
  
Abstract— The Lyapunov’s second method for the stability 

analysis of nonlinear dynamic systems requires finding 
Lyapunov functions. Unfortunately, finding a suitable 
Lyapunov function is a tedious process for a given complex 
nonlinear system if it is not impossible. On the other hand 
there are several algebraic approaches like the eigenvalue 
method for analyzing or designing linear time invariant 
systems. In this paper, we develop the eigenvalue method for 
the stability analysis of extended homogeneous nonlinear 
systems. In the case of polynomial homogeneous systems of 
zero degree it is shown that the zero equilibrium state of 
system is globally asymptotically stable if and only if all the 
homogeneous eigenvalues have negative real parts. Ultimately, 
an example is presented to describe the approach. 

Index Terms-- homogeneous nonlinear system, 
asymptotical stability, nonlinear eigenvalue. 

NOMENCLATURE 
|| ||⋅  A given norm on n\  

0 0x(t, t , x )  A trajectory starting at 0 0x(t ) x=  
u  The underline variable means a vector 

quantity 
ZES Zero Equilibrium State 
(G)AS (Globally) Asymptotically Stable 
K  or\ ^  

I. INTRODUCTION 
Consider the following n-dimensional autonomous 

dynamical system with a ZES (see the nomenclature): 
nx f (x) , x= ∈� \  (1) 

The advantage of the Lyapunov’s second method is to use  
Lyapunov functions or energy like functions. When the 
complexity of a nonlinear system is increased, selecting a 
suitable Lyapunov function which has at least negative 
semi-definite derivative is an involving task, see  [1]. 

The lifetime of eigenvalue tool for the stability analysis of 
linear time invariant (LTI) systems reaches to the history of 
linear differential equations, and almost all designing 
methods for LTI systems are based on eigenvalues. Finding 
a similar tool for the stability analysis of nonlinear systems 
is an ideal of each control engineer. Several researchers 
have followed the concept of nonlinear eigenvalue problem. 
Let us denote a pair of nonlinear eigenvalue λ  and 
nonlinear eigenvector v 0≠  by n( , v)λ ∈ ×^ ^ . There are 
generally two types of definitions for nonlinear eigenvalues: 
1) Most researchers define a pair ( , v)λ  as a nontrivial 
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solution of T( )v 0λ = , for some family n nT( ) ,λ λ×∈ ∈^ ^  
of complex matrices  [2] and  [3]. 2) However, some other 
papers consider a nonlinear operator n nf : →^ ^  with an 
extra condition f (0) 0= , and define a pair ( , v)λ  as a 
nontrivial solution of f (v) vλ=   [4]. 

Samardzija introduced the nonlinear eigenvalues solving 
f (v) vλ=  for the standard homogeneous systems of form 
(1) [5]. He used the real nonlinear eigenvalues in the 
stability analysis of ZES of these systems. Then he used real 
nonlinear eigenvalues for stabilization of standard 
homogeneous systems in  [6]. 

The standard homogeneous system used by Samardzija  [5] 
has a natural generalization, called extended homogeneous 
system with respect to a family of dilations, or briefly 
homogeneous system (the difference with the terminology 
standard homogeneous system is obvious). Many subjects, 
which are concern with the nonlinear systems, first have 
been applied to extended homogeneous systems or are most 
related to them, such as: controllability and local 
approximation  [8], exponential stabilization  [9], control by 
adding power integrator technique  [10], and finite time 
stabilization  [11]. The nonlinear extended homogeneous 
systems have some similarities to LTI systems; e.g. it is 
well-known that the ZES of a nonlinear time invariant 
extended homogeneous system is AS iff it is GAS  [12]. 

Nakamura et al [13] defined real nonlinear eigenvalues for 
extended homogeneous systems. The real eigenvalues were 
used for the stability analysis of planar homogeneous 
systems. However, their definition has several drawbacks: 
The extension of it to complex nonlinear eigenvalues for 
homogeneous systems is not straightforward. Also it does 
not contain the Samardzija’s definition of nonlinear 
eigenvalues for standard homogeneous systems as a special 
case. 

In this paper, we modify the definition of nonlinear 
eigenvalues for extended homogeneous systems. The new 
definition includes complex nonlinear eigenvalues as well 
as the special eigenvalues for standard homogeneous 
systems. Also, using the new definition, the role of complex 
nonlinear eigenvalues in the stability analysis of extended 
homogeneous systems is analyzed. It is shown for 
polynomial extended homogeneous systems with zero 
degree of homogeneity, the ZES of system is GAS iff all the 
nonlinear eigenvalues (complex or real) have negative real 
parts. We assume that the reader is familiar with the 
Lyapunov stability definitions and theorems  [1]. 

This paper is organized as follows. In section 2, the 
preliminary definitions and results about homogeneous 
systems are given. In section 3, the main results are 
presented on the stability analysis of homogeneous systems. 
Eventually, an example is given to present the established 
results. 
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II. THE PRELIMINARY DEFINITIONS AND RESULTS 

A. The Homogeneous Systems 
Let K  denote anyone of \ or ^  and consider a function 

nv(x) : →K K  and a nonlinear dynamic system with ZES: 
nx f (x) , x= ∈� K  (2) 

We briefly recall the notion of homogeneity  [12]: For a 
sequence of positive weights 1 nr (r , , r )= … , ir 1≥  and a 
variable α ∈K  a dilation is defined as a family of linear 
maps 1 nr rr

1 n(x) ( x , , x )α α α∆ � … . The v(x)  function is 

homogeneous of degree p with respect to the dilation r
α∆  if 

r pv( x) v(x)α α∆ = . Briefly it is called ∆-homogeneous of 
degree p and is denoted by pv H∈ . The f (x)  vector field 

is homogeneous of degree k with respect to the dilation r
α∆  

if r k rf ( x) f (x)α αα∆ = ∆ . Briefly it is called ∆-homogeneous 
of degree k and is denoted by kf n∈ . 

The special weights r (1,1, ,1)= …  are referred as standard 
weights, thus v(x)  and f (x)  are said to be standard 

homogeneous of degree p  if pv( x) v(x)α α=  and 
p 1f ( x) f (x)α α +=  respectively. 

For ip 2 max r≥  the ∆-homogeneous p-norm is defined by 
in p r 1 p

{ ,p} ii 1|| || ( | x | )∆ =⋅ ∑� . It is clear that ,p 1|| || H∆⋅ ∈ , while 

this is not a true norm, because it doesn’t satisfy the 
triangular inequality. The ∆-homogeneous Euler vector field 

j

n
j jj 1 x(x) r xυ ∂

= ∂= ∑  ( t
1 1 n n(x) [r x , , r x ]υ = … simply) on nK  

is the infinitesimal generator of the group r
0{ }α α >∆ = ∆  

acting on nK . A trajectory of x (x)υ=�  started from each  
n

0x ∈K  is geometrically an orbit r
0{ (x ) : 0}α α∆ >  of 

r
0{ }α α >∆  group ( teα = ), and it is called a ∆-homogeneous 

ray. A ∆-homogeneous ray is shown in Fig. 1. It is clear that 
0nυ ∈ . The following lemma demonstrates the radial 

symmetry of ∆-homogeneous systems (shown in Fig. 1.). 

0x r
0xα∆

t k
t

α

1x

r
1xα∆

0

0α >
 

Fig. 1. The radial symmetry of ∆-homogeneous systems. 

Lemma 1  [14]: Consider the ∆-homogeneous nonlinear 
system (2) of degree k and let 0(t, x )φ  denote a trajectory 

of this system starting from any initial state n
0x ∈K  and 

parametrized by t. Then applying r
α∆  for 0α >  to 0(t, x )φ  

leads to a new trajectory of system, i.e.  

r k r n
0 0 0(t, x ) (t , x ) , 0, xα αφ φ α α∆ = ∆ ∀ > ∀ ∈K  (3) 

▀ 
A ∆-homogeneous ray is r

0{ (x ) : 0}α α∆ >  for some 

0x 0≠ . Someone may consider an arbitrary α ∈K  to 

define the set r
0{ (x ) : }α α∆ ∈K  as a K∆-homogeneous ray 

(K means real or complex depending on K ). 

B. The Pervious Results on Homogeneous Eigenvalues 
Samardzija introduced the standard homogeneous 

eigenvalues for standard homogeneous systems and used 
real eigenvalues in the stability analysis of ZES [5]. 
Definition 1  [5]: Considering a standard homogeneous 
system (2), a standard homogeneous eigenvalue λ ∈K  and 
a standard homogeneous eigenvector nv ∈K  are defined as 
a pair of nontrivial solutions for 
f (v) vλ=  (4) 

Theorem 1  [5]: Consider a standard homogeneous system 
(1) on n\ and its real standard homogeneous eigenvalues 
corresponding to real eigenvectors defined by (4): 

i. A necessary condition for GAS of ZES of (1) is that 
every real λ defined by (4) is negative. 

ii. If a planar standard homogeneous system ( n 2= ) has 
at least one real eigenvector 2v ∈\  then the ZES of it 
is GAS iff every real λ defined by (4) is negative. ▄ 

Nakamura et al  [13] defined real homogeneous 
eigenvalues and eigenvectors for a ∆-homogeneous system 
(1) of degree k k(f n )∈  as pairs of nontrivial solutions of 

k n
{ ,2}f (v) || v || (v) , vλ υ∆= ∈\  (5) 

where { ,2}|| v || ∆  denotes the ∆-homogeneous second norm 

and ( )υ ⋅  is the ∆-homogeneous Euler vector field. A 
simplified version of their theorem (Theorem 2 in  [13]) is 
the following: 
Theorem 2  [13]: Consider a ∆-homogeneous system (1) of 
degree k k(f n )∈  and let all the trajectories of (1) approach 
to real homogeneous eigenvectors defined by (5) and every 
real homogeneous eigenvalue λ defined by (5) is negative 
then the ZES of this system is GAS. ▄ 

III. THE NEW RESULTS 

A. The ∆-Homogeneous Eigenvalues 
Nakamura et al  [13] defined real homogeneous 

eigenvalues for ∆-homogeneous nonlinear systems using 
(5). We introduce complex eigenvalues for such systems 
and implement them in the stability analysis of ZES. 
However (5) is not useful for complex eigenvalues, because 
the homogeneous norm used in (5) destroys the usefulness 
of complex solutions of (5) for the stability analysis. Thus, a 
new idea will be used to define the homogeneous 
eigenvalues of ∆-homogeneous systems. 

The radial symmetry of the ∆-homogeneous systems was 
shown in Fig. 1. It is somehow similar to the radial 
symmetry of the LTI systems. Therefore a ∆-homogeneous 
ray is a generalization of a homogeneous ray in the LTI 
systems to the ∆-homogeneous systems. On the other hand, 
a trajectory of a given LTI system starting from an 
eigenvector of it remains in the direction of that eigenvector. 
Thus the similarities between the ∆-homogeneous systems 
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and the LTI systems lead us to the following definition: 
Definition 2: A ∆-homogeneous eigenvector (or briefly a 
∆-eigenvector) of a given ∆-homogeneous system (2) is 
defined as a vector nv ∈K  such that the trajectory (t, v)φ  
of the system lies in a K∆-homogeneous ray. In other 
words, a continuous function g(t) : →\ K  exists such that 

r
g(t)(t, v) vφ = ∆  (6) 

The following useful lemma will lead to the definition of    
∆-homogeneous eigenvalues. 

Lemma 2: Using the Definition 2, a vector nv ∈K  is a      
∆-eigenvector of a given ∆-homogeneous system (2) of 
degree k ( kf n∈ ) iff there exists a λ ∈K such that 

nf (v) (v) , v ,λυ λ= ∈ ∈K K  (7) 

Proof: Necessity: Let nv ∈K  be a ∆-eigenvector and (6) be 
satisfied. First replacing t 0=  in (6) leads to 

r r
1 g(0)v v (0, v) vφ∆ = = = ∆ , thus g(0) 1=  in (6). Then 

differentiation of (6) with respect to t, some manipulation 
and substitution (t, v) f [ (t, v)]φ φ=�  yields: 

( ) ( )

1 n

1 n

r rrd d
g(t) 1 ndt dt

r r r
1 1 n n g(t)

(t, v) v [g v , ,g v ]

g(t) g(t) [r g v , , r g v ] g(t) g(t) [ v]

φ

υ

= ∆ = =

= ∆ ⇒

� …

� �…
 

( )r r
g(t) g(t)f [ v] g(t) g(t) [ v]υ∆ = ∆�  (8) 

Then substituting t 0=  and g(0) 1=  in (8) yields 
f (v) g(0) (v)υ= � . Defining g(0) λ� �  leads to (7). 
 Sufficiency: Let a pair ( , v)λ be a nontrivial solution for 
(7). Then we find a continuous function g(t)  satisfying (6) 
or equivalently (8). Substitute the homogeneity definitions 
for kf n∈ and 0nυ ∈  in (8) and then substitute (7) and use 
the linearity property of the dilation operator: 

( )k r r
g(t) g(t)

k 1 r r
g(t) g(t)

[g(t)] f (v) g(t) g(t) (v)

[g(t)] (v) g(t) (v)

υ

λ υ υ+

∆ = ∆ ⇒

∆ = ∆ ⇒

�

�
 

Hence it is necessary to have 
k 1g(t) [g(t)] λ+=�  (9) 

The differential equation (9) could be integrated using 
g(0) 1=  to obtain the g(t) function: 

g(t) t
k

k 1
1 0 t

1 , k 0dg 1 (k 1) tdt g(t)
g

e , k 0λ

λλ
+

⎧ ≠⎪ − +′= ⇒ = ⎨
⎪ =⎩

∫ ∫  

Finding the g(t) function completes the proof, and the 
trajectory started from a ∆-eigenvector v  is given by 

k

t

r
1

r 1 (k 1) tg(t)

e

v , k 0
(t, v) v

v , k 0λ

λφ − +

⎧∆ ≠
⎪

= ∆ = ⎨
⎪∆ =⎩

 

(10) 
 

 
▄ 

The above lemma introduces a λ ∈K  corresponding to 
each ∆-eigenvector nv ∈K . Considering the literature of 
eigenvectors leads to the following definition: 
Definition 3: A ∆-homogeneous eigenvector (or briefly    
∆-eigenvector) and corresponding ∆-homogeneous 
eigenvalue (or briefly ∆-eigenvalue) for a given                 

∆-homogeneous system (2) are defined as a ( , v)λ  pair of 
nontrivial solutions of (7). ▄ 
Remark 1: The Definition 3 is reduced to the Definition 1 
in the case of standard homogeneity. Comparing with the 
result of  [13], the new definition is useful for both real and 
complex ∆-eigenvalues, while the previous definition was 
useful only for real case. Also in the real case the               
∆-homogeneous eigenvectors in both definitions are equal, 
while the ∆-homogeneous eigenvalues are multiple with a 
positive factor k

{ ,2}|| v || ∆ . ▄ 
Note that each ∆-eigenvector has a unique ∆-eigenvalue 

because (7) could be used to obtain the following equation: 
T 2[ (v) f (v)] || (v) ||λ υ υ=  (11) 

It is known that a multiple of each eigenvector in a LTI 
system is again an eigenvector. The following lemma state a 
similar property for the ∆-homogeneous systems. 
Lemma 3: If ( , v)λ  is a pair of ∆-eigenvalues and             
∆-eigenvectors for a given ∆-homogeneous system (2) of 
degree k ( kf n∈ ) then k r

e e( , v ) ( , v)αλ α λ= ∆  is another 
such a pair for an arbitraryα ∈K . 
Proof: Let (7) be held for the ( , v)λ  pair. Then some 
manipulations yields: 

r k r k r k r
ef (v ) f ( v) f (v) [ (v)] (v)α α α αα α λυ α λ υ= ∆ = ∆ = ∆ = ∆  

k r
e e( ) ( v) (v )αα λ υ λ υ= ∆ =  ▄ 

The lemma means that the set of ∆-eigenvectors of a given 
∆-homogeneous system is the union of several K∆-
homogeneous rays. We call such rays the K∆-eigenvector 
rays (K means real or complex depending on K ).  

B. The Stability Analysis Using Eigenvalues 
Using (10) a solution started from a given ∆-eigenvector 

lies in a K∆-homogeneous ray. Such a solution which is 
analytically given by (10) is called a characteristic solution 
of a ∆-homogeneous system. This terminology was first 
used in  [5] for the case of standard homogeneous systems. 

The asymptotical behavior of trajectories of a ∆-
homogeneous system is related to the asymptotical behavior 
of its characteristic solutions, and the later one depends on 
the ∆-eigenvalues (Let t → +∞  into (10)). Table 1 
summarizes the correspondence between the asymptotical 
behavior and the ∆-eigenvalues. This table shows that ∆-
homogeneous systems with zero degree of homogeneity 
behave similar to LTI systems, while the behavior of other 
∆-homogeneous systems is more complex. 
TABLE 1. THE ASYMPTOTICAL BEHAVIOR OF CHARACTERISTIC SOLUTIONS 

Asymptotical Behavior k > 0 k = 0 
(t, v)φ → ∞  (Divergent) λ∈ , λ > 0 Re λ > 0 

Marginally Stable (Oscillating) λ = 0 Re λ = 0 
(t, v) 0φ →  (Convergent) Otherwise Re λ < 0 

For example consider the case where \λ ∈^ \  and k 0>  
in (10): The denominator of fraction in this equation never 
vanishes, thus letting t → +∞  implies that (t, v) 0φ → ; this 
is an unfamiliar behavior comparing with the LTI systems. 
Table 1 divides the λ-plane for the positive degree ∆-
homogeneous systems into three regions depending on the 
asymptotical behavior of characteristic solutions. This is 
shown in Fig. 2. 
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Fig. 2. The regions of λ-plane corresponding to asymptotical behavior of 

characteristic solutions for positive degree ∆-homogeneous systems (k>0). 
Using the information of Table 1, new theorems on the 

stability analysis of ∆-homogeneous systems could be 
stated. The first theorem is a generalization of Theorem 1 to 
the case of ∆-homogeneous systems. 

Theorem 3: Consider a ∆-homogeneous system (1) on n\  
and its real ∆-eigenvalues corresponding to real ∆-
eigenvectors defined by (7). 

i. A necessary condition for GAS of ZES of (1) is that 
every real λ defined by (7) is negative. 

ii. If a planar ∆-homogeneous system ( n 2= ) has at least 
one real eigenvector 2v ∈\  then the ZES of it is GAS 
iff every real λ defined by (7) is negative. ▄ 

Proof: The part ( i) of this theorem is obvious using the 
Table 1. Using the result of part ( i), in part ( ii) it is only 
required to prove the sufficient condition. If the system has 
at least one real eigenvector 2v ∈\  then its characteristic 
solution lies in a real ∆-homogeneous ray. On the other 
hand the trajectories of ∆-homogeneous system (1) have 
radial symmetry using Lemma 1. Since (1) is assumed to be 
a planar system then all the trajectories approach to real ∆-
eigenvector rays of system. Then comparing (5) and (7) and 
applying Theorem 2 for real ∆-eigenvalues completes the 
proof. ▄ 

It is known from Theorem 3 that the real ∆-eigenvalues 
provide only necessary conditions for GAS of ZES of ∆-
homogeneous systems of higher dimension n>2. Comparing 
with the LTI systems direct us to consider the role of 
complex ∆-eigenvalues, however the new definition of 
homogeneous eigenvalues permits complex valued ∆-
eigenvalues. 

Let the nonlinear system (1) on n\  be ∆-homogeneous. 
Some necessary and sufficient condition for GAS of ZES of 
(1) using complex ∆-eigenvalues is under consideration. 
However a generalization of (1) onto n^  is required for the 
stability analysis of ZES using complex ∆-eigenvalues. The 
polynomial ∆-homogeneous systems have such 
generalization, thus we will consider only polynomial 
systems. 

Against the earlier hopes, there are some drawbacks for 
the use of complex ∆-eigenvalues for the stability analysis 
of a ∆-homogeneous system (1), as follows: 

1) Using Table 1 in the case of positive degree of 
homogeneity ( k 0> ) implies that, the role of ∆-eigenvalues 
in the stability analysis is very complex. 

2) Because of nonlinearity of (1) the effect of complex    
∆-eigenvalues on behavior of real trajectories of (1) is 
unknown. 

3) The main shortcoming is introduced through the 
Lemma 3 for ∆-homogeneous system (1) with positive 
degree of homogeneity ( k 0> ): Let the ∆-homogeneous 
system (1) has at least one nonzero ∆-eigenvalue 0λ ≠ , 

then using an arbitrary nonzero α ∈^  in Lemma 3 yields 
that every e \{0}λ ∈^  is an available ∆-eigenvalue for the 
∆-homogeneous system (1). Thus this system has ∆-
eigenvalues all over the \{0}^ . Using Table 1 yields that 
this system has both types of stable and unstable ∆-
eigenvalues.  

C. The Zero Degree ∆-Homogeneous Systems 
Let (1) be a polynomial ∆-homogeneous system with zero 

degree of homogeneity ( k 0= ). 
Fortunately, the previously mentioned shortcomings for 

complex ∆-eigenvalues do not exist in the case of zero 
degree ∆-homogeneous systems. Thus good results will be 
obtained for these systems here: 

1) Using k 0=  in Lemma 3 implies that if ( , v)λ  is a pair 

of ∆-eigenvalues and ∆-eigenvectors for (1) then r( , v)αλ ∆  
is another such pair for every α ∈K . This result is similar 
to LTI systems. 

2) The stability of characteristic solution (10) depends on 
Re{ }λ  similarly to the LTI systems. 

The main theorem of this paper is the following: 
Theorem 4: Let (1) be a polynomial ∆-homogeneous 
system with zero degree of homogeneity ( k 0= ). The ZES 
of (1) is GAS iff all ∆-eigenvalues of (1) have negative real 
parts. ▄ 

We need some preliminary assumptions and lemmas to 
prove this theorem.  
Hypothesis 1: Let there are some natural numbers 

1 2 Nr r r< < <" such that the dilation r
α∆  could be stated 

using the following block diagonal form: 
1 1

1

N N
N

r r
n 1 1

r

r r
Nn N

I x x
x

xI x
α

α α

α α

⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥∆ = = ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦

% # #  

(12) 

where T T T T
1 2 Nx [x x x ]= "  is a given partition using: 

in
i

N
ii 1

x i 1, 2, , N

n n=

⎧ ∈ =⎪
⎨

=⎪⎩∑
\ …

 
(13) 

▀ 
Hypothesis 1 is not a limiting assumption, because in a 

given ∆-homogeneous system (1), someone can reorder the 
state variables to reach ascending ir  numbers in the dilation 
operator. Then the equal ir  numbers could be grouped as 
following: 

1 2 N

n

1 1 1 2 2 2 N N N
n n n

r r r r r r r r r
������������
… … … …��	�
 ��	�
 ��	�
  

Lemma 4: Let (1) be a polynomial ∆-homogeneous system 
with zero degree of homogeneity (k=0) with respect to the 
dilation (12). Then (1) has the following lower triangular 
canonical form: 

1 1 1

2 1 1 2 2

3 2 1 2 3 3

N N 1 1 2 N 1 N N

x A x
x P (x ) A x

: x P (x , x ) A x

x P (x , x , , x ) A x− −

=⎧
⎪ = +⎪⎪Σ = +⎨
⎪
⎪
⎪ = +⎩

�
�
�
#
� …

 

(14) 

C
onverge Re

Im 
Converge 

Converge 

Diverge. 

Marginal 
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where the i iA x  terms denote the linear parts of system - iA  
is a n ni i×  matrix for i 1, , N= " - and the iP ( )⋅  
polynomials denote the nonlinear parts of system. 
Proof: Since 0f n∈  then r rf ( x) f (x)α α∆ = ∆ . This 

relationship using (12) and the T T T T
1 2 Nf [f f f ]= "  partition 

is converted to the union of the following relationships: 
irr

i if ( x) f (x) , i 1,2, , Nα α∆ = = …  (15) 

Using (15) for each i implies that the if (x)  is a polynomial 
vector function independent of i 1 Nx , , x+ … , because these 

variables generate Ni 1 rr , ,α α+ …  when computing r xα∆  and 

their power are greater than irα , thus the existence of 
i 1 Nx , , x+ …  in if (x)  contradicts with (15). The system has 

a lower triangular form, because i i 1 2 if f (x , x , , x )= " . 
Note that the dependence of if (x)  on ix  could not be 

nonlinear, because of irα  factor in (15). Also by the same 
reason, the dependence of if (x)  on 1 2 i 1(x , x , , x )−…  must 
have a nonlinear form. Thus we have the following: 

i i i 1 1 2 i 1 i ix f (x) P (x , x , , x ) A x− −= = +� …  (16) 
▀ 

Theorem 5: Consider the polynomial ∆-homogeneous 
system Σ in (14) with zero degree of homogeneity. The ZES 
of (14) is GAS iff its linearization given below is GAS. 

1 1

2 2

N N

A x
A x

x

A x

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

�
% #

 

(17) 

Proof: Sufficiency: Let (17) be GAS, thus the Σ system 
could be considered as a cascade of several GAS linear 
subsystems with nonlinear feed forward inputs. The 

1 1 1x A x=�  subsystem of Σ is GAS and a 1 Kφ ∈  (a function 
of class K) exists such that  

1 1 1 1

1 1

|| P (x (t)) || (|| x (0) ||) t 0

|| P (x (t)) || 0

φ≤ ∀ ≥⎧⎪
⎨

→⎪⎩
 

(18) 

Thus the second subsystem of Σ, i.e. 2 2 2 1 1x A x P (x )= +�  is 
a GAS linear time invariant system 2 2 2x A x=�  with a 
bounded and vanishing input 1 1P (x ) . Thus it is also GAS 
and we have: 

2 1 2 2 1 1

1 1 1 2

|| x (t) || k || x (0) || k (|| x (0) ||)

x (t) 0 P (x (t)) 0 x (t) 0

φ≤ +⎧⎪
⎨

→ ⇒ → ⇒ →⎪⎩
 

(19) 

The GAS of the other subsystems of Σ could be proved 
using mathematical induction. 

Necessity: Let the ZES of Σ is GAS. All iA  matrices must 
be Hurwitz. The 1A matrix is Hurwitz, using the lower 
triangular form of Σ. To prove the Hurwitz-ness of iA  for 
i 1> , suppose the 1 2 i 1(x 0, x 0, , x 0)−= = =…  initial 
conditions. Since the ZES of Σ is GAS, the subsystem (16) 
using i 1 1 2 i 1P (x , x , , x ) 0− − =…  is also GAS, thus iA  is 
Hurwitz. ▄ 
Proof of Theorem 4: 

It is sufficient to prove the Theorem 4 for Σ in (14), i.e. 
the canonical form ∆-homogeneous system of zero degree. 

The is  eigenvalues of LTI system (17) are roots of the 
following equations: 

i i i i

i

A v s v
, i 1, 2, , N

v 0
=⎧

=⎨ ≠⎩
…  

(20) 

On the other hand, let ( , x)λ  be a pair of ∆-eigenvalues 
and ∆-eigenvectors for Σ, thus: 

1

N

1 n 1

N n N

r I x
f (x) (x)

r I x
λν λ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

% #  

(21) 

This equation could be written using (14) as follows: 
1 1 1 1

2 2 1 1 2 2

3 3 2 1 2 3 3

N N N 1 1 2 N 1 N N

r x A x
r x P (x ) A x
r x P (x , x ) A x

r x P (x , x , , x ) A x

λ
λ
λ

λ − −

=⎧
⎪ = +⎪⎪ = +⎨
⎪
⎪
⎪ = +⎩

#
…

 

(22) 

The solutions of (22) could be obtained using the 
solutions of (20) as follows. The ∆-eigenvector x 0≠  thus 
at least for one i, ix 0≠ . 

If 1x 0≠  then comparing 1 1 1 1r x A xλ =  and 1 1 1 1s v A v=  
in (22) and (20) yields: 

1 1

1 1

x v 0
s / rλ

= ≠⎧
⎨ =⎩

 
(23) 

Thus when 1x 0≠ , the ∆-eigenvalue λ  is equal to 
eigenvalue of 1A  divided by 1r . The remained 2 Nx , , x…  
components are determined using the last equations of (22). 

Generally for determining a ∆-eigenvector x 0≠ , let i be 
the least number such that ix 0≠ , thus 1 i 1x x 0−= = =" . 
Substituting this in (22) leads to i i i ir x A xλ =  which is 
compared to i i i is v A v=  and yields: 

i i

i i

x v 0
s / rλ

= ≠⎧
⎨ =⎩

 
(24) 

Thus the ∆-eigenvalue λ  is equal to an eigenvalue of iA  
divided by ir . The other components of x  are computed 
iteratively using 

kk n k k k 1 i i 1 k 1

for k i 1 to N
( r I A )x P (0, ,0, x , x , , x )

next k

λ − + −

⎧ = +
⎪

− =⎨
⎪
⎩

… …  

(25) 

Hence all the ∆-eigenvalues for Σ are equal to eigenvalues 
of (17) multiplied with positive factors. ▄ 

IV. AN EXAMPLE 
Example 1: The nonlinear system 

33
1 11 12 11 1 12 21

2 5 2
2 21 221 2 21 1 22 1 2

1 0x a a a x a xx
x a a0 x x a x a x x

⎡ ⎤⎡ ⎤ ⎡ ⎤ +⎡ ⎤ ⎡ ⎤
= = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

+⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

�
�

 (26) 

is ∆-homogeneous of degree two with respect to weights 
1 2r (r , r ) (1,3)= = , i.e. 2f n∈ , because 

3 3
11 1 12 2r

5 2 3
21 1 22 1 2

a ( x ) a ( x )
f ( x)

a ( x ) a ( x ) ( x )
λ

λ λ

λ λ λ

+
∆ =

+

⎡ ⎤
=⎢ ⎥

⎢ ⎥⎣ ⎦
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3
11 1 12 22 2 r

3 5 2
21 1 22 1 2

0 a x a x
f (x)

0 a x a x x
λ

λ
λ λ

λ

+
= = ∆

+

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

 

Let us find the ∆-eigenvalues and ∆-eigenvectors of (26) 

using the parameter values 5 1
2 4

A ⎡ ⎤− −
⎢ ⎥

−⎢ ⎥⎣ ⎦
= . Replacing (26) into 

(7) yields: 
3
1 2 1

5 2
21 1 2

5v v v1 0
v0 32v 4v v

λ
⎡ ⎤− − ⎡ ⎤⎡ ⎤

= ⇒⎢ ⎥ ⎢ ⎥⎢ ⎥
−⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦

 

3 5 2
1 2 1 1 2

1 2

5v v 2v 4v v
v 3v

λ
− − −

= =  
(27) 

First the ∆-eigenvectors are found eliminating the λ  
variable and using the 3

1 2z v v� change of variables 
22z 11z 3 0+ + =  (28) 

If the equation (28) has real solutions for z, then the real    
∆-eigenvector rays are determined by the 3

2 1zv v=  curves.  
The solution of (28) yields real values z { 0.29 , 5.21}∈ − − . 
The Fig. 3. shows the real ∆-eigenvector rays and solution 
curves for (26). It is clear that any solution curves of this 
nonlinear system approach to the ∆-eigenvector rays. Let us 
use 1v 1= ±  and 3

1 2z v v { 0.29 , 5.21}= ∈ − −  to obtain: 

1 2(v , v ) { (1, 0.1919) , (1, 3.4748)}∈ ± − ± −  (29) 
Substituting (29) in (27) yields { 4.8, 1.5252}λ ∈ − − , thus all 
∆-eigenvalues are negative. Note that if someone uses 
another values for  1v  then the sign of λ  is not affected, 

because replacing 3
2 1v v z=  in (27) yields 

2
10.66v (z 2) 0λ = − < . This is also implied by Lemma 3. 

Using the Theorem 3 implies the GAS of ZES of system.  

 
Fig. 3. the real ∆-eigenvector rays and trajectories of (26) 

▀ 

V. CONCLUSION 
In this paper, the ∆-homogeneous eigenvalues and 

eigenvectors were introduced for nonlinear ∆-homogeneous 
systems. The new definition permits the complex valued    
∆-homogeneous eigenvalues for such systems. In the case 
of polynomial ∆-homogeneous systems with zero degree of 
homogeneity it was shown that ZES of system is GAS iff all 
the ∆-homogeneous eigenvalues have negative real parts. 
Finally, an example was given to present the approach. 
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