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     Abstract - A new method to control the Buck converter 
using new small signal model of the pulse width modulation 
(PWM) switch is introduced. The new method uses recurrent 
supervised neural network to estimate certain parameters of 
the transformed system matrix [ A~ ]. Then, linear matrix 
inequality (LMI) optimization is used to obtain the 
permutation matrix [P] so that system transformation {[ B~ ], 
[ C~ ], [ E~ ]} is achieved. The transformed model is then 
reduced using the singular perturbation method, and state 
feedback control is applied to enhance system performance. 
The eigenvalues of the resulting transformed reduced model 
are an exact subset of the original (non-transformed full-
order system), and this is important since the eigenvalues in 
the non-transformed reduced order model will be different 
from the eigenvalues of the original full-order system. The 
experimental simulation results show that the new control 
method simplifies the model in the Buck converter and thus 
uses a simpler controller that produces the desired system 
response for performance enhancement.  
 
      Index Terms - Buck Converter, Feedback Control, Linear 
Matrix Inequality (LMI), Neural Network, Order Model 
Reduction, Supervised Learning. 
 

1. INTRODUCTION 
 
Recently, small-signal modeling of dynamic behaviors of 
the open loop dc-to-dc power converters has attracted 
much attention, due to the fact that these models are the 
basis to extract accurate transfer functions [1,6], which are 
essential in the feedback control design. They are used to 
design reliable high performance regulators, by enclosing 
the open loop dc-to-dc power converters in a feedback 
loop, to keep the performance of the system as close as 
possible to the desired operating conditions, and to 
counteract the outside disturbances [7,13].  

These power converters usually work in the 
Continuous Conduction Mode (CCM), or in the 
Discontinuous Conduction Mode (DCM) [1,6]. The CCM 
mode is desirable, as the output ripple of the dc-to-dc 
power converter is very small compared to the dc steady 
state output. A linearized small-signal model is 
constructed to examine the dynamic behaviors of the 
converter, due to the fact that these disturbances are of 
small signal variations. Through this model, the necessary 
open-loop transfer functions can be determined and 
plotted using Bode plots [6]. This is needed in order to use 
compensation to the pulse width modulation (PWM) 
power converters, to meet the desired nominal operating 
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conditions, through applying various control techniques. 
         These control methods use the approaches of: 
frequency analysis in the classical control theory, time 
analysis in the modern control theory, both frequency 
analysis and time analysis domains in the post modern 
(digital and robust) control theory, and soft computing 
(fuzzy logic (FL) + neural networks (NN) + genetic 
algorithms (GA)) in the intelligent control theory 
[6,7,13,16,17]. These control methods can be applied to 
the models of power converters that usually work with 
only one specific control scheme; pulse width modulation 
(PWM) through either duty-ratio control or current 
programming control [6]. The converter modeling 
approaches utilize in general four techniques [1,6]: (1) the 
sampled-data technique, (2) the averaged technique, (3) 
the exact small-signal analysis technique, and (4) the 
combination of the averaged technique and the sampled-
data technique. A new small-signal modeling approach 
which is applicable to any power converter system 
represented as a two-port network has been introduced [1]. 
This was done through the modeling of the nonlinear part 
in the power converter system, which is the PWM switch.  

In system modeling, sometimes it is required to 
identify some parameters, and this can be achieved by 
using artificial neural networks (ANN). Artificial neural 
systems can be defined as cellular systems which have the 
capability of acquiring, storing, and utilizing experiential 
knowledge [17]. They can be used to model complex 
relationships between inputs and outputs or to find 
patterns in data. An ANN consists of an interconnected 
group of artificial neurons and processes information 
using a connectionist approach to computation. The basic 
processing elements of neural networks are called 
neurons, which perform summing operations and 
nonlinear function computations. Neurons are usually 
organized in layers and forward connections. 
Computations are performed in parallel at all nodes and 
connections. Each connection is expressed by a numerical 
value called a weight.  The learning process of a neuron 
corresponds to a way of changing its weights [4,10,16,17]. 

When dealing with system modeling and control 
analysis, some equations and inequalities need optimized 
solutions. A numerical algorithm, used in robust control 
called linear matrix inequality (LMI) serves as a source of 
application problems in convex optimization [5]. LMI 
optimization method started by the Lyapunov theory 
showing that the differential equation )()( tAxtx =&  is stable 
iff there exists a positive definite matrix [P] such that 

0<+ PAPAT [5]. The conditions { 0>P , 0<+ PAPAT } is 
known as Lyapunov inequality on [P] which is a special 
case of an LMI. By picking any 0>= TQQ , then solving 
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the linear equation QPAPAT −=+ for [P], it is guaranteed 
that [P] is positive-definite if the given system is stable. 

Usually in practical control problems, the first 
step is to obtain a mathematical model in order to examine 
the behavior of the system for the purpose of designing a 
suitable controller [7]. In some systems, this mathematical 
description involves a certain small parameter 
(perturbation). Neglecting this small parameter results in 
simplifying the order of the designed controller based on 
reducing the order of the system model (method of 
singular perturbation) [2,8,12,14,15]. This simplification 
and reduction of system modeling leads to controller cost 
minimization [12].  

Figure 1 presents the layout of the Buck-based 
converter new control methodology used in this paper.  
   

State Feedback Control 
Order Model Reduction 

System Transformation: {[ B~ ], [ C
~ ], [ E~ ]} 

LMI-Based Permutation Matrix: [P] 
System Undiscretization (Continuous) 

Neural-Based State Transformation: [ A
~ ] 

System Discretization  
New Model of Buck Converter: {[A], [B], [C], [E]} 
 
Figure 1. Buck converter new hierarchical control methodology 
introduced in this paper. 

 
2. BACKGROUND  
 
This section presents important background on Buck 
converter, supervised neural network, LMI, and order 
model reduction that will be used in Sections 3, 4 and 5. 
 
2.1 The Application of the New Small Signal 

Model on the PWM Converters  
  
There are several averaged modeling techniques used to 
model the PWM converters. These techniques include: 
volt-second and current-second balance approach, and the 
state-space averaging approach [1,6]. These techniques are 
used to model the converter systems as a whole, as well as 
to model the pulse width modulation (PWM) switch by 
itself. These methods are accurate for the low frequency 
range, but inaccurate in the high frequency range [6]. 
Another modeling approach that focuses on modeling the 
converter-cell, instead of the converter as a whole, is used 
to get averaged models for the PWM converters. This 
approach is also useful for the low frequency ranges, but 
not useful for the high frequency ranges. One major 
advantage of these techniques is the fact that they are easy 
to implement and the results derived are not in 
complicated forms. 

The averaged modeling approach aims to 
produce an averaged model for a specific cell of the PWM 
converters. This cell is shown in Figure 2, where this basic 
cell is used to explore the dc behaviors and the ac small- 
signal dynamic behaviors of the PWM Buck  converter. 

 
Figure  2. Basic PWM converter-cell. 

 
A typical Buck converter is shown in Figure 3. 

 
Figure 3. Typical Buck converter. 

 
           It's been shown in [1] that a new small-signal 
model of the PWM switch can be as shown in Figure 4, 
where: 
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Figure 4. New small-signal model of the PWM switch. 

 
The new switch model shown in Figure 4, is an 

exact small-signal model, since the mathematical 
equations upon which the whole derivation process was 
built, are exact [1]. Also, we note that two of the 
dependent current sources are frequency dependent, which 
is uncommon for current or voltage dependent sources. 

  
2.1.1 Applying the PWM New Small Signal 

Model in the Buck Converter 
 
In this subsection, the new small-signal model of the 
PWM switch will be investigated on the PWM Buck 
converter. The control-to-output and input-to-output 
transfer functions will be derived for the Buck converter 
using the new small-signal model of the PWM switch. 
These transfer functions will be compared to the 
corresponding transfer functions for the averaged 
modeling approach and the exact model of the Buck 
converter. 

By applying the PWM switch model, that was 
developed previously on the Buck converter, one obtains 
the equivalent circuit model as shown in Figure 5, where 
we assume that the input dc voltage source Vg has small 
signal perturbation gv̂  and that: |ˆ||| gg vV >> .  

In Figure 5, the output equation is co vvy ˆˆ == . 
For the converter states x and the inputs u where:  
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Figure 5. Circuit model of the PWM Buck converter obtained 
through applying the new PWM switch small signal model. 
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To find the control-to-output transfer function, 
we null the input gv̂ . The new system quadruple 
{[A],[B],[C],[E]}, will be [1]: 

A = ⎥
⎦

⎤
⎢
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−
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1/RC  1/C
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=

1
0

, E = [ ]0                                                                 

     In order to find the control-to-output transfer 
function from the system quadruple, we apply the Laplace 
transformation to both sides of the state and the output 
equations represented by system state space equations: 

)()()( tButAxtx +=&  and )()()( tEutCxty += . After re-
arranging terms, the following input-to-output transfer 
function is obtained [1,6]: 

     EBAsC
u
y

+−= −1)( Ι                                               (1) 

By applying the above system quadruple in 
Equation (1) for the circuit values of {Vg = 15 V, R = 18.6 
Ω , D = 0.4, fs = 40.3 kHz, D´ = 0.6, L = 58 µH, C = 5.5 
µF}, and to investigate the accuracy of the new PWM 
switch model, one refers to Figure 6. 

 
Figure 6. The control-to-output frequency response of the PWM 
Buck converter, operating in CCM: exact (solid line); averaged 
(dotted line); and the new model (dashed line). 
 

To get the input-to-output transfer function, we 
null the input d̂ . The system quadruple {[A],[B],[C],[E]} 
will be [1]: 

A = ⎥
⎦

⎤
⎢
⎣

⎡
−
−

1/RC  1/C
1/L         0

, B = ⎥
⎦

⎤
⎢
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D/L
, C = [ ]1       0  , E = [ ]0    

By applying the above system quadruple in  
Equation (1) for the circuit values of {Vg = 15 V, R = 18.6 
Ω , D = 0.4, fs = 40.3 kHz, D´ = 0.6, L = 58 µH, C = 5.5 

µF}, and to investigate the accuracy of the new PWM 
switch model, one refers to Figure 7. 

 

  
Figure 7. The input-to-output frequency response of the PWM 
Buck converter, operating in CCM: exact (solid line); averaged 
(dotted line); and the new model (dashed line). 
 

From the above frequency response plots for both 
control-to-output and input-to-output transfer functions of 
the PWM Buck converter, operating in the CCM, we 
observe that an excellent match occurs between the exact 
and the new model results, as well as between the 
averaged and the new model results [1]. 
 
2.2 Recurrent Supervised Neural Computing 
 
An artificial neural network (ANN) is an emulation of a 
biological neural system [17], where the basic model of 
the neuron is based on the functionality of a biological 
neuron which is the basic signaling unit of the nervous 
system. A model of a neuron is shown in Figure 8. 

 
 
 
 
 
 
 
 
 

 
Figure 8.  A neuron mathematical model. 

 
             From Figure 8, the internal activity of a neuron is: 

     ∑
=

=
p

j
jkjk xwv

1
                         (2) 

  In supervised learning, it is assumed that, at each 
time instant when the input is applied, the desired 
response of the system is available [2,4,10,16,17]. The 
difference between the actual and desired responses 
represents an error measure which is used to correct the 
network parameters. The weights have initial values and 
the error measure is used to adapt the network's weight 
matrix [W]. A set of input and output patterns, called the 
training set, is needed for this learning. A training 
algorithm estimates the directions of the negative error 
gradient and reduces the resulting error accordingly [17]. 

The supervised recurrent NN used for estimation 
in this paper is based on an approximation of the method 
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of steepest descent [16,17]. The network tries to match the 
actual output of certain neurons to the target values at 
specific instant of time. Consider a NN consisting of a 
total of N neurons with M external input connections, as 
shown in Figure 9, for a 2nd order system with two 
neurons and one external input.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

   
Figure 9. A 2nd order recurrent NN architecture whith the 
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The variable g(k) denotes the (M x 1) external 
input vector applied to the NN at discrete time k. The 
variable y(k + 1) denotes the corresponding (N x 1) vector 
of individual neuron outputs produced at time (k + 1). The 
input vector g(k) and the one-step delayed output vector 
y(k) are concatenated to form the ((M + N) x 1) vector 
u(k), whose ith element is denoted by ui(k). If Λ denotes 
the set of indices i for which gi(k) is an external input, 
and ß denotes the set of indices i for which ui(k) is the 
output of a neuron (which is yi(k)), then:  

     
⎪⎩

⎪
⎨
⎧

∈

∈

β  i ,ky 

Λ i ,kg 
 = ku

i

i
i

 if)(

 if)(
)(  

The (N x (M + N)) weight matrix of the recurrent 
NN is represented by [W]. The net internal activity of 
neuron j at time k is given by: 
     ∑

∪∈

=
βΛi

ijij kukwkv )()()(  

At time (k + 1), the output of the neuron j is computed by:  
     ))(( = )1( kvky jj ϕ+  

The derivation of the recurrent algorithm starts 
by using dj(k) to denote the desired (target) response of 
neuron j  at time k, and ς(k)  to denote the set of neurons 
that are chosen to provide externally reachable outputs. A 
time-varying (N x 1) error vector e(k) has a jth element 
given by: 
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The objective is to minimize the cost function Etotal as: 
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              To accomplish this, the method of steepest 
descent which requires knowledge of the gradient matrix 
is used:  
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where )(kEW∇  is the gradient of E(k) with respect to the 
weight matrix [W]. In order to train the recurrent NN in 
real time, the instantaneous estimate of the gradient is 
used ( ))(kEW∇ .  For a particular weight lmw (k), the 
incremental change lmwΔ (k) at time k is defined as: 

     
)(

)( - = )(
kw

kEkw
m

m
l

l ∂
∂

Δ η  

where η is the learning-rate parameter. Hence:  
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To determine the partial derivative 
)()/( kwky mj l∂∂ , the NN dynamics are derived. The 

derivation is obtained by using the chain rule as follows: 
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internal activity of neuron j with respect to lmw (k) yields: 
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where ( ))()/( kwkw mji l∂∂  equals "1" only when j = m and 
i = l , otherwise it is "0". Thus: 
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where δ mj  is a Kronecker delta equal to "1" when j = m 
and "0" otherwise, and: 
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Having these equations provides that: 
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and for all {j∈ ß , m∈ ß , l∈ β∪Λ }. 
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following triply indexed set of variables ( j
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For every time step k and all appropriate j, m and 
l , system dynamics (with 0 = (0)j

mlπ ) are controlled by: 
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            The values of  )(kj
mlπ and the error signal ej(k) are 

used to compute the corresponding weight changes: 

     )()(   = )(
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j
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ς
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∈
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Using the weight changes, the updated weight 
lmw (k + 1) is calculated as follows: 

     )( + )( = 1)+( kwkwkw mmm lll Δ                   (4) 
Repeating the upper computation, the cost function 

is minimized and the objective is achieved. 
 
2.3 LMI and Model Transformation 
 
In this section, the detailed process of system  
transformation using LMI optimization will be presented.  
Consider the following system:  
     )()()( tButAxtx +=&                                                 (5) 
     )()()( tEutCxty +=                                   (6) 

The state space representation of Equations (5) 
and (6) is described as shown in Figure 10. 
 
 
 
 

 
 

Figure 10. State space block diagram. 
 

To determine the transformed matrix [A], which 
is [ A~ ], the discrete zero input response is obtained. This 
is achieved by providing the system with some initial state 
values and setting the system input to zero (u(k) = 0). 
Hence, the discrete system of Equations (5) and (6), with 
the initial condition 0)0( xx = , becomes:  
     )()1( kxAkx d=+                          (7) 
     )()( kxky =                       (8) 

We need x(k) as a target to train the NN to obtain 
the needed parameters in [ dA~ ] such that the system 

output will be the same for [Ad] and [ dA~ ]. Hence, 
simulating this system (in Equations (7) and (8)) provides 
the state response with only [Ad] being used. Once the 
input-output data is obtained, transforming the [Ad] is 
achieved using the NN training, as explained in Section 3. 

The estimated transformed [Ad] matrix is then converted 
back into the continuous form which yields: 

     ⎥
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A
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A
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~                         (9) 

Having the continuous [A] and [ A~ ] matrices, the 
permutation [P] matrix is determined using the LMI 
optimization technique, as will be illustrated in later 
sections. The complete system transformation can be 
obtained as follows: assuming that xPx 1~ −= , the system 
of Equations (5) and (6) can be re-written as: 
     )()(~)(~ tButxAPtxP +=& ,  )()(~)(~ tEutxCPty +=  
Pre-multiplying the state equation by [P-1], we obtain: 
     )()(~)(~ 111 tBuPtxAPPtxPP −−− +=&                         
which yields the following transformed model: 
     )(~)(~~)(~ tuBtxAtx +=&                       (10) 

     )(~)(~~)(~ tuEtxCty +=                       (11) 
where the transformed system matrices are given by 
{ APPA 1~ −= , BPB 1~ −= , CPC =

~ , EE =
~ }. Transforming 

the system matrix [A] into the form shown in Equation (9) 
can be achieved based on the following definition [11]. 
Definition. Matrix nMA∈ is called reducible if either: 
(a)   n = 1 and A = 0; or 
(b)   n ≥ 2, there is a permutation matrix nMP∈ , and  
        there is some integer r with )1(1 −≤≤ nr  such that:  
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where rrMX ,∈ , rnrnMZ −−∈ , , rnrMY −∈ , , and 
0 rrnM ,−∈  is a zero matrix. 

The attractive features of the permutation matrix 
[P] such as being orthogonal and invertible have made this 
transformation easy to implement. However, the 
permutation matrix structure narrows the applicability of 
this method to a very limited category of applications. 
Some form of a similarity transformation maybe used to 
correct this problem; nnnn RRf ×× →: , where f  is a 

linear operator defined by APPAf 1)( −=  [11]. Hence, 

based on the [A] and [ A~ ], LMI is used to obtain [P]. The 
optimization problem is casted as follows: 
     ε<−− − AAPPtoSubjectPP o
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which maybe written in an LMI equivalent form as: 
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where S is a symmetric slack matrix [5]. 
 
2.4 Order Model Reduction 
 
Linear time-invariant (LTI) models of several systems 
possess fast and slow dynamics, which means they are 
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singularly perturbed systems [2,12]. Neglecting the fast 
dynamics of a singularly perturbed system provides a 
reduced order system model, which has the advantage of 
designing simpler lower-dimensionality order controllers.  

To show the development of a reduced order 
model, consider the singularly perturbed system [2]: 
     011211 0     , )( )()( )( x)x(tuBtAtxAtx =++= ξ&         (15) 

     022221 0(    , )()()()( ξξξξε =++= )tuBtAtxAt&      (16) 
     )()(  )(y 21 tCtxCt ξ+=                     (17) 

where  1mx ℜ∈ and 2mℜ∈ξ  are the slow and fast state 

variables, respectively,  1nu ℜ∈ and 2ny ℜ∈ are the input 
and output vectors, respectively, { ][ iiA , [ iB ], [ iC ]} are 
constant matrices of appropriate dimensions with 

}2,1{∈i , and ε  is a small positive constant. The 
singularly perturbed system in Equations (15)-(17) is 
simplified by setting 0=ε  [2,3,12], in which we are 
neglecting the fast dynamics of the system and assuming 
that the state vector ξ  has reached the quasi-steady state. 
Hence, setting 0=ε  in Equation (16), with the 
assumption that [ 22A ] is nonsingular, produces:  

     )()()( 1
1

2221
1

22 tuBAtxAAt r
−− −−=ξ   (18) 

where the index r denotes remained or reduced model. 
Substituting Equation (18) in Equations (15)-(17) yields 
the following reduced order model:  
          )()(  )( tuBtxAtx rrrr +=&                       (19) 
     )()()( tuEtxCty rrr +=                  (20) 
where:  
     21

1
221211 AAAAAr
−−=                                (21) 

     2
1

22121 BAABBr
−−=                       (22) 

     21
1

2221 AACCCr
−−=                       (23) 

     2
1

222 BACEr
−−=                  (24) 

Example 1. Consider the following 2nd order system: 

     )(
1
1

)(
408

1530
)( tutxtx ⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
−

−
=& , [ ] )(11)( txty =  

This 2nd order system is overdamped since the two 
eigenvalues are distinct negative real numbers: {-22.9584, 
-47.0416}. As seen from the eigenvalues, since there are 
two distinct categories (fast and slow) with big difference 
between them, the singular perturbation technique can be 
applied. The reduced 1st order model is obtained as: 
     )(1.375)(27)( tutxtx rr +−=&  
     )(0.025)(1.2)( tutxty rr +=  

As seen in Figure 11, the singular perturbation 
reduction has provided an acceptable response when 
compared with the original response. 
Example 2. Consider the 5th order RLC filter shown in 
Figure 12 [9]. It is well known that the capacitor and the 
inductor are dynamical passive elements leading to their 
ability to store energy. The dynamical equations are 
derived using the Kirchhoff's current law (KCL) and 
Kirchhoff's voltage law (KVL) [9]. The capacitor current  

 
 
 
 
 
 
 
 
 
 
 
 
Figure 11. Output step response of the original and reduced 
order models ( ___ original model, -.-.-. reduced model). 
 
is proportional to the change of its voltage as follows: 

     
dt

tdv
Cti i

i

c
ic

)(
)( =  

and the inductor voltage is proportional to  the change of 
its current obtained as follows: 

     
dt

tdi
Ltv i

i

L
iL

)(
)( =  

 
 
 
 
 
 
 
              Figure 12. A 5th order RLC-based network (circuit).  
 

In order to obtain a state space model, let the 
system dynamics be the system states ( ix ). This means 
that this is a 5th order system since it contains five 
dynamical elements. Applying KCL at nodes (a) and (b) 
and KVL for the three loops starting from left to right in 
Figure 12, the following state equations are: 
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Hence, the system may be given by: 
     )()()( tButAxtx +=& , )()()( tEutCxty += , where: 
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Given the values { nF 57.21 =C , nF 57.22 =C , 
H9.82 1 μ=L , H31.8 2 μ=L , H9.82 3 μ=L , 

Ω== 10021 RR }, the resulting 5th order model is 
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obtained. The eigenvalues of the system are 
)7029.30865.5,2839.6,9863.59445.1(106 jj ±−−±−× . Performing 

model reduction, the system is reduced to 4th order by 
taking the first four rows of [A] as the first category 
represented by Equation (15) and taking the fifth row of 
[A] as the second category represented by Equation (16). 
Simulations of the original and the reduced models are 
shown in Figure 13.  

 
 
 
 
 
 
 
 
 
 
 
 
Figure 13. System output step response of the original and 
reduced order models ( ___ original model, -.-.-reduced model). 
 
 
3. NEURAL PARAMETER ESTIMATION WITH LMI 

OPTIMIZATION FOR THE BUCK MODEL 
REDUCTION  

 
Our objective is to search for a similarity transformation to 
decouple a pre-selected eigenvalue set from the system 
matrix [A]. To achieve this objective, training the NN to 
estimate the transformed discrete system matrix [ dA~ ] is 
performed [16,17]. For the system of Equations (15)-(17), 
the discrete model of the Buck converter is obtained as: 
     )()()1( kuBkxAkx dd +=+                   (25) 
     )()()( kuEkxCky dd +=                 (26) 
The estimated discrete model of Equations (25)-(26) can 
be written in a detailed form as: 
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     ⎥
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⎢
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⎡
=

)(~
)(~

)(~
2

1

kx
kx

ky                         (28) 

where k is the time index. The detailed matrix elements of 
Equations (27) and (28) are shown in Figure 9.  

The recurrent NN can be described by defining Λ 
as the set of indices i for which )(kgi is an external input 
which in the Buck converter system is one external input, 
and by defining ß as the set of indices i for which )(kyi is 
an internal input or a neuron output which in the Buck 
converter system is two internal inputs (i.e., two system 
states). Also, we define )(kui as the combination of the 
internal and external inputs for which ∪∈ ßi Λ. Using 
this setting, training the NN depends on the internal 
activity of each neuron which is given by:  

     ∑
∪∈

=
βΛi

ijij kukwkv )()()(                  (29) 

where wji is the weight representing an element in the 
system matrix ]~[ dA or input matrix ]~[ dB  for { ßj ∈ , 

∪∈ ßi Λ} such that [ ]]~[]~[ dd BA=W . At (k +1), the 
output (internal input) of the neuron j is computed by: 
     ))(()1( kvkx jj ϕ=+                       (30) 

Based on an approximation of the method of 
steepest descent, the NN estimates the system matrix [Ad] 
in Equation (7) for zero input response [17]. The error is 
obtained by matching the true state output with the neuron 
output as: 
     )(~)()( kxkxke jjj −=      
The objective is to minimize the cost function given by: 
     ∑=

k

kEE )(total , where   ∑
∈

=
ςj

j kekE )()( 2
2
1  

where ς denotes the set of indices j for the output of the 
neuron structure. This cost function is minimized by 
estimating the instantaneous gradient of E(k) with respect 
to the weight matrix [W] and then updating [W] in the 
negative direction of this  gradient [16,17]. This is 
performed as follows: 

-   Initialize [W] by a set of uniformly   distributed 
random numbers. Starting at the instant k = 0, use 
Equations (29) and (30) to compute the output values 
of the N neurons (where ßN = ).  

- For every time step k and { ,ßj∈  ,ßm∈ ∪∈ ßl Λ} 
compute the dynamics of the system governed by the 
triply indexed set of variables:  

     
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+=+ ∑

∈ßi
mj

i
mjij

j
m kukkwkvk )()()())(()1( lll

& δπϕπ   

with initial conditions 0)0( =j
mlπ , and mjδ  is given by 

( ))()( kwkw mji l∂∂  which is  equal to "1" only when 
{j = m, l=i } otherwise it is "0". Note that for the 
special case of a sigmoidal nonlinearity in the form of 
a logistic function, the derivative )(⋅ϕ&  is: 
      )]1(1)[1())(( +−+= kykykv jjjϕ&     

- Compute the weight changes corresponding to the 
error signal and system dynamics as:  
     ∑

∈

=Δ
ς

πη
j

j
mjm kkekw )()()( ll                            (31) 

- Update the weights in accordance with: 
     )()()1( kwkwkw mmm lll Δ+=+                  (32) 

- Repeat these steps until the desired result is achieved. 
As illustrated in Equations (7) and (8), for the 

purpose of estimating only the transformed system matrix 
[ A~ ], the NN training is based on the zero input response. 
Once the training is complete, the obtained weight matrix 
[W] is the discrete estimated transformed system matrix. 
Transforming the estimated system back to the continuous 
form yields the desired continuous transformed system 
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matrix [ A~ ]. Using the LMI optimization technique 
presented in Section 2.3, the permutation matrix [P] is 
determined. Hence, a complete system transformation as 
shown in Equations (10) and (11) is achieved.  

To perform order model reduction, the system in 
Equations (10) and (11) are written as: 
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o

r
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The following system transformation enables us to 
decouple the original system into retained (r) and omitted 
(o) eigenvalues. The retained eigenvalues are the 
dominant eigenvalues that produce the slow dynamics and 
the omitted eigenvalues are the non-dominant eigenvalues 
that produce the fast dynamics. Therefore, Equation (33) 
may be written as: 
     )()(~)(~)(~ tuBtxAtxAtx rocrrr ++=&   

     )()(~)(~ tuBtxAtx oooo +=&      
The coupling term )(~ txA oc  is compensated by solving for 

)(~ txo  in the second equation above by setting 0)(~ =txo
&  

using the singular perturbation method (by having 0=ε ). 
This produces the following: 
      )()(~ 1 tuBAtx ooo

−−=                    (35) 
Using )(~ txo , we get the reduced order model given by:  

     )(][)(~)(~ 1 tuBBAAtxAtx roocrrr +−+= −&                  (36) 

     )(][)(~)( 1 tuEBACtxCty ooorr +−+= −                 (37) 
Hence, the overall reduced order model is:   
          )()(~  )(~ tuBtxAtx orrorr +=&                  (38) 
     )()(~)( tuEtxCty orror +=                  (39) 
where {[ orA ],[ orB ],[ orC ],[ orE ]} are shown in 
Equations (36) and (37). 
 
4. BUCK MODEL REDUCTION USING NEURAL 

ESTIMATION AND LMI OPTIMIZATION 
 
In this section, the proposed method of system modeling 
for the Buck converter using NN with LMI and order 
model reduction is performed, and the corresponding 
input-to-output and control-to-output systems are 
obtained. 
 
4.1 Input-to-Output System Model 
 
The Buck state space model of the input-to-output system 
is given as follows: 

     A = ⎥
⎦

⎤
⎢
⎣

⎡
−
−
1/RC  1/C

1/L         0
, B = ⎥

⎦

⎤
⎢
⎣

⎡
0    
/LD 

, C = [ ]10 , E = [ ]0 . 

Since this is a 2nd order system, its eigenvalues 
should not be complex in order to perform order model 
reduction. As seen from the system matrix [A], the 
eigenvalues mainly depend on the capacitor and inductor 

values. Therefore, different capacitor and inductor values 
are considered as shown in the following examples.  

As a first example, given that {D = 0.4, R = 18.6 
Ω, L = 5.8 H, C = 0.55 mF} the eigenvalues are -3.3196 
and  -94.4321. Having the eigenvalue -94.4321 being 
much larger than the -3.3196, which shows two categories 
of eigenvalues, order model reduction can be performed. 
Thus, the system was discretized using sampling rate Ts = 
0.0005 s and then simulated for a zero input 
( )()( tAxtx =& ). Hence, based on the obtained simulated 
output data and using NN that leads to estimate the 
subsystem matrix [Ac] in Equation (9), the transformed 
system matrix [ A~ ] is obtained, where [Ar] is set to 
provide the dominant eigenvalues and [Ao] is set to 
provide the non-dominant eigenvalues of the original 
system. Using [ A~ ] along with [A], the LMI is then used 
to obtain {[ B~ ],[ C~ ],[ E~ ]}, which makes a complete model 
transformation. Finally, using singular perturbation, the 
reduced order model is obtained and the results of 
simulations are shown in Figure 14.  

 
 
 
 
 
 
 
 
 
 
 
 
Figure 14.  Input-to-output system step responses: full order 
model  (solid line) and transformed reduced order model (dashed 
line). 
 

A second example is considering the values {D = 
0.4, R = 18.6 Ω, L = 580 mH, C = 55 µF}. The 
eigenvalues are -33.1963 and -944.3208. Using the same 
procedure that was performed above, the simulation of the 
full and reduced order models for a step input has 
generated the responses shown in Figure 15.  

 
 
 
 
 
 
 
 
 
 

  
 
Figure 15. Input-to-output system step responses: full order 
model (solid line), transformed reduced order model (dashed 
line), and non-transformed reduced order model (dashed line). 
  
             It is seen in Figure 15 that the   response  of   the  
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transformed reduced order model is more accurate than 
the response of the non-transformed reduced order model. 

In a third example, different values of the 
capacitor, inductor, and resistor are considered such that 
the system eigenvalues are not very high (not very fast 
dynamics), but still one is larger than the other. Hence, the 
following values were considered {D = 0.4, R = 10.1 Ω, L 
= 3.305 H, C = 5.5 mF} and the eigenvalues are       -
3.901 and -14.099. For a step input, simulating the  
original and the transformed reduced order models along 
with the non-transformed reduced order model generated 
the results shown in Figure 16. 

 
 
 
 
 
 
 
 
 
    
 
Figure 16. Input-to-output system step responses: full order 
model (solid line), transformed reduced order model (dashed 
line), and non-transformed reduced order model (dashed line). 
 

As seen in Figure 16, the transformed reduced 
order model response is starting a little off from the 
original system response, however, it has a faster 
convergence than the non-transformed reduced order 
model response. The cause of this is due to the 
construction of the output matrix C = [0    1]; given: 
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where [Ar] is preset to the dominant eigenvalues (slow 
dynamics), [Ao] is preset to the non-dominant eigenvalues 
(fast dynamics), and [Ac] is the NN-estimated sub-matrix. 
It is seen that )(~)(~ txty o= , where )(~ txo  is the solution of 

)()(~)(~ tuBtxAtx oooo +=&  after setting it in the 

form )()(~)(~ tuBtxAtx oooo εεε +=&  and letting 0)(~ =txo
&ε  

by using the singular perturbation technique. The sub-
matrix [Ao] is set to have the fast dynamics (the -14.099 
eigenvalue) regardless of the system response and is 
independent of the NN training. Hence, having )(~ ty  
depending only on )(~ txo , which was independent of the 
training (i.e., independent of [Ac]), makes the transformed 
system response less accurate. However, if the output 
were to depend on )(~ txr , which had the NN training (i.e., 
depends on [Ac]), such that C =  [1    0], then the response 
would be as shown in Figure 17, which is more accurate 
than the non-transformed reduced order model response. 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 17. Input-to-output system step responses: full order 
model (solid line), transformed reduced order model (dashed 
line), and non-transformed reduced order model (dashed line). 
 

A fourth  example  that will  produce  complex  
eigenvalues  and thus  can  not  be reduced using the 
previously utilized singular perturbation technique is as 
follows: if the original  system  element  values are  set to  
{D = 0.4, R = 18.6 Ω, L = 58 µH, C = 5.5 µF}, then the 
eigenvalues are found complex 4105.5776)(-0.4888 ×± j . 
Here, since the system is a 2nd order and has complex 
eigenvalues, order model reduction can not be performed. 
 
4.2 Control-to-Output System Model 
 
The state space model of the control-to-output system is 
given by the system matrices: 

A = ⎥
⎦

⎤
⎢
⎣

⎡
−
−

1/RC  1/C
1/L         0

, B = ⎥
⎦

⎤
⎢
⎣

⎡

0    

/LVg , C = [ ]1       0 , E = [ ]0 .    

As seen in the above matrices, the system matrix 
[A] of the control-to-output state space model is the same 
as the input-to-output system. The only difference is that 
the input matrix [B] has changed to depend on the element 
Vg instead of D. Thus, the eigenvalues will be the same 
and the response will be of the same type as the input-to-
output system. For instance, considering the elements of 
the system model given by {Vg = 15 V, R = 18.6 Ω, L = 
58 mH, C = 5.5 µF}, the system output step response is 
shown in Figure 18. As previously seen, the transformed 
reduced model response has a faster convergence than the 
response of the reduced model without system 
transformation. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 18. Control-to-output system step responses: full order 
model (solid line), transformed reduced order model (dashed 
line), and non-transformed reduced order model (dashed line). 
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5. IMPLEMENTATION OF STATE FEEDBACK 
CONTROL ON THE REDUCED ORDER BUCK 
CONVERTER 

 
Many control techniques such as ∞H control, robust 
control, stochastic control, intelligent control, etc. can be 
applied on the reduced order model to meet given design 
specifications. Yet, in this paper, since the Buck converter 
is a 2nd order system and is reduced to a 1st order, we will 
investigate system stability and enhancing performance by 
considering the simple pole placement method. 

For the reduced order model in the system of 
Equations (38) and (39), a state feedback controller can be 
designed. For example, assuming that a controller is 
needed to provide the system with faster dynamical 
response, this can be done by replacing the system 
eigenvalues with new faster eigenvalues. Therefore: 
     )()(~)( trtxKtu r +−=                   (40) 
where K is to be designed based on the desired system 
eigenvalues. State feedback control for the transformed 
reduced order model is illustrated in Figure 19.  
 
 
 
 
 
 
 
Figure 19. Block diagram of a state feedback control with  
{[ orA ],[ orB ],[ orC ],[ orE ]} overall reduced model matrices. 
 

Replacing the control input )(tu  in Equations 
(38) and (39) by the new control input in Equation (40) 
yields the following reduced system equations: 
     )]()(~[)(~)(~ trtxKBtxAtx rorrorr +−+=&                 (41) 
     )]()(~[)(~)( trtxKEtxCty rorror +−+=                 (42) 
which can be re-written as:  
     )()(~)(~)(~ trBtxKBtxAtx orrorrorr +−=&     
             )()(~][ trBtxKBA orroror +−=   
     )()(~)(~)( trEtxKEtxCty orrorror +−=     
            )()(~][ trEtxKEC orroror +−=   
The closed-loop system model is:  
     )()(~)(~ trBtxAtx clrcl +=&                  (43) 
     )()(~)( trEtxCty clrcl +=                  (44) 
such that the closed loop system matrix [Acl] will provide 
the new desired system eigenvalues.  
Example 3. Consider the input-to-output system presented 
in Section 4, where the eigenvalues are -3.901 and -
14.099. Using the new transformation-based reduction 
technique, one obtains: 

     
)(]1212.0[)(~]3503.0[)(

)(]8051.5[)(~]901.3[)(~

tutxty
tutxtx

rr

rr

−+−=
−+−=&

 

with the preserved eigenvalue of -3.901. Now, suppose 
that a new eigenvalue λ = -9, which will produce faster 

system dynamics, is desired for this reduced order model. 
This objective can be achieved by first setting the desired 
characteristic equation as 09 =+λ .  

To determine the feedback control gain K, the 
characteristic equation of the closed-loop system is 
needed. This can be achieved using Equations (41) and 
(43) which yields:  
     →=− 0)( clAIλ   0][ =−− KBA ororIλ  
Knowing that orA = -3.901 and orB = -5.805, the closed-
loop characteristic equation can be compared with the 
desired characteristic equation. Doing so, the feedback 
gain K is -0.8784. Hence, the closed-loop system now has 
the eigenvalue of -9. As stated previously, the objective of 
replacing eigenvalues is to enhance system performance. 
Simulating the reduced order model with the new 
eigenvalue for the same original system input (the step 
input) has generated the response shown in Figure 20. 
 
 
 
 
 
 
 
 
 
 
 
  
 
Figure 20. Enhanced system step responses based on pole 
placement: full order model (solid line), transformed reduced 
order model (dashed line), non-transformed reduced order model 
(dashed line), and the controlled transformed reduced order 
(dashed line). 
 

As shown in Figure 20, the new normalized 
system response is faster than the system response 
obtained without pole placement; the settling time in the 
reduced controlled system response is about 0.4 s while in 
the uncontrolled system response is about 1.3 s. This 
shows that even simple state feedback control using the 
transformation-based reduced order model can achieve the 
equivalent system performance enhancement obtained 
using complex and expensive control on the original full-
order system. 
 

6. CONCLUSION 
 
A new method of control for the Buck converter is 
introduced in this paper. To achieve this control, the 2nd 
order Buck system was reduced to a 1st order system. This 
reduction was done by the implementation of a recurrent 
supervised NN to estimate certain elements [Ac] of the 
transformed system matrix [ A~ ], while the other elements 
[Ar] and [Ao] are set based on the system eigenvalues such 
that [Ar] has the dominant eigenvalues (slow dynamics) 
and [Ao] has the non-dominant eigenvalues (fast 
dynamics). To obtain the transformed matrix [ A~ ], the 
zero input response was used to obtain output data related 
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to the state dynamics, based only on the system matrix 
[A]. After the transformed system matrix was obtained, 
the LMI optimization technique was used to determine the 
permutation matrix [P], which is required to obtain 
{[ B~ ],[ C

~ ],[ E~ ]}. The reduction process was then 
performed using the singular perturbation method, which 
operates on neglecting the faster-dynamics eigenvalues 
and using the dominant slow-dynamics eigenvalues to 
control the system. Simple state feedback control using 
pole placement was then applied on the reduced Buck 
model to obtain the desired Buck system response.  
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