
 
 

  
Abstract— In this paper, Lyapunov approach is applied to 

study exponential stability and stabilization of linear 
time-varying singular system. Sufficient conditions for 
exponential stability and stabilization are obtained. For a 
special case of system, necessary and sufficient conditions for 
exponential stability and stabilization are obtained. Ultimately, 
some numerical examples are given to show the theoretical 
results established. 
 

Index Terms—exponential stability, exponential stabilization, 
linear time-varying system, singular system.  
 

I. INTRODUCTION 
     In practice one is not only interested in system stability 
(e.g. in sense of Lyapunov), but also in bounds of system 
trajectories [1]. These bound properties of system responses 
i.e. the solution of system models, are very important from 
the engineering point of view [1]. Realizing this fact, 
numerous definitions of the so-called technical and practical 
stability were introduced [1]. Roughly speaking, these 
definitions are essentially based on the predefined boundaries 
for the perturbations of initial conditions and allowable 
perturbation of system response [1]. In the engineering 
applications of control systems, this fact becomes very 
important and sometimes crucial, for the purpose of 
characterizing in advance, in quantitative manner, possible 
derivations of system response [1]. Thus, the analysis of these 
particular bound properties of solutions is an important step, 
which precedes the design of control signals, when finite time 
or practical stability control is concerned [1].   
     Let the linear time-varying singular system be governed 
by 
 
Eሺtሻxሶ ሺtሻ ൌ Aሺtሻxሺtሻ  Bሺtሻuሺtሻ, xሺtሻ ൌ x,                       ሺ1ሻ 
where Aሺtሻ א Թ୬ൈ୬  and Bሺtሻ א Թ୬ൈ୫  are time-varying 
matrices and   Eሺtሻ is a time-varying singular  matrix. It is 
assumed that system (1) is controllable.  
     The system defined with (1) are usually known as singular 
, descriptor, semi-state systems, systems of 
differential-algebraic equations or generalized state space 
systems [1]. They arise naturally in many physical 
applications such as electrical networks, aircraft and robot 
dynamics, natural delay and large-scale systems, economics 
and optimization problems, biology, constrained mechanics, 
as result of partial descritization of partial differential 
equations etc [1].  
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     For the special case of system (1) where Aሺtሻ ൌ A, Eሺtሻ ൌ
E,  and  Bሺtሻ ൌ B  are constant matrices the stability analysis 
has been investigated by [2-5]. The stabilization problem has 
also been studied by [2,4].  
     For the special case of system (1), where   Aሺt  Tሻ ൌ
Aሺtሻ and Bሺt  Tሻ ൌ Bሺtሻ  are periodically time-varying 
matrices with period   and Eሺtሻ ൌ E is a constant matrix, 
stability analysis has been investigated by [6]. Furthermore, 
stabilization problem for this system has been also 
investigated by [6] and without periodic parameters by [7-9].   
     Controllability and observability of the system (1) have 
been investigated by [10,11]. Impulse observability and 
impulse controllability of the system (1) have been 
investigated by [12]. Impulse controllability of system (1) 
with periodic parameters has been investigated by [13].  
     For the special case of system (1), where   Aሺt  Tሻ ൌ
Aሺtሻ and Bሺt  Tሻ ൌ Bሺtሻ  are periodically time-varying 
matrices with period   and Eሺtሻ ൌ E is a constant matrix, 
input-output decoupling problem of the system (1) has been 
investigated by [14,15]. Robust  ܪଶ control problem has been 
investigated by [16]. The stability and stabilization problem 
have been investigated by [17]. 
     State feedback impulse elimination has been applied to 
control of system (1) in [18]. Optimal control of the system 
(1)  has been investigated in [19]. Optimal control of the 
system (1)  has been investigated in [20]. 
     In this paper, exponential stability and stabilization of 
system (1) by using Lyapunov approach are studied. 
Sufficient conditions for exponential stability and 
stabilization of system (1) are obtained. For the special case 
of system (1), where   Aሺt  Tሻ ൌ Aሺtሻ and Bሺt  Tሻ ൌ Bሺtሻ 
are periodically time-varying matrices with period  ܶ  and 
Eሺtሻ ൌ E is a constant matrix, the necessary and sufficient 
conditions for strong exponential stability and stabilization of 
the system are obtained. In section 2, exponential stability 
problem of system (1) is considered. In section 3, exponential 
stabilization of system (1) is considered. In section 4, some 
preliminary results related to the special case of system (1) 
are given. In section 5, exponential stability and stabilization 
of the special case of system (1) are considered. Eventually, 
some numerical examples are given in order to present the 
results established. 

II. EXPONENTIAL STABILITY 
     Consider the system (1). As defined in [1], ܹ denotes the 
sub-space of consistent initial conditions generating the 
smooth solutions. Now, we define the following definition. 
 
     Definition 1: System (1) is exponentially stable with 
decay rate γ  0  if exist x א W୩  and a positive constant 
real number ߙ such that  
ԡxԡ୕

ଶ ൏ implies ԡxሺtሻԡ୕  ߙ
ଶ ൏  . eିஓ୲ߙ
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Note [1]: Quadratic form ԡxሺtሻԡ୕

ଶ  is defined with  
 
ԡxሺtሻԡ୕

ଶ ൌ xሺtሻQሺtሻxሺtሻ   , 
 
where Qሺtሻ ൌ EሺtሻPሺtሻEሺtሻ, in which Pሺtሻ ൌ Pሺtሻ  0  is 
an arbitrarily specified matrix. 
 
     Theorem 1: System (1) is exponentially stable with decay 
rate γ  0  if a positive constant real number  and a 
positive-definite symmetric matrix Pሺtሻ exist such that 
AሺtሻEሺtሻPሺtሻEሺtሻ  Eሶ ሺtሻPሺtሻEሺtሻ  EሺtሻPሶ ሺtሻEሺtሻ  
EሺtሻPሺtሻEሶ ሺtሻ  EሺtሻPሺtሻAሺtሻ  
γEሺtሻPሺtሻEሺtሻ ൏ 0     .                                                             ሺ2ሻ 
 
Proof: Consider the following Lyapunov-like function: 
Vሺtሻ ൌ xሺtሻEሺtሻPሺtሻEሺtሻxሺtሻ    ,                                         ሺ3ሻ 
where Pሺtሻ ൌ Pሺtሻ  0  . Taking the derivative Vሺ. ሻwith 
respect to ݐ along the trajectory (1), we obtain 

Vሶ ሺtሻ ൌ
dሺVሺtሻሻ

dt ൌ xሺtሻሺAሺtሻEሺtሻPሺtሻEሺtሻ

 Eሶ ሺtሻPሺtሻEሺtሻ  EሺtሻPሶ ሺtሻEሺtሻ  
                                 EሺtሻPሺtሻEሶ ሺtሻ  EሺtሻPሺtሻAሺtሻሻ     , 
using (2), we get 
Vሶ ሺtሻ ൏ െγVሺtሻ   ,                                                                       ሺ4ሻ 
by integrating (4), we obtain 
Vሺtሻ ൏ Vሺtሻ eିஓ୲        , 
or 
ԡxሺtሻԡ୕

ଶ ൏ ԡxԡ୕
ଶ  eିஓ୲ 

and the proof  is complete. 
 

III. EXPONENTIAL STABILIZATION 
     For exponential stabilization of system (1), we obtain the 
following theorem. 
    
     Theorem 2: Consider system (1). The system (1) is 
exponentially stabilized with decay rate γ  0  using 
controller uሺtሻ ൌ െKሺtሻEሺtሻxሺtሻ if a positive constant real 
number   and a positive-definite symmetric matrix Pሺtሻ 
exist such that 
 

AሺtሻEሺtሻPሺtሻEሺtሻ  Eሶ ሺtሻPሺtሻEሺtሻ  EሺtሻPሶ ሺtሻEሺtሻ െ 
EሺtሻPሺtሻBሺtሻKሺtሻEሺtሻ  EሺtሻPሺtሻEሶ ሺtሻ  EሺtሻPሺtሻAሺtሻ 

െEሺtሻKሺtሻBሺtሻPሺtሻEሺtሻ  γEሺtሻPሺtሻEሺtሻ ൏ 0    . 
 
     Proof: Substituting Aሺtሻ െ BሺtሻKሺtሻ for Aሺtሻ in Theorem 
1, Theorem 2 is proven. 
 
     Theorem 3: Consider system (1). The system (1) is 
exponentially stabilized with decay rate γ  0   using 
controller  uሺtሻ ൌ െRିଵሺtሻBሺtሻPሺtሻEሺtሻxሺtሻ, where Rሺtሻ is 
a positive-definite symmetric matrix, if a positive constant 
real number   and a positive-definite symmetric matrix Pሺtሻ 
exist such that 
AሺtሻEሺtሻPሺtሻEሺtሻ  Eሶ ሺtሻPሺtሻEሺtሻ  EሺtሻPሶ ሺtሻEሺtሻ െ 
EሺtሻPሺtሻBሺtሻRିଵሺtሻBሺtሻPሺtሻEሺtሻ  EሺtሻPሺtሻEሶ ሺtሻ  
EሺtሻPሺtሻAሺtሻ െ EሺtሻPሺtሻBሺtሻRିଵBሺtሻPሺtሻEሺtሻ  
γEሺtሻPሺtሻEሺtሻ ൏ 0     .                                                            ሺ5ሻ 
 
     Proof: Substituting RିଵሺtሻBሺtሻPሺtሻ for Kሺtሻ in Theorem 
2, Theorem 3 is proven. 

IV. SOME PRELIMINARY RESULTS 
     Consider the special case of system (1) where Aሺtሻ and 
 Bሺtሻ are continuous T-period matrix functions on Թାڂሼ0ሽ  
with appropriate dimensions ( i.e. 
Aሺt  Tሻ ൌ Aሺtሻ and Bሺt  Tሻ ൌ Bሺtሻ ) and Eሺtሻ ൌ E  is a 
singular constant matrix. We name this system as system (a). 
 
     Definition 2 [17]: For system (a), if there exists a scalar s, 
such that 
det൫sE െ Aሺtሻ൯ ്  t             0
then the system (1) is called uniformly regular. 
[17]: From Definition 2 the regular of the system (a) is 
equivalent to the analytical solvability in the sense of 
Campbell, i.e. in [21].  
     Put the system into the following decomposition: 
suppose  
 

PEQ ൌ ቂ I 0
0 0ቃ   ,   PAሺtሻQ ൌ Aଵଵሺtሻ Aଵଶሺtሻ

Aଶଵሺtሻ Aଶଶሺtሻ൨   , 

PBሺtሻ ൌ ሾBଵሺtሻ/Bଶሺtሻሿ   ,     Qିଵxሺtሻ ൌ ሾxଵሺtሻ/xଶሺtሻሿ   , 
 
then the system (1) is restricted equivalent to 
 
xሶ ଵሺtሻ ൌ Aଵଵሺtሻxଵሺtሻ  Aଵଶሺtሻxଶሺtሻ  Bଵሺtሻuሺtሻ,        ሺ6 െ aሻ 
0 ൌ Aଶଵሺtሻxଵሺtሻ  Aଶଶሺtሻxଶሺtሻ  Bଶሺtሻuሺtሻ,               ሺ6 െ bሻ 
obviously, the necessary and sufficient condition of impulse 
free for the system (a) is that Aଶଶሺtሻis invertible [17]. 
 
     Definition 3 [17]: The system (a) is called asymptotically 
stable, if its subsystem 
xሶ ଵሺtሻ ൌ Aଵଵሺtሻxଵሺtሻ  Bଵሺtሻuሺtሻ  ,                                         ሺ7ሻ 
is asymptotically stable. 
 
     Definition 4 [17]: The system (a) is called strong 
asymptotically stable, if the system (a) is impulse free and 
asymptotically stable. 
 
     Definition 5 [17]: For the system (a), if there exists a state 
feedback  
uሺtሻ ൌ െKሺtሻxሺtሻ 
such that the close loop system 
 
Exሶ ሺtሻ ൌ ൫Aሺtሻ െ BሺtሻKሺtሻ൯xሺtሻ 
is strong asymptotically stable, then the system (a) is called 
stabilized. 
     Lemma 1 [22]: The necessary and sufficient condition of 
asymptotically stable for standard periodically time-varying 
system 
 
xሶ ሺtሻ ൌ Aሺtሻxሺtሻ  Bሺtሻuሺtሻ 
is that there exists a give matrix Qሺtሻ  0 , such that 
Lyapunov equation 
 
Pሶ ሺtሻ  PሺtሻAሺtሻ  AሺtሻPሺtሻ ൌ െQሺtሻ 
has a unique positive solution. 
 
     Lemma 2 [21]: If the system (a) is analytically solvable, 
then there exist analytically invertible matrices Pሺtሻ א
Թ୬ൈ୬, Qሺtሻ א Թ୬ൈ୬,  such that the system (a) can be 
transformed into standard canonical form 
 

PሺtሻEሺtሻQሺtሻ ൌ  I 0
0 Nሺtሻ൨   , 
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PሺtሻAሺtሻQሺtሻ ൌ ቂAଵሺtሻ 0
0 Iቃ  , 

PሺtሻBሺtሻ ൌ ሾBଵሺtሻ/Bଶሺtሻሿ  ,
CሺtሻQሺtሻ ൌ ሾCଵሺtሻ Cଶሺtሻሿ  , 

Qିଵሺtሻxሺtሻ ൌ ሾxଵሺtሻ/xଶሺtሻሿ , Dሺtሻ ൌ Dଵሺtሻ  Dଶሺtሻ  , 
yଵሺtሻ ൌ Cଵሺtሻxଵሺtሻ  Dଵሺtሻuሺtሻ  , 
yଶሺtሻ ൌ Cଶሺtሻxଵሺtሻ  Dଶሺtሻuሺtሻ  , 
 
where Nሺtሻ  is nilpotent matrix, and every block has 
appropriate size. 
From Lemma 2, the necessary and sufficient condition of 
impulse free for the system (a) is that Nሺtሻ ൌ 0  [17]. 
 
special case of the system 
     In this section we consider system (a) and the problems of 
exponential stability and stabilization related to it. For strong 
exponential stability of system (a) we obtain the following 
theorem. 
 
     Theorem 4: Suppose system (a) is uniformly regular, then 
system (a) is strong exponentially stable with decay rate , iff 
for a positive constant real number ߛ the following Lyapunov 
equation 
 
EሺtሻVሺtሻሺAሺtሻ  γEሻ  ሺAሺtሻ  γEሻVሺtሻE  EVሶ ሺtሻE
ൌ െEWሺtሻE    ,                                                                           ሺ8ሻ 
where 
Wሺtሻ  0 , Wሺtሻ א Թ୬ൈ୬  ,   
has positive definite symmetric solution ܸሺݐሻ, satisfying 
 
rankሺEሻ ൌ rankሺEVሺtሻEሻ  ,   EVሺtሻE  0  . 
 
Proof: We take the following change of the state variable 
zሺtሻ ൌ eஓ୲xሺtሻ       ,                                                                      ሺ9ሻ 
where  is a positive constant real number. Then system (a) is 
transformed to the system 
 
Ezሶሺtሻ ൌ Aሺtሻzሺtሻ  Bሺtሻuሺtሻ   ,                                           ሺ10ሻ 
where Aሺtሻ ൌ Aሺtሻ  γE   . 
     Remark 1: If system (10) is asymptotically stable then 
system (a) is exponentially stable with decay rate  . 
 
     Remark 2: If system (10) is strong asymptotically stable 
then system (a) is strong exponentially stable with decay rate  

. 
 
     Remark 3: If system (a) is uniformly regular then system 
(10) is, too.   
 
     Remark 4: If system (a) is impulse free then system (10) 
is, too.   
Now, we define the following definitions. 
 
     Definition 6: System (a) is called exponentially stable 
with decay rate , if system (10) is asymptotically stable. 
 
     Definition 7: System (a) is called strong exponentially 
stable with decay rate , if system (10) is impulse free and 
asymptotically stable. 
     For the asymptotical stability of system (10) we have the 
following theorem. 
 

     Theorem 5 [17]: Suppose the system (10) is uniformly 
regular, then the system (10) is strong asymptotically stable if 
and only if the Lyapunov equation 
       
EVሺtሻAሺtሻ  A

ሺtሻVሺtሻE  EVሶ ሺtሻE ൌ െEWሺtሻE 
where  
Wሺtሻ  0 , Wሺtሻ א Թ୬ൈ୬  , 
has positive definite symmetric solution Vሺtሻ, satisfying 
 
rankሺEሻ ൌ rankሺEVሺtሻEሻ  ,   EVሺtሻE  0  . 
 
From Definition 7, Remark 2, Remark 3, Remark 4, and 
Theorem 5, Theorem 4 is proven and the proof  is complete. 
 
     Now, we consider exponential stabilization of system (a).  
For strong exponential stabilization of system (a) we obtain 
the following theorems. 
 
     Theorem 6: Suppose the system (a) is uniformly regular, 
then using the controller uሺtሻ ൌ െKሺtሻExሺtሻ the system (a) is 
strong exponentially stabilized with decay rate , iff for a 
positive constant real number  the following Lyapunov 
equation 
 
EVሺtሻሺAሺtሻ  γE െ KሺtሻEሻ  
ሺAሺtሻ  γE െ KሺtሻEሻVሺtሻE  EVሶ ሺtሻE
ൌ െEWሺtሻE ,                                                                           
where 
Wሺtሻ  0 , Wሺtሻ א Թ୬ൈ୬ , 
has positive definite symmetric solution Vሺtሻ, satisfying 
rankሺEሻ ൌ rankሺEVሺtሻEሻ  ,   EVሺtሻE  0  . 
Proof: Substituting the controller uሺtሻ ൌ െKሺtሻExሺtሻ  for 
system (a) and then using Theorem 4, Theorem 6 is proven 
and the proof is complete. 
We choose the control law as follows 
 
uሺtሻ ൌ െRିଵሺtሻBሺtሻVሺtሻExሺtሻ  ,                                        ሺ11ሻ 
where 
Rሺtሻ  0, and ܸሺtሻ ൌ Vሺtሻ  0 . 
      
     Theorem 7: Suppose the system (a) is uniformly regular, 
then using the control law (11) the system (a) is strong 
exponentially stabilized with decay rate , iff for a positive 
constant real number  the following Lyapunov equation 
 
EVሺtሻሺAሺtሻ  γE െ RିଵሺtሻBሺtሻVሺtሻEሻ  
ሺAሺtሻ  γE െ RିଵሺtሻBሺtሻVሺtሻEሻVሺtሻE  EVሶ ሺtሻE
ൌ െEWሺtሻE ,                                                                            ሺ12ሻ 
where 
Wሺtሻ  0 , Wሺtሻ א Թ୬ൈ୬ , 
has positive definite symmetric solution Vሺtሻ, satisfying 
rankሺEሻ ൌ rankሺEVሺtሻEሻ  ,   EVሺtሻE  0  . 
 
Proof: Substituting the controller (11) for system (a) and then 
using Theorem 4, Theorem 7 is proven and the proof is 
complete. 

V. NUMERICAL EXAMPLES 
Example 1: 
     Consider the system: 

ቀt 0
0 0ቁ xሶ ሺtሻ ൌ ൬െ2 0

0 cosሺtሻ൰ xሺtሻ . 

We choose γ ൌ 1 . Then a solution of the inequality (2) is 
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Pሺtሻ ൌ ቀeି୲ 0
0 1

ቁ , 
and  the system is exponentially stable with decay rate 1. 
 
Example 2: 
     Consider the system: 
 

ቀt 0
0 0ቁ xሶ ሺtሻ ൌ ൬1 0

0 2 sinሺtሻ൰ xሺtሻ  ቀt
0ቁ uሺtሻ  . 

 
The system is unstable because the solution is  
 
xሺtሻ ൌ ቀt  c

0 ቁ   . 
where c  is a positive constant real number. We choose 
Rሺtሻ ൌ 1 and γ ൌ 1. Pሺtሻ ൌ ቀeି୲ 0

0 1
ቁ  is the solution of the 

inequality (5). According to  Theorem 3, using the 
controller uሺtሻ ൌ െRିଵሺtሻBሺtሻPሺtሻEሺtሻxሺtሻ, the system is 
exponentially stabilized with decay rate ൌ 1 . 
 
Example 3: 
     For the system (a) let T ൌ 10 , and when 1  t  11 , 
consider the system: 

ቀ1 0
0 0ቁ xሶ ሺtሻ ൌ ቀെ2e୲ 0

0 t
ቁ xሺtሻ .                                          ሺ13ሻ 

We choose γ ൌ 1 . Then the solution of the inequality (8) is 

Pሺtሻ ൌ ቀeି୲ 0
0 1

ቁ  , 
so the system (13) is exponentially stable with decay rate 1 .  
 
Example 4: 
     For the system (a) let T ൌ 10 , and when 1  t  11 , 
consider the following system 
 

ቀ1 0
0 0ቁ xሶ ሺtሻ ൌ ቀe୲ 0

0 t  1
ቁ xሺtሻ  ቀe୲

0
ቁ uሺtሻ  ,                  ሺ14ሻ 

the system (14) is uniformly regular; but, it is unstable 
because when uሺtሻ ൌ 0 the solution of the system is 

xሺtሻ ൌ ቀce୲

0
ቁ  , 

where   is a constant real number. 
We choose  Rሺtሻ ൌ 1  and γ ൌ 1 ; therefore, using the 
controller (11), the Lyapunov equation (12) has a positive 
solution 
 
Vሺtሻ ൌ eି୲  2eି୲   . 
Then, using the control law (11), the system (14) is 
exponentially stabilized with decay rate γ ൌ 1 . 
 

VI. CONCLUSION 
     In this paper, we consider the exponential stability and 
stabilization problem of linear time-varying singular system. 
Sufficient conditions for exponential stability and 
stabilization of linear time-varying singular system are 
obtained. For the special case of the system, necessary and 
sufficient conditions for exponential stability and 
stabilization are obtained. Finally, some numerical examples 
are given in order to show the theoretical results established.   
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