
 
 

 

  
Abstract—Using multiple antennas at both sides of the wireless 
link is currently an active area of research because of the huge 
capacity and reliability gains promised by such systems. These 
gains are achieved almost for free where there is no extra 
bandwidth or transmit power is required. Such a system is 
called Multiple Input Multiple Output (MIMO) wireless 
system. In this paper, the behaviour of the MIMO Rayleigh 
channel’s eigenmodes and the power levels allocated to them by 
the water-filling algorithm with SNR and with the channel 
correlation will be analyzed. Capacity of the channel 
eigenmodes and total capacity of the channel will also be 
studied. It was found that, the strongest eigenmode of a channel 
matrix increases with correlation, while the other eigenmodes of 
the channel decrease. When the channel correlation approaches 
1, the strongest eigenmode approaches the Mr * Mt, while the 
other eigenmodes approach zero. At low SNR, to get the 
maximum capacity of the channel, the transmitter allocates all 
transmit power to the strongest eigenmode, and hence the 
channel capacity will be improved by the channel correlation. 
At high SNR, the transmitter divides this power equally among 
the eigenmodes to maximize the channel capacity. In this paper, 
the channel parameters are considered perfectly known at both 
sides of the wireless link. 

 
Index Terms—Channel capacity, Channel correlation, 

Channel eigenmodes, Low and high SNR.  
 

I. INTRODUCTION 
The field of wireless communications is rapidly evolving to 
achieve the increasing demands for high data rates and better 
quality of services [1]–[10]. These demands can be fulfilled 
using conventional systems, i.e. Single Input Single Output 
(SISO) -which are limited by multipath fading and 
interference- by increasing either the channel bandwidth, the 
transmit power, or both. However, this simplistic solution is 
not attractive for the following reasons. First, the transmit 
power can not exceed a certain value for its biological 
hazards, this is from one side.  On the other side, building 
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linear receivers with sensitivity beyond 30-35 dB is 
technically difficult and costly [11]. Second, frequency 
spectrum is a scarce and expensive resource especially below 
the 6 GHz. This makes it very difficult and costly to increase 
the channel bandwidth [11]. For these reasons, new 
techniques must be introduced to realize the needs of the 
modern wireless systems. These techniques must be 
affordable in terms of cost and biologically unharmful. 
 Using multiple antennas at both sides of the wireless link, 
represents one of the most promising solutions to improve the 
bandwidth efficiency and system reliability without need to 
use extra bandwidth or transmitting more power into the 
channel [1], [2], [4]. Such a system is called Multiple Input 
Multiple Output (MIMO). 
  In MIMO systems, transmitter is equipped with more than 
one antenna to transmit the data and receiver is equipped with 
more than one antenna to receive this data. The capacities 
achieved by MIMO systems are very high comparing with 
the conventional systems (SISO, SIMO, and MISO). It has 
been proven that capacities of these systems increase linearly 
with the number of antenna pairs  
if the channel is highly scattering and rich with multipath [1], 
[2].  
 These gains in capacity and reliability depend on the 
number of antennas at both sides, the statistics of the channel, 
and the channel knowledge at the transmitter [12].  
Channel correlation is known to be one of the most undesired 
impairments that lead to MIMO channel capacity degradation 
[2], [13], [14], [15]. However, this is not always the case as 
we will see in this paper; where channel correlation is an 
advantage when the channel is known at the transmitter and 
when signal to noise ratio SNR is low. Channel correlation 
improves the channel capacity at low SNRs if the transmitter 
knows the channel matrix. 
   In this paper, the channel eigenmodes, the power allocated 
to them and the capacity of these eigenmodes will be studied 
and analyzed when the channel is known at the transmitter. 
This paper is organized as follows. In Section II, we will 
discuss the MIMO system model, the channel model and the 
correlation model used. MIMO channel capacity will be 
derived and developed in Section III. Section V is devoted to 
the simulation results and finally, the conclusions are drawn.  

II. MIMO SYSTEM MODEL 
    Since MIMO is a narrowband technology [16], a 
narrowband, flat fading Rayleigh correlated channel and a 
single user, with Mt transmit and Mr receive antennas will be 
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considered. The channel matrix H is assumed to be perfectly 
known at the receiver and the transmitter. The total transmit 
power from all antennas is Es, where Es is independent of the 
number of antennas at the transmit side. This system is 
described as follows 
 
y = Hx + n                                                                           (1)                 
                                                                  
where x = [x1 x2…xMt]T

 is the Mt × 1 complex vector 
representing the transmitted signal with the power constraint  
 
 tr (E (xxH)) ≤  Es,                                                                (2)  
 
y = [y1 y2…yMr]T

 is the Mr × 1 complex vector representing 
the received signal and n = [n1 n2… nMr]T

 is the Mr × 1 
complex vector representing the additive white Gaussian 
noise vector (AWGN) with a zero mean and covariance 
matrix δ2

nIMr  where IMr is the Mr × Mr identity matrix. (.)T, 
(.)H, tr(.), and E(.) denote transposition, conjugate transpose, 
trace, and expectation, respectively. H is the Mr × Mt   MIMO 
channel matrix, whose entries hij represent the complex 
channel response of the channel between jth

 transmit antenna 
and the ith

  receive antenna. 

A. MIMO Channel Model 
    Kronecker model will be used here in this paper to 
describe the Rayleigh correlated channel. In this model the 
channel spatial correlation RH = E [vec (H) vec (HH)] [13], 
where vec (H) denotes the MtMr × 1 vector formed by 
stacking the columns of H. When the channel is rich with 
multipath and no LOS component exists, the transmit 
antennas correlation and receive antennas correlation can be 
considered independent. In such case, the channel correlation 
matrix RH can be decomposed into two correlation matrices, 
the transmit correlation matrix Rt and the receive correlation 
matrix Rr, so as RH = Rt

T 
 ⊗  Rr, where ⊗  is the Kronecker 

product. Hence, the Rayleigh correlated channel can be 
written as H = Rr

1/2 Hi.i.d Rt
1/2, this channel model is called 

Kronecker model. Where Rr is the receive correlation matrix, 
and Rt is the transmit correlation matrix. Hi.i.d  is the 
uncorrelated white channel matrix. 

B. Correlation Model 
    The exponential correlation model will be adopted in this 
paper [17]. 
For this model, the components of the correlation matrices 
(Rr and Rt) are given by 
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where r is the complex correlation coefficient of neighboring 
antenna. This model is suitable for studying the effects of 
correlation on the channel capacity, although it is not 
accurate for some real world scenarios. However, this model 
is physically reasonable, where the correlation between the 
adjacent antennas is larger than the correlation between 
none-adjacent antennas [17]. 

III. MIMO CHANNEL CAPACITY 
    The theoretical capacity of this system is expressed by the 
following formula [1] 

C = EH ⎥
⎦

⎤
⎢
⎣

⎡
+ )det(log 2

H
MM HQHI

tr

ρ                          (3) 

where, Q = E[xxH] is the input covariance matrix, and  ρ 
(SNR) = (Es / N0), Es is the total transmit power, N0 is the 
noise power in each antenna at the receive side. 
In equation (3), the mean is taken over the random channel. 
The capacity depends on the number of antennas at both 
sides, input covariance matrix Q, and the channel statistics. 
When channel H is Rayleigh distributed, its mean will be 
zero (no LOS component exists) and its covariance is 1.   
 Q represents the covariance matrix of the transmitted 
vector. This matrix is diagonal and its elements are all real 
numbers. The trace of this matrix should not exceed the 
number of transmit antennas. In other words, tr (Q) = Mt. 
There are two cases for this matrix. When the transmitter 
does not have a prior knowledge about the channel matrix 
(i.e. uninformed transmitter), this matrix will be equal to the 
identity matrix Q =

tMI , meaning that the transmitter will 

divide the total transmitted power Es equally among its 
antennas, and when the instantaneous channel matrix is 
available at the transmitter (informed transmitter), Q matrix 
can be optimized for optimum capacity. We will consider the 
latter case (Informed Transmitter case) in what follows, 

A. Informed Transmitter 
 There is a possibility that transmitter learns the channel 
state information (CSI or channel matrix H) before it 
transmits the data vector. For instance, in TDD (Time 
Division Duplexing) systems, the channel matrix can be fed 
back to the transmitter from the receiver. In such an  event, 
the capacity can be increased by resorting to the so-called 
waterfilling principle [18], by assigning various levels of 
transmit power to various transmitting antennas. This power 
is assigned on the bases that the better the channel is, the 
more power it gets and vice versa. 

B. Waterfilling Algorithm 
 When H is known at the transmitter, waterfilling algorithm 
can be used to maximize the channel capacity by allocating 
more power to the eigenvalues that are in a good condition 
and less or none at all to the bad eigenvalues [18]. 
Given H = USVH (Singular Value Decomposition theorem or 
SVD), the system expressed by equation (1) can be rewritten 
as 
y = USVHx + n                                                                     (4) 
U is a matrix containing the eigenvectors of the receiver, V is 
a matrix containing the transmitter eigenvectors and the 
matrix S is a diagonal matrix containing the singular values 

(σi, where σi = iλ ) of the matrix H. U and V matrices are 

unitary, satisfying UUH= UHU = IMr, and VVH = VHV = 
tMI . 

The transmitted vector is multiplied by a matrix V prior to 
transmission to cancel the effect of the matrix VH contained in 
H. In the same way, received vector is multiplied by a matrix 
UH to cancel the effect of the matrix U contained in H. 
x’ = Vx,  y’ = UHy, n’ =  UHn, 
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Substituting these values in equation (4), will produce the 
following 
y’ = Sx’ + n’                                                                         (5) 
The system modeled by equation (5) is representing a group 
of parallel SISO channels; their power gains are the none 
zero diagonal elements of the matrix S.  
The capacity of the MIMO channel is the sum of the 
individual parallel SISO channel capacities and is given by  
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iγ  is the amount of power transmitted over the eigenvalues  

iλ  such that   
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Channel capacity maximization implies that transmitter 
accesses the individual sub-channels (the eigenvalues) and 
allocates variable power levels to them. Using Lagrangian 
method, the optimal energy allocated to each eigenvalue is 
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where, μ  is a constant representing the water level and (x)+ 
implies 
 
(x)+=

⎩
⎨
⎧ ≥

00
0

≺xif
xifx                                              (10) 

Now, the optimal energy allocation is found iteratively 
through waterfilling algorithm as described below. 
The iteration count p is set to 1, and then the constant μ   in 
equation (8) is calculated based on the following formula, 
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Using the obtained value of μ  from equation (11), the 
power allocated to the ith eigenvalue can be calculated using  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

i

t
i

M
ρλ

μγ  , i= 1,2,…,rr– p+1.                           (12) 

If the power allocated to the eigenvalue with the lowest gain 

is negative i.e. the term 
i

tM
ρλ

 is greater than μ (the 

eigenvalue is bad), this eigenvalue is discarded and by setting 
01 =+−

opt
prrγ  and the algorithm is rerun with incrementing 

the iteration account by 1. This algorithm is repeated until all 
good eigenvalues are allocated the optimal power. The 
capacity of MIMO channels when the channel is known at 
the transmitter is at least equal to that obtained when the 

channel is unknown at the transmitter. Once the optimal 
power allocation across the spatial eigenvalues is determined, 
the optimized input covariance matrix Q is now obtained, 

Qopt=diag{ opt
rr

optopt γγγ ,...,, 21 }                                          (13) 
 
and equation (3) will take the new form 

C=EH ⎥
⎦

⎤
⎢
⎣

⎡
+ )det(log 2

Hopt
MM HHQI

tr

ρ                      (14) 

 
At low SNR (ρ), waterfilling algorithm allocates all the 
available transmit power to the strongest eigenmode λmax 
(λmax = max (λi)). So equation (14) will reduce to the 
following equation at low SNR, 
 
   ( )[ ]max2 1log ρλ+= HEC                                            (15) 
Where ρ = Es / N0 . 
 
 When the channel H is orthogonal i.e. there is no 
correlation (unrealistic condition) all its eigenmodes (λi) will 
be equal (λi = 1, i = 1,2,3…min(Mt, Mr) ), so in this case there 
is no λmax since all the eigenmodes are equal and the 
condition number of the channel H is equal to 1 (λmax = λmin). 
However, Real channels are correlated, which means that the 
eigenmodes will not be equal and the condition number of the 
channel will not be equal to 1 (condition number of a channel 
H = λmax / λmin) because λmax will get larger and λmin will get 
smaller when the correlation increases. When channel 
correlation (r) approaches 1, λmax will approach Mr * Mt and 
all the other eigenmodes approaches zero. This means 
according to eq. (15) that capacity of the channel will 
increase when the channel correlation increases..  

IV. SIMULATION RESULTS 
In this paper, we study MIMO channel capacity over the 

SNR range from -20 dB to 20 dB, and channel correlation 
factor (r) takes the values from 0 to 0.9 at step 0.1. Channel 
matrix H is considered perfectly known at the transmitter and 
the receiver. Monte-Carlo simulation technique is used to 
estimate the channel capacity which is calculated at each 
SNR point by generating 10,000 channel matrices and taking 
the average over them.   

Fig. 1 plots the power allocated to each channel eigenmode 
and shows how this allocated power change with SNRs. For a 
(2,2) channel, we can see that, when SNR < -5 for instance, 
all the transmit power is allocated only to one eigenmode (the 
largest eigenmode, λmax). This is referred to as the dominant 
eigenmode transmission. But when SNR > -5 dB, the 
transmitter begins to divide the power between the channel 
eigenmodes according to their gains, where the eigenmode 
with higher gain gets more power so that the channel capacity 
is maximized. At high SNRs, the transmitter divide the power 
almost equally among the eigenmodes. For (2,2) channel, 
when SNR is above 30 dB, gamma1 = gamma2, which means 
the transmit power is divided equally between the two 
eigenmodes of the channel. For (2,4) channel, the transmitter 
begins dividing the power equally between the eigenmodes 
when SNR = 20 dB and above, and for (2,10) channel, at 
SNR =10 dB the transmitter begins deviding the power 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-7-5 IMECS 2009



 
 

 

equally among the channel eigenmodes. For this reason, the 
channel capacity at high SNRs is equal whether  the channel 
matrix is known or unknown to the transmtter.  Fig. 2 shows 
the power allocations for (3,3) channel.  

-20 -10 0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

SNR (dB)

po
w
er
 le
ve
ls

 

 
gamma1 (2,4)
gamma2 (2,4)
gamma1 (2,10)
gamma2 (2,10)
gamma1 (2,2)
gamma2 (2,2)

 
Fig.1: The power levels allocated to each eigenmode of a (2,2), (2,4) and 

(2,10) channels, r = 0. 
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Fig.2: The power levels allocated to each eigenmode of a (3,3) channel r = 0. 

 
Fig. 3 and fig. 4 show the eigenmodes and the power levels 
allocated to them for a (5,5) channel. It is clear from fig. 4 
that lambda5 increases when the channel correlation 
increases and the other eigenmodes of the channel decrease. 
When correlation approaches 1, the channel will have only 
one eigenmode which is lambda5 (lambda5 = 25, when 
correlation = 1) and all the other eigenmodes become zero.  
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Fig.3: The (5,5) channel matrix eigenmodes at SNR = 0 dB. 
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Fig.4: The power levels allocated to each eigenmode of a (5,5) at SNR = 0 

dB. 
 
Fig. 5 and fig. 6 show the capacity of each eigenmode of a 
(2,2) channel in addition to the total capacity of the channel at 
(0, , 0.9) correlations. We can see that, when SNR is less than 
0 dB the total capacity of the channel is equal to capacity of 
lambda2, and lambda1 is not contributing to the total capacity 
of the channel. 
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Fig.5: The capacity of (2,2) channel, r =  0. 
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Fig.6: the capacity of (2,2) channel, r  =  0.9. 
 
Fig. 7 and 8 also show the capacity of a (5,5) channel’s 
eigenmodes and the total capacity of this channel at (0, 0.9) 
correlations. 
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Fig.7: The capacity of (5,5) channel, r  =  0. 
 
Finally, Fig. 9 shows how the capacity of a channel with Mt = 
2, and Mr = 2,5,15 and at 0 dB change with the channel 
correlation. When Mr = 2, the capacity of the channel 
increases with the channel correlation because the (2,2) 
channel capacity at 0 dB depends only on lambda2, meaning 
that the total capacity of the channel is equal to the capacity 
produced by lambda2 (and  the capacity of lambda1 is zero). 
We know from our discussion earlier that lambda2 of a (2,2) 
channel increases with the channel correlation, hence the 
capacity will also increase with channel correlation. When 
Mr = 15, the total capacity of the channel will be the 
summation of the capacity of lambda1 and the capacity of 
lambda2, hence the total capacity will decrease with the 
channel correlation. 
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Fig.8: The capacity of (5,5) channel, r =  0.9. 
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Fig.9: the channel capacity of Mt = 2, Mr = 2,5,15 at SNR = 0dB. 

 

V. CONCLUSION 
In this paper, the eigenmodes of MIMO Rayleigh channels 

were studied and analyzed. First, the eigenmodes were 
evaluated how to change with SNR, and with the channel 
correlation. The power levels allocated to each eigenmode 
and how to change with SNR and channel correlation were 
also studied. The capacity of these eigenmodes was also 
evaluated. It was found that, the eigenmodes of any channel 
are independent of the SNRs, but depend on channel 
correlation. The maximum eigenmode of any MIMO channel 
increases with the channel correlation while all other 
eigenmodes decrease. When the channel correlation 
approaches 1, the maximum eigenmode approaches Mr * Mt, 
and all the other eigenmodes approach zero. Finally, when 
the SNR is low, the total capacity of the channel will be equal 
to the capacity of the largest eigenmode of this channel. 
Hence, the channel capacity will increase with the channel 
correlation.   
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