
 

Abstract— in this paper, a new method is derived for the 

existence of a common quadratic Lyapunov function for 

Robust Stability Analysis of Fuzzy Elman Neural Network 

using joint spectral radius spectral radius of Matrix.  
Index Terms— Robust Stability, Fuzzy Elman Neural 

Network. Joint spectral radius spectral radius 

I. INTRODUCTION 
For many real-world systems, a mathematical description in 

the form of differential/difference equations or similar 

conventional model is either infeasible or impracticable; 

due to the complexities involved, and the intrinsic nature of 

information incompleteness. The fuzzy modeling is 

generally presented to overcome these difficulties. Neural 

Networks have emerged as one important enabling 

technology in many scientific disciplines in solving 

previously unsolvable problems and in improving system 

performance. Stability is very important property of Neural 

Network system, in one of the method for stability analysis 

a common positive definite matrix iP   should be found to 

satisfy a set of Lyapunov equations [1]. Recently many 

researchers have worked on this area. 

C. Lee Giles, et al proposed the stability of fuzzy finite state 

dynamics of the constructed neural networks for finite 

values of network weight and, through simulations, give 

empirical validation of the proofs [2]. 
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Zhigang Zeng, worked on the global asymptotic stability 

and the global exponential stability of neural networks with 

unbounded time-varying delays and with bounded and 

Lipchitz continuous activation functions [3].  

Nikita, et al worked on Stability Analysis of Discrete-Time 

Recurrent Neural Network [4]. Jinde Cao proposed two 

related problems, global asymptotic stability (GAS) and 

global robust stability (GRS) of neural networks with time 

delays [5]. J. J. Rubio, et al worked on Stability Analysis of 

Nonlinear System Identification via Delayed Neural 

Networks [6]. Nikita E, et al proposed the problem of global 

Lyapunov stability of discrete-time recurrent neural 

networks in the unforced setting [7]. 

This paper proposed the existences of a common quadratic 

Lyapunov function for stability of Fuzzy Elman Neural 

Network.  

 
II. A REVIEW ON STABILITY ANALYSIS ON 

SWITCHING SYSTEM [15, 16, 17, 18, 19, 20, 21, 

22] 

In switched linear systems, the subsystems of which are 

continuous-time linear time-invariant (LTI) systems 

},...,1{,
.

nixAx i ==                                                           

(1) 

or a collection of discrete-time LTI systems 

},...,2,1{,],[]1[ niZkkxAkx i ∈∈=+ +                            

(2) 

Where nn
i RA ×∈ . 

The existence of a common quadratic Lyapunov function 

(CQLF) for all its subsystems assures the quadratic stability 

of the switched system. Quadratic stability is a special class 
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of exponential stability, which implies asymptotic stability, 

and has attracted a lot of research efforts due to its 

importance in practice. It is known that the conditions for 

the existence of a CQLF can be expressed as linear matrix 

inequalities (LMIs) [15, 16]. Namely, there exists a positive 

definite symmetric matrix nnRPP ×∈, , such that 

},...,1{,0 niPAPA i
T

i ∈+ ≺                                               

(3) 

for the continuous-time case, or 

 0≺ii
T

i
PPAA −                                                                  

(4) 

for the discrete-time case, hold simultaneously. However, 

the standard interior point methods for LMIs may become 

ineffective have the number of modes increases [16]. 

If we consider the discrete time dynamical system as 

},...,2,1{,],[]1[ niZkkxAkx i ∈∈=+ +                                       

(5) 

Let us first recall a robust stability result for linear time 

variant Systems with polytypic uncertainty 

][)(]1[ kxkAkx =+                                                              

(6)    

Where },...,,,{)( 321 KAAAAconvkA =Α∈ .Here, 

{.}conv  stands for convex combination. In other words, 

the state matrix )(kA of the above linear time-variant 

system (6) is constructed by convex combinations (with 

time-variant coefficients) of all the subsystems’ state 

matrices of the switched linear system (2) [15, 16]. 

Proposition 1[18]: The following statements are equivalent: 

1) The switched linear system ][]1[ kxAkx δ=+ where 

},...,,,{ 321 KAAAAA ∈δ  is asymptotically stable under 

arbitrary switching; 

2) The linear time-variant system 

][)(]1[ kxkAkx =+ where },...,,,{)( 321 KAAAAconvkA =Α∈

, is robustly asymptotically stable. 

3) There exists a finite integer n such that  

1...21 ≺inii AAA  

For all n-tuple: },...,,{ 21 iniiij AAAA ∈ where nj ,...,1= . 

It is quite interesting that the study of robust stability of a 

polytopic uncertain linear time-variant system, which has 

infinite number of possible dynamics (modes), is equivalent 

to considering only a finite number of its vertex dynamics 

in an arbitrary switching system.  

In discrete time, the concept of joint spectral radius [19, 20] 

gives a necessary and sufficient condition for the stability of 

difference inclusions [20]. 

The joint spectral radius is the maximal growing rate which 

may be obtained using long products of matrices from a 

given set. Consider the notation },...,,,{ 321 NAAAAA =
−

 

the joint spectral radius of the set A is formally defined as 

[20]: 

 )()( suplim
−

∞→

−

≡ AA P
P

ρρ                                              

(7)

Where 

P
iPiI

AAAA
P AAAA Sup

iPiI

1

21
,...,,

,...,,)(
21 ∈

−

≡ρ                                                 

(8) The linear difference inclusion [20] 

},:{)(]1[
−

∈==∈+ AAAxyyxFkx                                      

(9)      

Is asymptotically stable if and only if the joint spectral 

radius satisfies the inequality [20]: 

1)( ≺
−

Aρ                                                                            

(10)   

This condition can be directly applied to the case of discrete 

time switched linear Systems [20]:  
−

∈=+ AAkxAkx δδ ],[]1[                                                  

(11)    

The main difficulty of this approach is the practical 

computation of the joint spectral radius [21]. An 

approximation procedure is given in [19]. When ellipsoidal 

norms are used for computing the approximation, it is 

possible to find a relation between the joint spectral radius 

approach and the existence of a common quadratic 

Lyapunov function. However this approximation implies 

some conservatism. Less conservative approximations are 

given in [19, 22]. 
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III. A REVIEW ON ELMAN NEURAL NETWORK 

[8, 9, 10, 11, 12] 

The classes of Neural Networks which contain cycles or 

feedback connections are called Recurrent Neural Networks 

(RNNs). While the set of topologies of a feed forward 

networks is fairly constrained, an RNN can take on any 

arbitrary topology as any node in the network may be linked 

with any other node (including itself). The recurrent 

network developed by Elman has a simple architecture; this 

network has been proved to be effective for modeling linear 

systems not higher than the first order [8, 9]. 

Elman proposes a simple recurrent neural network model. 

Elman networks are two-layer back propagation networks, 

with the addition of a feedback connection from the output 

of the hidden layer to its input. This feedback path allows 

Elman networks to learn to recognize and generate temporal 

patterns, as well as spatial patterns [11]. 

In fact Elman neural network belongs to special type of feed 

forward neural network with additional memory neurons 

and local feedback; it comprises four layers, namely the 

input layer, hidden layer, output layer, and context layer. 

can store internal states [10] Fig. 1 the architecture of an 

Elman neural network is shown, 

Where Si (t) indicates the states of the input layer, Sh(t) the 

states of the hidden layer and So(t) the states of the output 

layer [12].  

 

Si(t)

Sh(t)Sh(t-1)

So(t)

 
Figure 1. Structure of Elman Neural Network 

 

The Elman network is embedded with feedback connections 

that offer a convenient way to accumulate previous 

knowledge as “experiences” and perform future predictions 

based on these “experiences”.  

 
IV. FUZZY ELMAN NEURAL NETWORK [30] 

Figure 2 shows the seven-layer network structure of FENN, 

with the basic concepts taken from the Elman networks and 

fuzzy neural networks [30]. 

 

 
 

Figure2: the structure of FENN 

 

In this network, input nodes which accept the environment 

inputs and context nodes which copy the value of the state 

space vector from layer 5 are all at layer 1 (the Input Layer). 

They represent the linguistic Variables known as  ju   and 

ix in the fuzzy rules. Nodes at layer 2 act as the 

membership Functions, translating the linguistic variables 

from layer 1 into their membership degrees [30]. 

Since there may exist several terms for one linguistic 

variable, one node in layer 1 may have links to several 

nodes in layer 2, which is accordingly named as the term 

nodes. The number of nodes in the Rule Layer (layer 3) and 

the one of the fuzzy rules are the same - each node 

represents one fuzzy rule and calculates the firing strength 

of the rule using membership degrees from layer 2. The 

connections between layer 2 and layer 3 correspond with 

the antecedent of each fuzzy rule. Layer 4, as the 

Normalization Layer, simply does the normalization of the 

firing strengths. Then with the normalized firing strengths 

rh  , rules are combined at layer 5, the Parameter Layer, 

where A and B become available [27]. In the Linear System 

Layer, the th6  layer, current state vector )(tX and input 

vector )(tU are used to get the next state )1( +tX , which is 

also fed back to the context nodes for fuzzy inference at 

time 1+t . The last layer is the Output Layer, multiplying 

)1( +tX  with C  to get )1( +tY and outputting it [30]. 
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Next we shall describe the feed forward procedure of FENN 

by giving the detailed 

Node functions of each layer, taking one node per layer as 

example. We shall use notations like ][k
iu to denote the ith  

input to the node in layer k , and ][ko the output of the node 

in layer k . Another issue to mention here is the initial 

values of the context nodes. Since FENN is a recurrent 

network, the initial values are essential to the temporal 

output of the network. Usually they are preset to 0, as zero-

state, but non-zero initial state is also needed for some 

particular case [30]. 

Layer 1: each node in this layer has only one input, either 

from the environment or 

the Parameter Layer. Function of nodes is to transmit the 

input values to the next layer, i.e. [30] 
]1[]1[ uo =                                                                            

(12) 

Layer 2: there is only one input to each node at layer 2. 

That is, each term node can link to only one node at layer 1, 

though each node at layer 1 can link to several nodes at 

layer 2 (as described before). The Gaussian function is 

adopted here as the membership function [30]: 

2

2]2[

)(2

)(

]1[ seo
r

rcu −
−

=                                                                 

(13)  

Where rc  and rs give the center (mean) and width 

(variation) of the corresponding 

Linguistic term of input 2u in Rule r, i.e., one of r
xi

T  

or r
u j

T . 

Layer 3: in the Rule Layer, the firing strength of each rule is 

determined [30]. 

Each node in this layer represents a rule and accepts the 

outputs of all the term nodes associated with the rule as 

inputs. The function of node is fuzzy operator AND :( 

multiplication here) 

∏=
i

uo ]3[]3[                                                                     

(14) 

Layer 4: the Normalization Layer also has the same number 

of nodes as the rules, 

and is fully connected with the Rule Layer. Nodes here do 

the function of (21), i.e.[30], 

∑
=

i
iu

uo ]4[
]4[]4[                                                            

(15) 

In (28) we use ]4[u  to denote the specific input 

corresponding to the same rule with the node. 

Layer 5: this layer has two nodes, one for figuring matrix 

A  and the other for B . 

Though we can use many nodes to represent the 

components of A  and B  separately, it is more convenient 

to use matrices. So with a little specialty, its weights of 

links from layer 4 are matrices rA  (to node for A ) and rB  

(to node for B ). It is also fully connected with the previous 

layer. The functions of nodes for A  and B  are [30]: 

∑∑
==

==
R

r

r
rforB

R

r

r
rforA BuoAuo

1

]5[]5[

1

]5[]5[ ,                                 

(16)    

Respectively. 

Layer 6: the Linear System Layer has only one node, which 

has all the outputs of layer 1 and layer 5 connected to it as 

inputs. Using matrix form of inputs and output, we have 

[see (24)] [30] 
]1[]5[]1[]5[]6[

inputforBcontextforA ooooBUAXo +=+=                          

(17) 

So the output of layer 6 is )1( +tX in (17). 

Layer 7: simply as layer 1, the unique node in the Output 

Layer passes the input value from layer 6 to output. The 

only difference is that the weight of the link is matrix C, not 

unity [30], 
]7[]7[ CuoY ==                                                                  

(18)      

This proposed network structure implements the dynamic 

system combined by our discrete fuzzy rules and the 

structure of recurrent networks. With preset human 

knowledge, the network can do some tasks well [30]. 

If we consider (17), (18) then we can say that: 
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]1[

]1[

]5[

]5[

]6[)1(

input

context

forB

forA

oU

oX

oB

oA
otX

=

=

=

=

=+

                                                                   

(19)       

Let us consider the switched systems (17) 

Where u (t) is the control and the switching signal is 

available in real-time. The stabilizing state feedback control 

problem is to find [31]: 

)()( tkxtu =                                                                         

(20) 

Such that the corresponding closed-loop switched system is: 

XBkAo )(]6[ +=                                                                 

(21) 

 

V, ROBUST STABILITY OF FUZZY ELMAN NEURAL 

NETWORK 

we can say that ][]1[ kxAkx δ

−

=+  

where },{ kBAA ∈δ  is asymptotically stable if and 

only if 1)( ≺δρ A  then using Proposition 1 we can 

proposed that system (21) is robustly asymptotically 

stable. 

 

VI. CONCLUSION 

In this study a new method for Robust Stability Analysis of 

Elman Neural Network has been used using using joint 

spectral radius spectral radius of Matrix.  
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