n4 in areal
or nl2 in area3). After executing an emergency plan
and visiting the node, the parent planning agent resumes
the initial plan to go to n40 in area8. We measure this
replanning time for the plan resumption.

We compare our on-line replanning method with the
naive replanning method to plan from scratch. Each ex-
periment was conducted three times and the average time
is shown in Table 1, Table 2, and Table 3. The agent
system is implemented in Java and the planner that the
planning agents use is implemented in Prolog and Java.
We used a PC (Windows XP) equipped with a Pentium4
2.8GHz and 512MB of RAM.

Table 1 shows the replanning time of the parent planning
agent. When the parent planning agent does not need to
correct the plan, our on-line replanning method is around
30 times as efficient as the naive replanning method. For
example, while the robot is moving in area8 to go to
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areal, even if the emergency goal to go to area7 is given,
the initial plan of the parent planning agent is not af-
fected because the emergency destination area? is on the
route from area8 to areal. In the other cases, our on-line
replanning method is still more than twice as fast as the
naive replanning method.

Table 2 shows the replanning time of the child planning
agent. When the emergency goal is given, if the emer-
gency destination and the current location of the robot
are in the same area, then our on-line replanning method
is 2 - 3 times as efficient as the naive replanning method.
In the other cases, the efficiency of our on-line replanning
method is almost the same as the efficiency of the naive
replanning method. This is because our planning agents
make plans from scratch when the goal is changed.

Table 3 shows the total replanning time of the parent
planning agent and the child planning agent. Our on-line
replanning method is twice as efficient as the naive re-
planning method when the parent planning agent needs
to modify the plan. When the parent planning agent
does not need to correct the plan, our on-line replan-
ning method is much faster than the naive replanning
approach.

Table 1: Parent Agent Replanning Time

Starting Initial Place of Emergency | On-line Naive
Point Destination Interruption Destination | Replanning Replanning
n40(area8) nl(areal) arcb9(area8) n38(area8) | 0.01 sec 0.37 sec
n40(area8) ni(areal) arcb9(area8) n28(area4) | 0.13 sec 0.30 sec
n40(area8) ni(areal) arcb9(area8) n29(area7) | 0.01 sec 0.30 sec
ni(areal) n40(area8) arcb(areal) ni3(area2) | 0.24 sec 0.50 sec
ni(areal) n40(area8) arcb(areal) n4(areal) | 0.01 sec 0.36 sec
ni(areal) n40(area8) arcb(areal) ni2(area3) | 0.01 sec 0.31 sec

Table 2: Child Agent Replanning Time

Starting Initial Place of Emergency | On-line Naive
Point Destination Interruption Destination | Replanning Replanning
n40(area8) ni(areal) arcb9(area8) n38(area8) | 0.06 sec 0.15 sec
n40(area8) ni(areal) arcb9(area8) n28(aread) | 0.09 sec 0.11 sec
n40(area8) ni(areal) arcb9(area8) n29(area7) | 0.05 sec 0.05 sec
ni(areal) n40(area8) arcb(areal) ni3(area2) | 0.05 sec 0.06 sec
ni(areal) n40(area8) arc5(areal) n4(areal) | 0.03 sec 0.08 sec
ni(areal) n40(area8) arcb(areal) ni2(area3) | 0.06 sec 0.07 sec
Table 3: Total Replanning Time

Starting Initial Place of Emergency | On-line Naive
Point Destination Interruption Destination | Replanning Replanning
n40(area8) ni(areal) arcb9(area8) n38(area8) | 0.06 sec 0.52 sec
n40(area8) ni(areal) arcb9(area8) n28(aread) | 0.22sec 0.41 sec
n40(area8) nl(areal) arcb9(area8) n29(area?) | 0.05 sec 0.35 sec
ni(areal) n40(area8) arcb(areal) ni3(area2) | 0.29 sec 0.56 sec
ni(areal) n40(area8) arcb(areal) n4(areal) | 0.04 sec 0.44 sec
ni(areal) n40(area8) arc5(areal) ni2(area3) | 0.07 sec 0.38 sec
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8 Related Work

8.1 Integration of Deliberation and Reac-

tion

Integration of deliberation and reaction has been an im-
portant subject of research to realize autonomous agents
working in dynamic environments. While executing a
plan for a goal, even the deliberative agent needs to re-
act to an unexpected event or situation in the case of
an emergency. Normally, when combining plan execu-
tion and reaction, the agent does not plan to react, and
the reaction does not change the world greatly. On the
other hand, in our approach, the agent does plan for an
emergency goal, and the emergency plan might change
the world greatly.

One way [19] of combining plan execution and reaction
is to repeat the following cycle: 1. observe; 2. react if
necessary; 3. update the plan; 4. act following the plan;
5. go to 1. It seems that the agent can react to the
changing world while executing a plan. However, this
algorithm does not take into account the time for action
execution. If it takes time to act, the agent cannot react
quickly as long as we use this algorithm.

Another way of solving this problem is to use the idea of
layered architecture [4] where the (higher-level) deliber-
ative planning agent controls the (lower-level) action ex-
ecutor. Here, the planning agent and the action executor
are working concurrently. Therefore, the action executor
reacts immediately to the world without considering the
plan execution. Unless the reaction causes action failure,
the action executor does not have to report the reaction
to the planning agent. In the case of action failure, the
action executor reports it to the planning agent, and the
planning agent replans.

8.2 On-line Planning

Our interruption planning is an extension of on-line plan-
ning that interleaves planning and execution. While ex-
ecuting a plan, the world might change unexpectedly.
By selecting and executing one plan, some alternative
plans might become invalid. In interruption planning,
suspended plans might be affected by the execution of an
emergency plan. In that case, on-line planners modify the
plans incrementally. In order to detect an error in a plan,
it is necessary to confirm that each action precondition in
the plan is not affected. For this purpose, PLANEX [13]
uses triangle tables. (PLANEX is the execution monitor-
ing system of the well-known classical planner STRIPS
[12].) Also, causal links of partial-order plans which were
introduced first in NONLIN [28] can be used to detect an
error in a plan. Causal links are used in many backward-
chaining partial-order planners such as TWEAK [5] and
SNLP [20]. As explained in [25], IPEM [1] is the first
on-line planner which smoothly integrates partial-order
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backward-chaining planning and execution. PRODIGY
which was introduced in Introduction is also an on-line
partial-order backward-chaining planner. SIPE [32] is
known as an on-line HTN planner. The plan repairing
strategy based on O-Plan [6] and NONLIN [28], both
of which are partial-order HTN planners, is explained in
[10]. Dynagent [16], which we used in this paper, is an
on-line forward-chaining HTN planner that extends the
algorithm of SHOP [22].

8.3 Integration of BDI and Planning

PRS-like BDI agents reactively commit to ready-made
plans. However, there are some agent systems that inte-
grate PRS-like BDI agent models and planning. CAN-
PLAN [27] combines PRS-like BDI agent models and
HTN planning based on the similarities of their lan-
guages. However, replanning is still future work. An-
other BDI agent system [29] calls the planner when pre-
compiled plans are hard to devise in advance. However,
planning under uncertainty is the future work. Cypress
[31] combines a BDI system (PRS-CL) and an on-line
HTN planner (SIPE-2). Interestingly, even when PRS-
CL detects an error during plan execution, it continues
executing unaffected parts of the plan while SIPE-2 is
producing an alternative plan.

8.4 Multi-agent Planning

As surveyed in [8, 9, 11], there are mainly two kinds of
multi-agent planning: 1. Planning for task distribution
to agents; 2. Coordination of plans of different agents.
Typically, when planning for task distribution, the parent
agent makes a rough plan and distributes tasks to its child
agents following the plan. Stratified multi-agent plan-
ning is related to planning for task distribution. On-line
planning in stratified multi-agent systems is researched
n [17]. Coordination of plans is necessary because each
agent has a different goal and plan execution of one agent
affects plan execution of another agent. Dynamic reco-
ordination of plans is researched in [2]. A good survey
on distributed and continual (= on-line) planning can be
found in [9].

9 Conclusions

We have introduced the new concept of interruption plan-
ning and shown how interruption planning can be imple-
mented. When receiving an emergency goal, the agent
suspends the current plan execution, generates and exe-
cutes the emergency plan as soon as possible, and mod-
ifies the suspended plans accordingly. As explained in
Introduction, this is different from incremental plan ex-
pansion of PRODIGY which tries to reuse the current
plan when receiving an asynchronous goal with a prior-
ity. We have also shown how interruption planning can be
implemented in stratified multi-agent systems. As soon
as the planning agent receives an emergency goal, it tries
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to interrupt unnecessary action execution. In the same
way, as soon as the planning agent receives an emergency
goal, it tries to interrupt unnecessary plan execution of
its child planning agent. Our interruption planning is a
kind of on-line planning, and the planning agent keeps
and continuously updates the suspended plans. There-
fore, when resuming the plan execution, the agent replans
as quickly as our experiments have shown.

The new concept of interruption planning also com-
bines deliberation and reaction because when the agents
quickly make and execute a short emergency plan, the
plan can be regarded as a reaction. Unlike previous ap-
proaches to combine deliberation and reaction, where re-
action is not produced by deliberation, our interruption
planning combines deliberation and emergency delibera-
tion.

In order to implement interruption planning, we have ex-
tended the on-line forward-chaining HTN planning algo-
rithm of Dynagent. However, we think, it is possible to
use and extend on-line planning algorithms of classical
planning. The comparison of HTN planning and clas-
sical planning in terms of interruption planning is our
future work.

It is interesting to use our interruption planning in many
application areas [23] of forward-chaining HTN planning.
Currently, we are trying to apply our interruption plan-
ning to a real museum guide robot which takes a guest to
destinations (POIs). During the museum tour, the guest
might ask the robot to take him/her to a toilet. While ex-
plaining an exhibit, if the guest asks a question, then the
robot has to suspend the explanation, answer the ques-
tion, and resume the explanation. The robot might need
to say “Hello!” immediately when it recognizes a person
during the museum guide tour. So far, we have success-
fully tested these scenarios. Especially, the first scenario
was tested using a real mobile robot called ApriAttenda
[34]. However, this experiment was conducted inside a
small laboratory. In the future, we would like to run this
robot in a real museum environment.
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