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Abstract—In this paper, a new active control frame-
work is developed for non-LTI continuous-time sys-
tem, which is closer to the real world. Like other
control system developments, it consists of two major
parts: observer design and controller design. For the
observer, the dynamic system is modelled as a jump
Markov linear system whose parameters evolve along
with the running mode of plant, then the continuous-
time based interacting multiple model(CT-IMM) al-
gorithm is proposed to estimate the full state more
precisely. For the controller, a dynamic reliability
constraint is added and the optimal control problem
is reformulated to guarantee the reliability of sys-
tem. Illustrative examples showed the accuracy of
CT-IMM and the validity of controller with reliabil-
ity constraint.

Keywords: observer design, controller design, multiple

model, reliability constraint, continuous-time

1 Introduction

In linear control theory, separation principle[1] facilitates
the control system design by designing the controller and
observer respectively in case that not all states are acces-
sible. In the past decades, the researchers have designed
plenty of full-state observer or reduced order observer[2].
The applications of those designs must all satisfy the
linear-Gaussian assumption. However, most cases in real
world are non-linear and non-Gaussian. As stated in [3],
state observer design for non-LTI system is still a hot
topic with great challenge.

Recently, multiple model approach as an accurate estima-
tion method for hybrid system attracted much attention
of observer design and various applications: Brehm[4]
investigated and compared profoundly multiple model
adaptive estimator(MMAE) based control and multi-
ple model adaptive control(MMAC). Li[5] reviewed de-
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tailedly the multiple model approach in passive tracking
domain. Luo et.al.[6] employed multiple model approach
to track the hidden damage in life prediction of auto-
motive suspension system. Another important advan-
tages of multiple model method are: the parameters can
also be roughly estimated by a simple weight-summation.
However, as far as we know, quite few researches con-
cerned the continuous-time case of multiple model ap-
proach. Dunn[7] and Aguiar et.al.[8] firstly proposed the
continuous-time MMAE and Aguiar[9] also discussed a
set of typical questions and further research of MMAE.
The models in their methods, nevertheless, work indi-
vidually and this mechanism is too simple to realize the
jumping truth of system running modes. Civera[10] de-
signed a pseudo continuous-time based multiple model
observer for simultaneous localisation and mapping, how-
ever it still updates the model probability in discrete way.
Furthermore, LQG optimal controller runs on a well-
known linear dynamic problem, which limits its appli-
cations. And the simple fixed feedback gain leaves little
or no room for system tolerances.

In this paper, there are mainly two contributions. First,
a continuous-time based interacting multiple model algo-
rithm is proposed. Different from generic IMM algorithm,
we used differential equation, which implies the contin-
uous probability evolution, instead of recursion equation
to update the mode probability the system dynamics. In
addition, the core part of interacting multiple model —
model mixer is redesigned to re-initialize the system state.
Second, a plant estimated by observer is used to refor-
mulate the LQG optimal control problem. Further, to
guarantee the reliability of system a dynamic reliability
constraint is also added to the reformulation in form of
implicit probability function.

The rest parts of this paper will be organized as follows.
In section 2, continuous-time based multiple model ap-
proach is analyzed by means of Bayesian view and then
continuous-time based interacting multiple model algo-
rithm is proposed. In section 3, the feedback controller is
designed with reliability constraint. Some experimental
results are compared in section 4. Finally, the conclusions
are drawn and some future works are proposed.
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2 Continuous-time based IMM

In this section, the continuous-time based multiple model
in view of Bayesian is introduced and then CT-IMM is
designed and analyzed. For simplicity, some of the sub-
scripts are explained as following:

(·)t : variable at time t,
(·)t+/t− : variable at time t+ ∆t / t−∆t,

(·)(i) : variable of the ith mode.

2.1 Bayesian view of CT-MM

We assume that the non-LTI system runs in N LTI
modes m(i) whose corresponding models are described
as M(θ(i)) = {A(θ(i)), B(θ(i)), C(θ(i)), D(θ(i)), G(θ(i))},
i = 1, .., N , where θ is a parameter vector as a variable
of model generating function. For simplicity we denote
A(θ(i)) as A(i), as well as B(i), C(i), D(i) and G(i). Then
each model satisfies,

ẋ
(i)
t = A(i)x

(j)
t +B(i)ut +G(i)wt (1a)

zt = C(i)x
(i)
t +D(i)ut + vt (1b)

where wt and vt are white Gaussian noise with covariance
Qw and Qv respectively. The system dynamics change
the running mode among the set of modes, obeying the
property of Markov process,

p(M (j)
t+∆t|M

(i)
t ) =

{
Tij ·∆t+ o(∆t), i 6= j
1 + Tii ·∆t+ o(∆t), i = j

(2)

where matrix T is known as transition rate matrix and it
is conservative, Tii = −

∑
j=1,j 6=i Tij .

The task of observer under consideration is to estimate
the state conditioned on the history measurements and
on the history control force, or equivalently to approxi-
mate the distribution of state space conditioned on the
history measurements, i.e. p(xt|Zt), where Zt is the set
of history measurements until time t. Notice that this
distribution has no more relation with the control, which
is a determined part. Further, this expression can be
reformulated by full probability distribution,

p(xt|Zt) =
∫

S

p(xt|St, Zt) · p(St|Zt)dSt (3)

where St is mode sequence. In fact the evolution time can
be divided into little time pieces such that the interval ∆t
is small enough, therefore the mode sequence up to time
t is denoted by St = M0,M∆t, ...,Mt−∆t,Mt.

The problem we encountered is that St increases ex-
ponentially with time, thus the posterior distribution
p(xt|Zt) can’t be exactly computed. In the past decades,
the researchers found some approximation techniques.

If we only take the last time step for scope, St = Mt,
there is no jumping between the modes. We have,

p(xt|Zt) '
∑
Mt

p(xt|Mt, Zt) · µ(i)
t . (4)

where µ(i)
t = p(M (i)

t |Zt) is the probability of the mode
token by system dynamic. And the conditional posterior
p(xt|Mt, Zt) is estimated respectively by previous estima-
tion, and the overall estimation is obtained via criteria of
minimum mean-square error(MMSE), i.e.

x̂t =
∑

i x
(i)
t · µ

(i)
t . (5)

CT-MM adaptive estimator[8] fall into this category. Like
Eqn.(1), its fusion process is simple and doesn’t consider
the interaction between models. Notice that, if Eqn.(5)
is replaced by x̂t = {x(j)

t |j = arg maxi µ
(i)
t }, the system

chooses the most likely mode to run, also called switching.

If the last two steps are considered, the modes of dy-
namics form a first-order markov chain, and St =
(Mt−∆t,Mt). Rewrite eqn.(3),

p(xt|Zt) '
∑

i

∑
j

p(xt|M (i)
t ,M

(j)
t− , Zt)

·p(M (j)
t− |M

(i)
t , Zt) · p(M (i)

t |Zt), (6)

where p(M (j)
t− |M

(i)
t , Zt) is called merging probability.

Eqn.(6) contains two levels of summation, implying the
requirement of much more filters.

2.2 Continuous-time based model mixer

To overcome the flaw of computation, interacting mul-
tiple model(IMM) was proposed[5]. From the view of
Bayesian, a model-conditioned filtering breaks into pred-
ition p(xt|Zt−) and updating p(zt|xt) as follow,

p(xt|M (i)
t , Zt) ∝ p(xt|M (i)

t , Zt−) · p(zt|xt) (7)

where the conditional posterior can be replaced by a re-
initialization process,
p(xt|M (i)

t , Zt−) '
∑

j

p(xt|M (i)
t ,M

(j)
t− , x̂

(i)
t−) · µ(i|j)

t− (8)

where µ(i|j)
t− is named mixing probability, indicating the

reinitializing contribution of the jth model for the ith
model at time t −∆t, see in Fig.1 model mixer achieves
the re-initialization before new time filtering, and

µ
(i|j)
t ∝ Tji · µ(j)

t ,
∑

i

µ
(i|j)
t = 1. (9)

See appendix for details of Eqn.(8) and Eqn.(9). Finally,
we reconstruct the differential dynamic as following,

ẋ
(i)
t = A(i) ·

∑
j

µ
(i|j)
t x

(j)
t +B(i) · ut +G(i)wt. (10)
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Figure 1: CT-IMM based observer and controller

Finally, the overall estimation of state is also imple-
mented by Eqn.(5). Furthermore, the time-evolution of
model probability is yielded by

µ̇
(i)
t = µ

(i)
t · (L

(i)
t −

∑
j

L
(j)
t · µ

(j)
t ). (11)

∑
i µ

(i)
t = 1 can be proved in the same way as

Aguiar[9] did. Therein L
(i)
t represents the likelihood

of measurement when system running in ith mode, i.e.
p(zt|M (i)

t , Zt−). In case of Kalman filter the innovation
is assumed to obey Gaussian distribution, then the like-
lihood usually has the form as follow,

L
(i)
t = κ · exp

{−z̃′t(i) ·R−1(i) · z̃t(i)
2

}
(12)

where we use a fixed κ to control the evolution speed.
z̃t is the innovation of measurement, i.e. z̃t(i) = zt −
C(i)x

(i)
t − D(i) · ut. And covariance of innovation R(i)

is equal in case of continuous-time, representing also the
measurement noise covariance of model i.

Besides, CT-IMM approximates mathematical model of
the plant as M̂ = {Â, B̂, Ĉ, D̂, Ĝ}, Â = A(θ̂), θ̂ =∑

i µ
(i)θ(i). B̂, Ĉ, D̂ and Ĝ have the same form as Â.

3 Reliability constrained controller

Nowadays, most manufacturers attempt to produce their
products highly reliable under random loads. The relia-
bility constraints infiltrate each kind of design optimiza-
tion for products, as well as their dynamic systems.

3.1 Reliability of dynamic system

The most typical failure of dynamic system is that the
responses of random load exceed the allowable values.

For a one-freedom system, if the state y is in excess of
designed two-side threshold α = (α1, α2), i.e. α1 > y >
α2, the system will probably break.

As deeply researched, the survival probability of time is
r(t) = exp{−v(α1, α2) · t} (13)

where v(α1, α2) is called failing rate or hazard function
under certain threshold. According to Rice theory[11], it
represents the crossing rate and expressed by,

v(α) =
∫ +∞

0

ẏ · pyẏ(α, ẏ, t)dẏ. (14)

For zero-mean Gaussian process, the joint probability pyẏ

is simply the product of two Gaussian distributions due
to independency between y and ẏ, thus

pyẏ(y, ẏ, t) =
1

2πσy(t)σẏ(t)
exp
{
− y2

2σ2
y(t)
− ẏ2

2σ2
ẏ(t)

}
, (15)

where σy(t) and σẏ(t) are standard deviation of y(t) and
ẏ(t) respectively. They can be approximated by sig-
nal spectral analysis. For multi-freedom system, mode
analysis[12]can be used to decouple the dependency, so
that system reliability is achieved by product of individ-
ual reliability of each dimension.

3.2 Reliability constrained feedback control

Assuming that the plant runs as piecewise linear Gaus-
sian, the optimal LQG control with reliability constraint
is reformulated,

min J(Ktf ) = E{
∫ tf

0

x′tQxt + u′tWut dt} (16a)

s.t. ẋt = Âxt + B̂ut + Ĝwt (16b)
ut = −Ktf · xt (16c)
β ≤ Pr(Ktf , tf ) (16d)
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where E represents the expectation, and Ktf , called feed-
back gain, is our design vector. Â, B̂ and Ĝ are taken
from mathematical model estimated from CT-IMM. The
problem-oriented coefficient matrices Q and W are semi-
positive defined and positive defined respectively. Note
that system reliability Pr(Ktf , tf ) is also a function of
feedback gain and is restrained as greater than the thresh-
old β which is usually close to one.

Furthermore, substituting Eqn.(16c) into Eqn.(16b), we
obtain a new dynamic system ẋt = (Â− B̂Ktf )xt + Ĝwt.
As stated in subsection 3.1, the dynamic reliability is
achieved by Rice theory and by decoupling of the new
dynamic system. The optimization of Eqn.(16a) may be
accomplished in many ways, however, Pr(Ktf , tf ) is so
implicit that it is impossible to minimize J(Ktf ) by tra-
ditional gradient-based optimization techniques. In our
following experiments, genetic algorithm(GA) is selected.
More investigation for efficient optimization method are
required for future work.

4 Simulation examples

For the observer, our algorithm(CT-IMM) gets the bet-
ter results compared to CT-MM proposed by Aguiar[9];
for the active feedback controller, optimization with reli-
ability constraint trades a little bit larger cost for more
system reliability.

4.1 CT-IMM Observer

The model in [9] is reused for simplicity, then we rewrite
the state space model as follows,

ẋt =

24 −5 0 0
0 0 1

ω2 −ω2 −0.2ω2

35xt +

24 −5
0
0

35ut +

24 −5
0
0

35wt

yt = [0 1 0]xt + vt

where ut = 10 × sqr(Tu), and process noise wt and
measurement noise vt are set determinedly as wt =
e−0.01tsqr(Tw) and vt = e−0.01tsin(50t) respectively.
Therein sqr(Ts) is a square function from t = 0 with
amplitude 1.0 and period Ts.

For only one parameter θ = ω, the set of four models
is M = {M(0.7),M(1.0),M(2.0),M(4.0)}. Initial proba-
bility is still even pi(0) = 1/4. In addition, our CT-IMM
algorithm takes the transition rate matrix as,

Tji =


cT if i = j
(1− cT )/3 if i 6= j

. (17)

Usually, cT = 0.95 is used in our experiments. Obviously,
cT = 1 means CT-IMM works in way of switching mode.

(1). CT-IMM vs. CT-MM

For ω = 1.3 and ω = 3.3 respectively, Fig.2(a) and
Fig.3(a) demonstrate the results of CT-MM, and those of
CT-IMM are shown in Fig.2(c) and Fig.3(c). Clearly, the

(a) CT-MM

(b) CT-IMM, switching

(c) CT-IMM, jumping Markov chain cT = 0.95

Figure 2: Comparison of model probability evolution and
error with plant ω = 3.30

mode probabilities of CT-IMM converge faster than those
of CT-MM, in addition they have much less vibrations.
The estimation errors are also much less. About param-
eter estimation, CT-MM and CT-IMM get ω̂ ' 1.2913
and ω̂ ' 1.3052 respectively, they are both not far from
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true value ω = 1.3. When ω = 3.3, we get ω̂ ' 3.5204
for CT-MM and ω̂ ' 3.3275 for CT-IMM. They are both
acceptable, however, CT-IMM is a little preciser. To sum
up, CT-IMM performs much better that CT-MM.

Concerning the computations of CT-MM and CT-IMM,
they both run N Kalman filters and a differential-
equation based probability updating. Moreover model
mixer is much less time-consuming, therefore the effi-
ciency CT-IMM is nearly equal to that of CT-MM.

(2). Switching vs. Mixing

When the transition rate matrix is set specially as a iden-
tical matrix, which is also called mode switching and
means that there is no model mixing among the mod-
els. The results are illustrated in Fig.2(b) and Fig.3(b).
Contrast to mode mixing cases (Fig.2(c) and Fig.3(c)),
they converge a lot faster than others. There is always
only one model that wins all probability. Their errors,
however, are larger and the parameter estimated is far
from true value: ω̂ = 4.0 for 3.30 and ω̂ = 1.0 for 1.30.

4.2 Feedback controller

For simplicity, we still use the same state space model
with plant ω = 1.3, Qw = 0.01, thus the gain Ktf is
quite simple with 3 dimensions. The parameters Q and
W in Eqn.(16a) are both identity matrix. A long enough
time tf = 20s is used for upper limit of integration.

Without constraint, the optimal feedback gain always
takes K = −W−1BTP , where P is the convergenced so-
lution of Riccati equation A′P + PA − PBW−1B′P +
Q = −Ṗ . As a result, Kno = [0.5470,−0.2560, 1.5680].
This result is adequate for infinite time control. For
interval [0, 20s], GA optimization yields another result
Kga

tf = [1.1960,−0.2971, 1.8745], which is a little differ-
ent from Kno. Considering the reliability constraint, we
set a reliability lower limit as β = 0.999 in time inter-
val [0, 20s]. The only failure mode presumed for this
model is that the third dimension of state exceeds the
limit [α1, α2] = [−0.005, 0.005]. Finally we achieve the
new feedback gain Kre

tf = [1.4472,−0.4791, 6.1858].

With these two feedback gains obtained by GA, we test
two cases of input. First, active control with only random
process noise is considered, see Fig.4(a) for response. Ob-
viously, the threshold (α) exceeding frequently happens
for the response without active control. Normally, the
magnitude of optimal control with reliability constraint
is smaller than that of without constraint. In other words,
although the optimal control with reliability costs a lit-
tle bit more than the optimal control without constraint
(Jr = 2.4641e − 4 vs. Jo = 1.9301e − 4, they are mean
value of 20 runs), it can guarantee the required reliabil-
ity of system. Second, to check convergence speed more

(a) CT-MM

(b) CT-IMM, switching

(c) CT-IMM, jumping Markov chain cT = 0.95

Figure 3: Comparison of model probability evolution and
error with plant ω = 1.30

clearly, an additional step input (u0 = 3 for time interval
[1, 20s]) is imported to the process noise, see Fig.4(b) for
response. Evidently, control with reliability constraint
converge much slower than that without constraint, how-
ever, the magnitude is much smaller. Therefore, optimal
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(a) input with random process noise

(b) input with a step signal

Figure 4: Response comparison between optimal control
with reliability constraint and that without constraint.

control with reliability constraint is ”safer”.

5 Conclusion and future works

In this paper, a new reliable framework for non-LTI
system control is proposed based on two crucial mod-
ules: a continuous-time based interacting multiple model
observer and an optimal controller with reliability con-
straint. CT-IMM observer provides not only faster con-
vergence of model fusion but also preciser estimation of
parameters. Further, based on piecewise linear dynamic
system estimated, an additional reliabilty constraint is
introduced into the optimal LQG controller to assure sys-
tem reliability. Illustrative examples demonstrated some
interesting results and proved the effectivenesses of CT-
IMM algorithm and the validity of reliability constraint.

However, GA is not applicable to real time running. Ef-
ficient optimization method needs more future investiga-
tion. In case of realistic application, such as active vehi-
cle suspension, some explicit hazard functions of feedback
gain probably exist. Then a close-form solution with re-

liability constraint will also be researched.

Appendix

A. Extension of Eqn.(8) and Eqn.(9)

p(xt|M (i)
t ,Zt−)=

X
j

p(xt|M (i)
t ,M

(j)
t− ,Zt−)p(M

(j)
t− |M

(i)
t ,Zt−)

'
X

j

p(xt|M (i)
t ,M

(j)
t− ,x̂

(i)
t−)·

1

c
p(M

(i)
t |M

(j)
t− ,Zt−)p(M

(j)
t− |Zt−)

=
X

p

(xt|M (i)
t ,M

(j)
t− ,x̂

(i)
t−)·

1

c
Tji · µ(j)

t− .
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