

Abstract— the theme of this paper is to have a platform

independent 8-bit soft core. Paper speaks about implementation
of the Picoblaze Processor, a 8-bit soft processor core from Xilinx
Inc. on FPGA platforms of other vendors. PicoBlaze is based on a
RISC architecture of 8 bits. The design was originally named
KCPSM which stands for "Constant (K) Coded Programmable
State Machine" (formerly "Ken Chapman's PSM"). It is a well
optimized processor designed by Xilinx, which occupies 2%
resources of Xilinx Spartan III FPGA. Original design uses the
Xilinx primitives, which are replaced by standard generic logics
like gates, flipflops, multiplexers etc.. Authors have used
KCPSM3 (PicoBlaze3) version of the processor. As a test case the
generic design is implemented on Altera FPGA platform. Altera
Development and Education (DE2) board is used to verify the
platform independent PicoBlaze design, which provides an ideal
vehicle for learning about digital logic, computer organization,
and FPGAs, Featuring an Altera Cyclone® II FPGA, DE2 board
offers state-of-the-art technology suitable for wide range of
design projects, as well as sophisticated digital system
development. Altera offers NIOS II soft processor with SOPC
builder software suite. This paper presents the comparison of
PicoBlaze and Nios II processor on Altera platform for small
applications. Authors have shown implementation of data
transfer through UART using PicoBlaze and Nios II on Altera
DE2. Xilinx synthesis tool version 9.1 and Altera quartus II
version 7.1 are used. KCPSM3 assembler is used for compilation
of PicoBlaze assembly language programs. A small utility
program is developed for porting the ROM code generated by
the assembler to Altera compatible code.

Keywords: platform independent processors, PicoBlaze,
reconfigurable hardware, soft core.

I. INTRODUCTION
Soft processor is a microprocessor core that can be
wholly implemented using logic synthesis. It can be

implemented via different semiconductor devices containing
programmable logic (e.g., FPGA, CPLD)[1]. There are
several soft cores available in the market, e.g. PicoBlaze,
MicroBlaze, Openfire, Nios, Nios II, Cortex-M1, Mico8,
Mico32 and AEMB. Out of all listed here PicoBlaze and
mico8 are the 8-bit open source soft-cores available in the
market. Authors have chosen PicoBlaze because of
availability of Xilinx tool chain. INV, LUT2, LUT3, LUT4,
MUXCY, MUXF5, XORCY, FDR, FDS, FD, FDE, FDRE,

F. A. Farhad is with the ATS Infotech Pvt. LTd, Pune.. (e-mail:
farhadmerchant@gmail.com).

S. B. Prof. Shashank Pujari is with International Institute of Information
Technology, Pune as a Head of the Department of Embedded System Design..
(e-mail: pujarishashank@gmail.com).

T. C. Prof. Manish Patil is with the International Institute of Information
Technology, Pune as a Head of the Department of VLSI Design and
Techlology. (e-mail: manishp@isquareit.ac.in)

FDRSE, RAM64 and RAM32 primitives are used in the
original design of PicoBlaze, which are replaced by the same
functionality blocks using standard digital logics.

Organization of the paper is as follows. Section II tells the
reason for choosing PicoBlaze soft-core, section III speaks
about architecture of PicoBlaze. Section IV is about signals of
top module of KCPSM. Section V tells about platform
independent implementation of PicoBlaze. Section VI tells
about benchmarking of PicoBlaze and Nios II on Altera
platform with small application of UART running on it.
Section VII is a future work of the idea and concludes the
work.

II. REASON FOR CHOOSING PICOBLAZE
There are literally dozens of 8-bit microcontroller
architectures and instruction sets. Modern FPGAs can
efficiently implement practically any 8-bit microcontroller,
and available FPGA soft cores support popular instruction sets
such as the PIC, 8051, AVR, 6502, 8080, and Z80
microcontrollers.
The PicoBlaze microcontroller is specifically designed and
optimized for the Spartan-3, Virtex-II, and Virtex-II Pro
FPGA architectures. Its compact yet capable architecture
consumes considerably less FPGA resources than comparable
8-bit microcontroller architectures within an FPGA.
Furthermore, the PicoBlaze microcontroller is provided as a
free, source-level VHDL file with royalty-free re-use within
Xilinx FPGAs. Even wide variety of Windows and Linux
based assemblers and simulators are freely available for
PicoBlaze [2][3]

III. BACKGROUND
The PicoBlaze microcontroller is a compact, capable, and
cost-effective fully embedded 8-bit RISC microcontroller.The
PicoBlaze microcontroller provides cost-efficient
microcontroller-based control and simple data processing. The
PicoBlaze microcontroller is optimized for efficiency and low
deployment cost. It occupies just 96 FPGA slices, or only
12.5% of an XC3S50 FPGA and a miniscule 0.3% of an
XC3S5000 FPGA. In typical implementations, a single FPGA
block RAM stores up to 1024 program instructions, which are
automatically loaded during FPGA configuration. Even with
such resource efficiency, the PicoBlaze microcontroller
performs a respectable 44 to 100 million instructions per
second (MIPS) depending on the target FPGA family and
speed grade.
The PicoBlaze microcontroller core is totally embedded

Platform Independent 8-bit Soft-core for SoPC
Farhad Merchant1, Shashank Pujari2, Manish Patil3

A

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-7-5 IMECS 2009

within the target FPGA and requires no external resources.
The PicoBlaze microcontroller is extremely flexible. The basic
functionality is easily extended and enhanced by connecting
additional FPGA logic to the microcontroller’s input and
output ports.

Figure 1 PicoBlaze Embedded Microcontroller Block Diagram[4]

Figure 1 shows the architecture of PicoBlaze microcontroller.
Blocks of the diagram are as follows:

• General-Purpose Registers
• 1,024-Instruction Program Store
• Arithmetic Logic Unit (ALU)
• Flags
• 64-Byte Scratchpad RAM
• Input/Output
• Program Counter (PC)
• Program Flow Control
• CALL/RETURN Stack
• Interrupts
• Reset

Description of the blocks in detail is widely available in the
user manual of the PicoBlaze Processor.

IV. PICOBLAZE SIGNALS
The top-level interface signals to the PicoBlaze
microcontroller appear in figure 2.

Figure 2 PicoBlaze Embedded Microcontroller Block Diagram[4]

A. Inputs
IN_PORT[7:0]: Input Data Port: Present valid input data on
this port during an INPUT instruction. The data is captured on
the rising edge of CLK.
INTERRUPT: Interrupt Input: If the INTERRUPT_ENABLE
flag is set by the application code, generate an INTERRUPT

Event by asserting this input High for at least two CLK cycles.
If the INTERRUPT_ENABLE flag is cleared, this input is
ignored.
RESET: Reset Input: To reset the PicoBlaze microcontroller
and to generate a RESET Event, assert this input High for at
least one CLK cycle. A Reset Event is automatically generated
immediately following FPGA configuration.
CLK: Clock Input: The frequency may range from DC to the
maximum operating frequency reported by the Xilinx ISE. All
PicoBlaze synchronous elements are clocked from the rising
clock edge. There are no clock duty-cycle requirements
beyond the minimum pulse width requirements of the FPGA.

B. Outputs
OUT_PORT[7:0]: Output Data Port: Output data appears on
this port for two CLK cycles during an OUTPUT instruction.
Capture output data within the FPGA at the rising CLK edge
when WRITE_STROBE is High.
PORT_ID[7:0]: Port Address: The I/O port address appears
on this port for two CLK cycles during an INPUT or
OUTPUT instruction.
READ_STROBE: Read Strobe: When asserted High, this
signal indicates that input data on the IN_PORT [7:0] port was
captured to the specified data register during an INPUT
instruction. This signal is asserted on the second CLK cycle of
the two cycles INPUT instruction. This signal is typically used
to acknowledge read operations from FIFOs.
WRITE_STROBE: Write Strobe: When asserted high, this
signal validates the output data on the OUT_PORT [7:0] port
during an OUTPUT instruction. This signal is asserted on the
second CLK cycle of the two-cycle OUTPUT instruction.
Capture output data within the FPGA on the rising CLK edge
when WRITE_STROBE is high.
INTERRUPT_ACK: Interrupt Acknowledge: When asserted
High, this signal acknowledges that an INTERRUPT Event
occurred. This signal is asserted during the second CLK cycle
of the two-cycle INTERRUPT Event. This signal is optionally
used to clear the source of the INTERRUPT input.

V. PLATFORM INDEPENDENT IMPLEMENTATION OF
PICOBLAZE

Original PicoBlaze design uses the following primitives of
Xilinx FPGA which are .

A. LUT2, LUT3, LUT4
LUT2, LUT3 and LUT4 respectively means 2-input, 3-input
and 4-input LUTs. Behavior of an LUT depends on the
INITSTATE value given to LUT. Following piece of code
shows how the Xilinx FPGA dependent LUTs are replaced by
independent logic.
 e.g.

attribute INIT : string;
attribute INIT of int_value_lut label is "04";
int_value_lut: LUT3

 generic map (INIT => X"40")
 port map(I0 => a,
 I1 => b,
 I2 => c,

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-7-5 IMECS 2009

 O => o);
The technology schematic of the above code is shown in
figure 3.

Figure 3 technology schematic of Xilinx primitive(LUT3).

The piece of code shown above is replaced by the following
dataflow statement in the architecture body..

O<=(not a) and b and c;
The technology schematic of above dataflow statement is
shown in figure 4.

Figure 4 technology schematic of dataflow statement in eq(1).

This way all the LUTs are replaced by the independent logic
of same functionality depending on their INIT value.

B. LUT1, LUT2, LUT3, LUT4 reevaluated expressions
Table I depicts the expression for LUT1, LUT2, LUT3 and
LUT4 and their replacement expressions to make the design
independent from the platform.
The rest of the modules are not in the table as each of them
can be replaced with different logic with the behavioral type
of modeling in VHDL. They are explained in C.2 with
example.
At the end of the synthesis the expresses ions are evaluated
with the corresponding FPGA platform. Here that is Altera.
All the expressions in the third column of the table are
platform independent dataflow statements.

C.2 FDR, FDS, FD, FDE, FDRE, MUXCY, XORCY, INV,
FDRSE, RAM16X1D, RAM64X1S, MUXF5, RAM32X1S

All these modules used as Xilinx primitives in original designs
are replaced by their behavioral model in the platform
independent design. Such a replacement doesn’t cause any
calamity in the model.
i. e.

process(clk)
 begin

if clk='1' and clk'event then
if reset='1' then

q<='0';
else

q<=d;

TABLE I
 XILINX PRIMITIVES AND THEIR COUNTERPART

EXPRESSIONS FOR ALTERA PLATFORM

Xilinx
Primitives INIT Value

Expression to be Evaluated
(A, B, C and D are assumed as inputs

and O as output)
LUT1 X"1" O<= !A
 X"2" O<=A
LUT2 X"D" O<= B*(!A)
 X"8" O<= A*B
 X"C" O<=B
 X"3" O<=!B
LUT3 X"04" O<=(!A)*B*(!C)
 X"2F" O<=A*(!B)+(!C)
 X"3F" O<=(!B)+(!C)
 X"F3" O<=C+(!B)
 X"E4" O<=(A*C)+((!A)*B)
 X"1F" O<=(!A)*(!B)+(!C)
 X"6C" O<=(A*(!B)*C)+((!A)*B)+(B*(!C))
 X"96" O<=((!A)*B*(!C))+((!A)*(!B)*C)+(

A*B*C)+(A*(!B)*(!C))
 X"FE" O<=A+B+C
LUT$ X"0080" O<=A*B*C*(!D)
 X"EAAA" O<=(B*C*D)+A
 X"7400" O<=((!B)*C*D)+((!A)*B*D)
 X"5A3C" O<=((!B)*C*(!D))+(A*(!C)*D)+((!

A)*C*D)+(B*(!C)*(!D))
 X"1000" O<=((!A)*(!B)*C*D)
 X"5400" O<=((!A)*C*D)+((!A)*B*D)
 X"41FC" O<=(C*(!D)+((!A)*(!B)*(!C)*D)+((

!A)*B*C)+(B*(!D))
 X"0001" O<=((!A)*(!B)*(!C)*(!D))
 X"6996" O<=((!A)*B*(!C)*(!D))+((!A)*(!B)

C(!D))+(A*B*C*(!D))+((!A)*(!B
)*(!C)*D)+(A*B*(!C)*D)+(A*(!B)*
C*D)+((!A)*B*C*D)+(A*(!B)*(!C)
*(!D))

 X"F3FF" O<=((!B)*C*(!D))
 X"0145" O<=((!A)*B*(!D))+((!A)*(!B)*(!C))
 X"0400" O<=((!A)*B*(!C)*D)
 X"8000" O<=A*B*C*D
 X"FFE2" O<=(B*C)+D+(A*(!B))
 X"6E8A" O<=(A*B*(!D))+((!A)*B*D)+(A*(!

C))
 X"0002" O<=(1*(!B)*(!C)*(!D))
 X"0010" O<=((!A)*(!B)*C*(!D))
 X"4000" O<=((!A)*B*C*D)
 X"0100" O<=((!A)*(!B)*(!C)*D)
 X"6555" O<=((!A)*(!C))+(A*(!B)*C*D)+((!

A)*B)+((!A)*(!C))
 X"A999" O<=(A*B)+((!A)*(!B)*(!C))+(A*C*

D)+((!A)*(!B)*(!D))
* represents AND operation,
+ represents OR operation,
! represents NOT operation

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-7-5 IMECS 2009

end if;
end if;

end process;

The technology schematic of above piece of code is shown in
figure 4, which is same as using FDR Xilinx primitive.

Figure 4 technology schematic of FDR(when implemented without using
Xilinx primitive)

C. HEX to MIF converter

Xilinx soft-cores use the HEX format to program the
processor ROM while Altera platform based soft cores use the
Memory Initialization File format. To convert HEX format
into MIF format C programming is used with command line
argument.

VI. BENCHMARKING

Table I shows the comparative resources utili1zation of Xilinx
PicoBlaze (dependent on Xilinx Platform),
PicoBlaze(Independent of Platform) on Xilinx platform,
PicoBlaze on Altera platform, and NIOS on Altera platform.

TABLE II
RESOURCE UTILIZATION SUMMARY

Device
&
platform

PicoBlaz
e
Original
Xilinx
Spartan
3

PicoBlaze
platform
independent
Xilinx Spartan 3

PicoBlaze
platform
independent
ALTERA
CYCLONE II

NIOS
ALTERA
CYCLONE II

Slices in
Xilinx
Logic
Element
s in
Altera

99 out of
3584
2%

236 out of
3584
 6%

389 out of
33,216
1%

3084 out of
 33,216
9%

VII. CONCLUSION AND FUTURE WORK
At the end of the synthesis a minion becomes a totally free
from the platform and can be implemented on any platform
occupying very less resources (1% in CYCLONE II).
For small application it is recommended to use the PicoBlaze
on Altera platform rather than going for Nios or Nios II. Other
suggested applications by authors are automotive embedded
systems, multiprocessor applications such as Advanced
Encryption Standard (AES – a block cipher algorithm) and
applications based on tiny OS [9].

ACKNOWLEDGEMENT
Special thanks go to Ken Chapman, for designing the
PicoBlaze microcontroller and keeping the source code open.
I am thankful to Xilinx and Altera for providing tool chains. I

am thankful to ISquareit, Pune for providing me space for
research.

REFERENCES
[1] PicoBlaze 8-bit Embedded Microcontroller User Guide for Spartan-3,

Virtex-II and Virtex-II Pro FPGAs.
[2] Sdasdsa http://www.xs4all.nl/~marksix/
[3] Ivybridge Simulation (2008, November, 10). Picoblaze Projects [Online]

Available: http://www.ivysim.com/kits/spartan3e/picoblaze/
[4] Ken Chapman (2008, November, 12). PicoBlaze Manual [Online]

Available:http://courseware.ee.calpoly.edu/cpe-
269/ExternalDocs/KCPSM3_Manual.pdf

[5] http://en.wikipedia.org/wiki/Soft_microprocessor
[6] Industrial embedded systems (2008, October, 10). Product Search

[Online]
Available:http://www.industrial-
embedded.com/products/search/fm/id/?29678

[7] Press Release (2008, November, 5). [Online]
Avalable: http://www.embeddedstar.com/press/content/2002/12/
embedded6562.html

[8] VHDL Primer by J. Bhasker
[9] Pengyuan Yu, Patrick Schaumont “EXECUTING HARDWARE AS

PARALLEL SOFTWARE FOR PICOBLAZE NETWORKS”

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-7-5 IMECS 2009

