
 
 

 

  
Abstract—The parallel-type neuron network (PNN) is 

researched to improve on the decrease in capabilities of the 
neuron network by the interference of the learning caused 
between the outputs of BP network (BPN) of two outputs or 
more and the difficulty of the common achievement of the 
middle layer used for each output. The research to compare 
prediction accuracies of nonlinear time series signals prediction 
systems using BPN and PNN has been performed so far. 
However, it has not attained demonstrating the existence of 
dominance of all prediction accuracies of PNN to BPN. Then, 
the experimental evaluation of the dominance of all outputs of 
PNN which could exist for the theory by results of the 
comparison of learning rules of BPN and PNN was performed 
using nonlinear time series signals prediction systems in this 
research. As a result, the dominance was showed. 
 

Index Terms—BP Network, Learning Rule, Nonlinear Time 
Series Signals Prediction System, Parallel-type Neuron 
Network, Prediction Accuracy 
 

I. INTRODUCTION 
The parallel-type neuron network (PNN) [1]–[5] is 

researched to improve on the decrease in capabilities of the 
neuron network by the interference of the learning caused 
between the outputs of BP network (BPN) [6] of two outputs 
or more and the difficulty of the common achievement of the 
middle layer used for each output. It is known that causes of 
these problems are in the learning rule and construction of the 
neuron network. 

To enable the learning for connection weights in middle 
layers of the perceptron [7], the learning rule of BPN was 
created with the standpoint of psychology. The inconsistence 
is caused between the physical events to the neuron network 
and the mathematics processing by the learning of BPN of 
two outputs or more. BPN of two outputs or more has total 
calculations using calculation results which are gotten 
independently by each output in calculations to change 
weights and thresholds in the last middle layer at the learning, 
because it has the middle layer used by each output in 
common. This is an origin of cause of mutual interference to 
the learning for each output. And, this interference back 
propagates one after another in the middle layers. Moreover, 
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the independent learning for each output is performed only in 
the output layer. The research from the standpoint which the 
learning rule, the neuron and the network are devised has 
been done to improve limit of outputs accuracies of BPN 
caused from the problem concerning such a learning 
capability though BPN has approximate realization 
capability of an arbitrary continuous map [8], [9]. Especially, 
it is important to construct correctly the network which is the 
prime cause for this problem. 

The learning rule of PNN is processed with physical events 
in the neuron network only one output appropriately reflected 
in mathematics. Furthermore, the learning only one output is 
performed in all layers. Therefore, it is theoretically shown 
that accuracies to all outputs of PNN are more dominant than 
ones of BPN when the learning rule of PNN is compared with 
one of BPN. 

The research to compare the prediction accuracy has been 
performed about the nonlinear time series signals prediction 
systems using PNN and BPN from the above-mentioned 
viewpoint so far. However, it has not attained demonstrating 
the existence of dominance to BPN concerning all prediction 
accuracies of PNN. On the other hand, there are the detection 
of middle cerebral artery spasm using learning vector 
quantization neuron networks by M. Swiercz et al. [10] and 
the determining coronary artery disease and predicting lesion 
localization by I. Babaoglu et al. [11] in the research which 
applies a parallel-type of network in recent years. Then, the 
purpose of this research is to demonstrate the existence of 
domination to BPN concerning the prediction accuracies of 
all outputs of PNN. 
 

II. PARALLEL-TYPE NEURON NETWORK 

A. I/O Characteristics 
Fig. 1 shows a discrete time parallel-type neuron network 

(DTPNN). The neuron used for a parallel-type neuron 
network (PNN) can apply various types. In this research, a 
general artificial neuron is used for PNN. The I/O 
characteristics of DTPNN are shown (1) in the input layer 
and from (2) to (4) in the middle layers and the output layer. 
 

( ) ( )1 1
z x

k k

τ τ

=   ( )11,2, ,k n=              (1) 

 
1

( ) ( ) ( )

1

1 1Ln

i i i
j

L L L L L
u w x

k j k j k

τ τ τ
−

=

− −
= ∑  

1

2,3, ,
1, 2, , ; 1, 2, , ; 1, 2, ,

i

M L L

L M
i n j n k n−

=⎛ ⎞
⎜ ⎟= = =⎝ ⎠

                         (2) 

Shunsuke Kobayakawa and Hirokazu Yokoi 

Evaluation for Prediction Accuracies of 
Parallel-type Neuron Network 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I, 
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

(revised on 1 November 2016) IMECS 2009



 
 

 

Parallel unit 1
( )1

1
x

τ

( )1
2

x
τ

( )

1

1
x

n

τ

1

( )
1

1
M

z
τ

2

( )
2

1

τM
z

( )

1

τ
M

M

n
n

M
z

Parallel unit nM

1st layer
2nd layer

(M1-1)th layer

M1th
layer

 
Fig. 1 Discrete time parallel-type neuron network 
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where the upper shows a layer number, the lower shows an 
element number in ‘< >’, the left row shows an element of 
output side, the right row shows an element of input side in 
tow rows mark of ‘< >’, x is an input signal, z is an output 
signal, w is a connection weight, u is the input weight sum, h 
is a threshold, s is the input sum, f is an output function, A is 
the output coefficient, M is the output layer, the suffix i of 
each sign is a parallel unit number, τ is discrete time. 
Moreover, w and h are changed by the training. 
 

B. Learning Rule 
The learning rule of DTPNN is shown by from (5) to (11). 

The back-propagation for BP network of one output is 
applied to this learning rule for a parallel unit. 
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where E is an evaluation function, y is a teacher signal, Δw is 
a changed value of connection weight, Δh is a changed value 
of threshold, α is a reinforcement coefficient of 
gradient-based method, β is a reinforcement coefficient of 
momentum, r is a reinforcement signal. 
 

III. EXPERIMENT 

A. Method 
Fig. 2 shows a nonlinear time series signals prediction 

system of five inputs four outputs which the output at τ+1 is 
obtained from the input at τ. BP network (BPN) and the 
parallel-type neuron network (PNN) of three layers are 
applied to this system. Next, the experiment to obtain each 
root mean square error (RMSE) is performed under 
conditions in Table 1. Furthermore, averages of their values 
are compared. 

400 data of nonlinear time series signals which is obtained 
from motion equation of a nonlinear plant at discrete time 
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200 ms are used for the input signals and the teacher signals. 
The gain tuning is done as for these signals, and these values 
are set within the range from -1 to 1. Fig. 3 shows these 
signals. 

Table 1 shows conditions for the evaluation experiment to 
their prediction accuracies. Here, initial values of the 
connection weights and the thresholds are decided by random 
numbers within the range shown in Table 1 every one time of 
the learning experiment. Ranges of their middle layer 
elements are decided for the number of elements an output to 
be the same about each neuron network. Moreover, αmin1 and 
αmin2 in Table 1 are a learning reinforcement coefficient of 
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Fig. 2 Nonlinear time series signals prediction system of five 
inputs four outputs 
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 Fig. 3 Input signals and teacher signals for the training 
 

gradient-based method at each the minimum RMSE obtained 
from the rough and fine search training. 
 

B. Results 
From Fig. 4 to Fig. 9 show the average RMSEs and the 

standard deviations of BPN and PNN which are obtained 
from their rough, fine and high fine search training. The 
length bar in these figures shows the range of the standard 
deviation of plus and minus. Table 2 and Table 3 show 
conditions at the minimum average RMSEs of BPN and 
PNN. 
 
 
Table 1 Conditions of experiment for prediction accuracies 
evaluation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Middle layer elements

R
M

SE

10- 2

10- 3

1

10- 1

10- 4
50 150100 200

10

2 216

□α=10-4　◇α=10-3　△α=10-2　○α=10-4　●α=1

 
 

Fig. 4 The average RMSEs and the standard deviations of BPN after the rough search 
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Fig. 5 Averages RMSEs and their standard deviations of PNN 
after the rough search 
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Fig. 6 Average of RMSEs and their standard deviations of 
BPN after the fine search 
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Fig. 7 Averages of RMSEs and their standard deviations of 
PNN after the fine search 
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Fig. 8 Average of RMSEs and their standard deviations of 
BPN after the high fine search 
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Fig. 9 Averages of RMSEs and their standard deviations of 
PNN after the high fine search 

 
 
 
Table 2 Condition of BPN at the minimum average of RMSEs 
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Table 3 Condition of PNN at the minimum average of RMSEs 
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As a result which the minimum average RMSEs are 
compared, it is shown that the accuracies of all prediction 
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outputs of PNN are higher about each waveform in these 
tables than ones of BPN. Moreover, it is shown that the mean 
value of the minimum average RMSEs of all outputs of PNN 
decreases from one of BPN by 39.0 %. 
 

IV. DISCUSSION 
At the beginning, from a viewpoint of the learning rule is 

considered. There is (11) to calculate the reinforcement signal 
led from the term of gradient-based method of (6) and (8) in 
the last middle layer of BP network (BPN) of two outputs or 
more. The calculation for the amount of the product of the 
reinforcement signals and connection weights of all outputs of 
the output layer which causes the interference to the amount 
of change about the connection weights and the thresholds is 
generated in (11). This is to be changed the connection 
weights and thresholds in the last middle layer by other 
outputs which the training has not converged even if the 
training is converged completely by an arbitrary output. 
Therefore, it is thought that it is very difficult for the output 
which the training has been converged completely to keep the 
state continuously by this change. That is, this output vibrates 
to the teacher signal. Furthermore, this vibration has the 
vibrating influence to other outputs. This is the mutual 
interference of the learning caused between the outputs. The 
interferences back propagate too because the change 
calculations of the connection weights and the thresholds 
based on a reinforcement signals including this interference 
are executed toward the input layer one after another in the 
middle layers. A parallel type neuron network (PNN) does not 
have the above-mentioned interference, and excellent 
capabilities of the neuron network can be expected because it 
is an output a parallel unit. 

Next, from the viewpoint of common for the middle layer is 
considered. BPN has the middle layer corresponding to each 
output in common. The condition to construct the middle 
layers prepared at each output to one, that is, the common 
condition of the middle layers is the case which the output 
signal vectors of the middle layers prepared at each output to 
all the input signal vectors becomes equal. This common 
condition of the middle layers is obviously met if a 
construction of coefficients of elements in the middle layers 
prepared at each output is equal in any middle layer. However, 
it is very difficult to meet such a condition actually. Therefore, 
BPN should have enough the learning capability to obtain the 
aimed output in the output layer by using an output signal 
vector of the last middle layer which does not satisfy the 
common condition of the middle layers. Such learning of 
BPN is like a perceptron learning only the output layer. 

On the other hand, PNN has the middle layer an output to 
avoid the above-mentioned problem which BPN is difficult to 
have middle layer corresponding to each output in common. 
Therefore, the learning is executed in the middle layers and 
the output layer for the training of one output, and excellent 
capabilities of the neuron network can be expected. 

From above two viewpoints, it is thought that all prediction 
accuracies of PNN are higher than ones of BPN. As a result, 
outputs accuracies of neuron networks for an application are 
ameliorable by changing BPN for PNN. Moreover, it is 

thought that the outputs accuracies are more ameliorable if 
PNN is changed to an error convergence parallel-type neuron 
network system [12] which error convergence-type neuron 
network systems are applied to parallel units of PNN. 
 

V.    CONCLUSION 
It was shown that all prediction accuracies of the 

parallel-type neuron network (PNN) was higher than ones of 
BP network (BPN), as the result of comparing the minimum 
average root mean square errors (RMSEs) which are obtained 
from nonlinear time series signals prediction systems of five 
inputs four outputs using BPN and PNN. Moreover, it was 
shown that the mean value of the minimum average RMSEs of 
all outputs of PNN decreased from one of BPN by 39.0 %. 
The future work is to perform simulation experiment of an 
error convergence parallel-type neuron network system which 
improves PNN further and to evaluate the effectiveness. 
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ERRATA 
Date of modification is November 1, 2016. 

 
Errors from line 2 from last line of p. 157 to line 1 of p. 158 

are corrected as “Each 200 data of nonlinear time series 
signals from x1 to x4 which are obtained from motion equation 
of a nonlinear plant at discrete time 20 ms are used for input 
signals and teacher signals of the system, respectively. 200 
data of x5 is a control signal to this plant.”. 
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