
 
 

 

  
Abstract—In this paper, an adaptive tuning wavelet neural 

control (ATWNC) is proposed. The proposed ATWNC system 
is composed of a wavelet neural controller and a smooth 
compensator. The wavelet neural control is utilized to 
approximate an ideal controller and the smooth compensator is 
used to remove the chattering phenomena of conventional 
sliding-mode control completely. In the ATWNC, the learning 
algorithm is derived based on the Lyapunov function, thus the 
closed-loop system’s stability can be guaranteed. Then, the 
proposed ATWNC approach is applied to a second-order 
chaotic nonlinear system to investigate the effectiveness. 
Through the simulation results, the proposed ATWNC scheme 
can achieve favorable tracking performance and the 
convergence of the tracking error and control parameters can 
be accelerated by the developed PI adaptation learning 
algorithm. 
 

Index Terms—Adaptive control, neural control, chaotic 
system, wavelet neural network.  
 

I. INTRODUCTION 
From the control point of view, if the exact model of the 

controlled system is well known, there exists an ideal 
controller scheme to achieve favorable control performance 
by canceling all the system dynamics [14]. However, a 
tradeoff between stability and accuracy is necessary for the 
performance of ideal controller. To relax this requirement, a 
sliding-mode control strategy offers a number of attractive 
properties for the tracking control, such as insensitivity to 
parameter variations, external disturbance rejection and fast 
dynamic responses [14]. However, the chattering phenomena 
of the sliding mode control will wear the bearing mechanism.  

Recently, some intelligent control sachems likes as neural 
network (NN)-based adaptive control have been developed 
[5], [7], [10], [12], [18]. The most useful property is their 
ability of NNs can approximate arbitrary linear or nonlinear 
mapping through learning. By adequately choosing neural 
network structures, training methods and sufficient input data, 
the NN-based adaptive controllers are capable to compensate 
for the effects of nonlinearities and system uncertainties [7]. 
To achieve better learning performance of NN, some 
researchers have combined the layered structure of NN and 
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the wavelet functions to construct the wavelet neural network 
(WNN) [1], [20]. Unlike the sigmoidal functions used in 
conventional neural networks, wavelet functions are spatially 
localized, so that the learning capability of WNN is more 
efficient than the conventional sigmoidal function neural 
network [1]. There have been many considerable interests in 
exploring the applications of WNN to deal with unknown 
nonlinearity control systems [6], [9], [15]. These 
WNN-based adaptive controllers combine the capability of 
artificial neural networks for learning ability and the 
capability of wavelet decomposition for identification ability.  

In order to ensure the NN-based and WNN-based adaptive 
control systems’ stability, a compensation controller could be 
designed to dispel the approximation error. The most 
frequently used of compensation controller is like a 
sliding-mode control, which requires the bound of the 
approximation error [9]. If the bound of approximation error 
is chosen too small, the system stabilization can not 
guarantee. However, if the bound of approximation error is 
chosen too large, the control effort will cause chattering 
phenomena to wear the bearing mechanism. 

To tackle this problem, an approximation error bound 
estimation mechanism is investigated to estimate the bound 
of approximation error so that the chattering phenomenon of 
the control effort can be reduced [13]. However, the adaptive 
law for the estimation error bound will make it go to infinity.  

This paper proposed an adaptive tuning wavelet neural 
control (ATWNC) system for a chaotic dynamic system. The 
proposed ATWNC system consists of a wavelet neural 
controller and a smooth compensator. The wavelet neural 
controller utilizes a WNN to online mimic an ideal controller 
using the PI type adaptation learning algorithm, and the 
smooth compensator uses a fuzzy system to remove the 
chattering phenomena on conventional sliding-mode control 
completely. In addition, the learning algorithm is derived 
based on the Lyapunov function to guaranteed system’s 
stability and the Taylor linearization technique is employed 
to increase the learning ability of WNN. Finally, some 
simulation results are provided to verify the effectiveness of 
the developed ATWNC scheme. 

 

II. PROBLEM FORMULATION 
Chaotic systems have been studied and known to exhibit 

complex dynamical behavior. The interest in chaotic systems 
lies mostly upon their complex, unpredictable behavior, and 
extreme sensitivity to initial conditions as well as parameter 
variations [3], [8], [11]. Consider a second-order chaotic 
dynamic system, the dynamics of Duffing’s equation is 
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described as [3] 
 =x&& utqxpxpxp ++−−− )cos(3

21 ω& uf += )(x  (1) 

where Txx ][ &=x  is the state vector of the system, t is the time 
variable; w  is the frequency, 

)cos()( 3
21 tqxpxpxpf ω+−−−= &x  is the system dynamic 

function, u is the control effort, and p , 1p , 2p  and q  are 
real constants. Depending on the choices of these constants, 
the solutions of system (1) may display complex phenomena, 
including various periodic orbits behaviors and some chaotic 
behaviors. To observe these complex phenomena, the 
open-loop system behavior with u=0 was simulated with 

4.0=p , 1.11 −=p , 0.12 =p  and 8.1=ω . The phase plane 
plots with an initial condition (0, 0) are shown in Figs. 1(a) 
and 1(b) for 1.2=q  (chaotic) and 0.7=q  (period 1), 
respectively. It is shown that the uncontrolled chaotic 
dynamic system has different chaotic trajectories for different 
values of q  [3]. The control objective of chaotic system is to 
find a control law so that the state trajectory x  can track a 
trajectory command cx . A tracking error is defined as 
 xxe c −= . (2) 
If the system dynamic function is well known, there exits an 
ideal controller as [14] 

 ekekxfu c 21
* )( +++−= &&&x  (3) 

where the 1k  and 2k  are the non-zero constants. Apply the 
ideal controller (3) into (1), it obtains that 

 021 =++ ekeke &&& . (4) 

If 1k  and 2k  are chosen to correspond to the coefficients of a 
Hurwitz polynomial, that is a polynomial whose roots lie 
strictly in the open left half of the complex plane, then it 
implies that 0)(lim =

∞→
te

t
 [14]. However, the system 

dynamics is always unknown; the ideal controller *u  can not 
be implemented. 

Rewriting (1), the nominal model of the nonlinear dynamic 
system can be represented as follows 
 ufx n += )(x&&  (5) 
where )(xnf  is a mapping that represents the nominal 
behavior of )(xf . If uncertainties occur, i.e., the parameters 
of the system deviate from the nominal value and/or the 
external disturbance is added into the system, the controlled 
system can be modified as 

duffx n ++∆+= )()( xx&& zufn ++= )(x  (6) 
where d  is the external disturbance, )(xf∆  denotes the 
system uncertainties, and z is called the lumped uncertainty 
which defined as dfz +∆= )(x  with the assumption Zz ≤ , 
in which Z  is a given positive constant. A sliding surface is 
defined as 

ττ dekekes
t

∫++=
021 )(& . (7) 

The sliding-mode control law is given as [14] 
hteqsc uuu +=  (8) 

where the equivalent controller equ  is represented as 

ekekxfu cneq 21)( +++−= &&&x  (9) 
and the hitting controller htu  is designed to guarantee the 
system stability as 

)sgn(sZuht =  (10) 
where )sgn(⋅  is the sign function. Substituting (6), (7) and (8) 
into (6) yields 

ssZzekeke &&&& =−−=++ )sgn(21 . (11) 
An important concept of sliding-mode control is to make 

the system satisfy the reaching condition and guarantee 
sliding condition. Consider the candidate Lyapunov function 
in the following form as 

2

2
1 sV = . (12) 

Differentiating (12) with respect to time and using (9) 
obtain 

 ssV && =1 sZzs −−=  

    sZsz −≤  

szZ )( −−= 0≤ . (13) 
In summary, the sliding-mode controller in (8) can guarantee 
the stability in the sense of the Lyapunov theorem [14]. 
However, large control gain Z  is often required in order to 
minimize time needed to reach the switching surface from the 
initial state. A conservative control law with large control 
gain Z  is usually considered, but unnecessary jumping 
movement between the switching surface may yield and 
cause an outcome of large amount of chattering. The 
chattering phenomena in control efforts will wear the bearing 
mechanism and excite unmodelled dynamics. 
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Fig. 1. Phase plane of uncontrolled chaotic dynamic system. 
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Fig. 2. ATWNC for chaotic system. 
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III. ATWNC SYSTEM DESIGN 
In this paper, the adaptive tuning wavelet neural control 

(ATWNC) system is proposed as shown in Fig. 2, where the 
controller output is defined as  
 scwn uuu += ˆ

. (14) 
The wavelet neural controller wnû  uses a WNN to 

approximate the ideal controller *u , and the smooth 
compensator scu  is utilized to compensate the approximation 
error between wavelet neural controller and ideal controller. 
The descriptions of design steps are depicted as follows: 
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Fig. 3. Network structure of a wavelet neural network. 

 

A. Description of WNN 

The network structure of WNN is shown in Fig. 3, which 
can be considered as “1”-layer feedforward neural network 
with input preprocessing element. The WNN output with m 
wavelet basis functions can perform the mapping according 
to [9] 

 ))(,(
1

jj

m

j
jjwnu czσ −Θ= ∑

=

α  (15) 

where z T
nzzz ][ 21 K=  is the input vector, ))(,( jjj czσ −Θ , 

mj ,1,2,…=  are the wavelet functions, 

jσ
T

njjj ][ 21 σσσ K=  and jc T
njjj ccc ][ 21 K=  are the 

dilation and translation parameters, respectively, jα  is the 
output layer weight. Each wavelet network’s neuron in the 
translation layer can be represented by 

 ))(exp()(
1

22∑
=

−−=Θ
n

k
kjkkjjj czh σz  (16) 

where the “Mexican hat” mother wavelet function is defined 

as ∏
=

−=
n

k
kkj zwh

1

22 )1()(z . For ease of notation, (15) can be 

expressed in a compact vector form as 
),,( cσzΘαT

wnu =  (17) 
where T

m ][ 21 ααα K=α , T
m ][ 21 ΘΘΘ= KΘ , 

T
m ][ 21 σσσσ K=  and T

m ][ 21 cccc K= . This implies that 
there is a WNN of (17) that can uniformly approximate an 
ideal controller. There exists ideal weight vectors so that [9] 

∆+= ),,( ***** cσzΘα Tu  (18) 

where *α  and *Θ  are optimal parameter vectors of α  and 
Θ , respectively; *σ  and *c  are optimal parameter vectors of 
σ  and c , respectively; and ∆  is the approximation error. 
However, the optimal parameter vectors are unknown, so it is 
necessary to estimate the values. Define an estimation 

function 
 )ˆ,ˆ,(ˆˆˆ cσzΘαT

wnu =  (19) 

where α̂  and Θ̂  are optimal parameter vectors of α  and Θ , 
respectively; and σ̂  and ĉ  are optimal parameter vectors of 
σ  and c , respectively. Define the estimation error as 

∆+−=−= ΘαΘα ˆˆˆ~ *** TT
wnuuu  

∆+++= ΘαΘαΘα ˆ~~ˆ~~ TTT  (20) 

where ααα ˆ~ * −=  and ΘΘΘ ˆ~ * −= . In order to deduce the 
adaptive law for mean and variance later, it is necessarily to 
derive the value of Θ~ . To achieve this goal, the Taylor 
expansion linearization technique is employed to transform 
the nonlinear function into a partially linear form, such that 
[9] 

hcBσAΘ ++= ~~~ TT  (21) 

where σσσ ˆ~ * −= , ccc ˆ~ * −= , σσσσ
A ˆ

1
=⎥⎦

⎤
⎢⎣
⎡

∂
Θ∂

∂
Θ∂

= mL , 

cccc
B ˆ

1
=⎥⎦

⎤
⎢⎣
⎡

∂
Θ∂

∂
Θ∂

= mL , and h  is the high order terms of 

expansion. Substitute (21) into (20), it can obtain that 
∆+++++= ΘαhcBσAαΘα ˆ~)~~(ˆ~~~ TTTTTu  

 ∆+++++= ΘαhααBcαAσΘα ~~ˆˆ~ˆ~ˆ~ TTTTT  (22) 
where αAσσAα ˆ~~ˆ TTT =  and αBccBα ˆ~~ˆ TTT =  are used since 
they are scalars. To speed up the convergence of WNN 
learning, the optimal parameter vector *α  is decomposed 
into two parts as [4] 

***
IP ααα IP ηη +=  (23) 

where Pη  and Iη  are positive constants, and *
Pα  and *

Iα  are 

the proportional and integral terms of *α , respectively, and 

∫=
t

d
0

** τPI αα . The estimation parameter vector α̂  is 

decomposed into two parts as 
IP ααα ˆˆˆ

IP ηη +=  (24) 

where Pα̂  and Iα̂  are the proportional and integral terms of 

α̂ , respectively, and ∫=
t

d
0
ˆˆ τPI αα . Thus, α~  can be 

expressed as 
*ˆ~~
PPI αααα PPI ηηη +−=  (25) 

where III ααα ˆ~ * −= . Substituting (25) into (22) obtains 

Θααα PPI
ˆ)ˆ~(~ * T

PPIu ηηη +−=  

∆+++++ ΘαhααBcαAσ ~~ˆˆ~ˆ~ TTTT  

εηη +++−= αBcαAσΘαΘα PI
ˆ~ˆ~ˆˆˆ~ TTT

P
T

I  (26) 

where the uncertain term ∆+++= ΘαhαΘαP

~~ˆˆ* TTT

Pηε . 
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Fig. 4. (a) input fuzzy sets. (b) output fuzzy sets. 
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B. Smooth compensator 
Assume that the smooth compensator has 3 fuzzy rules in a 

rule base as given in the following form [16] 
Rule 1: If s  is PE, then scu  is P (27) 
Rule 2: If s  is ZO, then scu  is Z (28) 
Rule 3: If s  is NE, then scu  is N (29) 

where the triangular-typed functions and singletons are used 
to define the membership functions of IF-part and 
THEN-part, which are depicted in Figs. 4(a) and 4(b), 
respectively. The defuzzification of the output is 
accomplished by the method of center-of-gravity 

3322113

1

3

1 wrwrwr
w

wr
u

i
i

i
ii

sc ++==

∑

∑

=

=  (30) 

where  10 1 ≤≤ w ,  10 2 ≤≤ w  and  10 3 ≤≤ w  are the firing 
strengths of rules 1, 2, and 3, respectively; and the relation 

1321 =++ www  is valid according to the special case of 
triangular membership function-based fuzzy system. In order 
to reduce the computation loading, let rr ˆ1 = , 02 =r  and 

rr ˆ3 −= . Hence, for any value of input x , only one of four 
conditions will occur according to Fig. 4(a) as [17] 
Condition1: Only rule 1 is triggered ( axx > ,  11 =w , 

032 == ww ) 
rrusc ˆ1 ==  (31) 

Condition2: Rules 1 and 2 are triggered simultaneously. 
( axx ≤<0 ,  1,0 21 ≤< ww , 03 =w ) 

111 ˆwrwrusc ==   (32) 
Condition3: Rules 2 and 3 are triggered simultaneously. 
( 0≤< xxb , 01 =w ,  1,0 32 ≤< ww ) 

333 ˆwrwrusc −==  (33) 
Condition 4: Only rule 3 is triggered. ( bxx ≤ , 021 == ww , 

 13 =w ) 
rrusc ˆ3 −==  (34) 

Then, the (31)-(34) can be rewritten as 
)(ˆ 31 wwrusc −=  (35) 

Moreover, it can see that [17] 
0)()( 3131 ≥−=− wwswws   (36) 

C. On-line learning algorithm 
Substituting (10) into (7) and using (8), yields  

suuuekeke scwn &&&& =−−=++ ˆ*
21  (37) 

By using the approximation property (26), (37) can be 
rewritten as 

sc
TTT

P
T

I us −+++−= εηη αBcαAσΘαΘα PI
ˆ~ˆ~ˆˆˆ~& . (38) 

To proof the stability of the ATWNC system, define a 
Lyapunov function candidate in the following form 

 ccσσαα II
~~

2
1~~

2
1~~

22
1 2 T

c

TTI
a sV

ηη
η

σ

+++=  (39) 

where ση  and cη  are the learning rates with positive 
constants. Differentiating (39) with respect to time and using 
(38), it is obtained that 

 ccσσαα II
&&&&& ~~1~~1~~ T

c

TT
Ia ssV

ηη
η

σ

+++=  

 )
~

ˆ(~)
~

ˆ(~)~ˆ(~
c

TTT
I sss

ηη
η

σ

cαBcσαAσαΘα II

&&
& +++++=    

)(ˆˆ
sc

T
P uss −+− εη Θαp  (40) 

If the parameter adaptive laws are selected as 
 ΘαP

ˆˆ s=  (41) 

 Θαα II
ˆ~ˆ s=−= &&  (42) 

 αAσσ ˆ~ˆ sση=−= &&  (43) 

 αBcc ˆ~ˆ scη=−= &&  (44) 
and the smooth compensator is design as (35), then (40) can 
be rewritten as 
 =aV& ppαα ˆˆ T

Pη− )( scus −+ ε  

   )(ˆˆˆ
31 wwsrsT

P −−+−≤ εη ppαα  

31ˆ wwsrs −−≤ ε  

 )ˆ(
31

31 ww
rwws

−
−−−=

ε
 (45)  

If the following inequality 

 
31

ˆ
ww

r
−

>
ε

 (46) 

holds, then the sliding condition 0≤aV&  can be satisfied. 
Owing to the unknown lumped uncertainties, the value r̂  
cannot be exactly obtained in advance for practical 
applications. According to (46), there exists an ideal value *r  
as follows to achieve minimum value and match the sliding 
condition: 

 κ
ε

+
−

=
31

*

ww
r  (47) 

where κ  is a positive constant. Thus, a simple adaptive 
algorithm is utilized in this study to estimate the ideal value 
of *r , and its estimated error is defined as 

rrr ˆ~ * −=  (48) 
where r̂  is the estimated value of the optimal value of *r . 
Then, define a new Lyapunov function candidate in the 
following form 

 22 ~
2
1~~

2
1~~

2
1~~

22
1 rsV

r

T

c

TTI
b ηηη

η

σ

++++= ccσσαα II  (49) 

where rη  is the learning rate with a positive constant. 
Differentiating (49) with respect to time and using (38) and 
(41)-(44), it is obtained that 

 rrssV
r

T

c

TT
Ia

&&&&&& ~~1~~1~~1~~
ηηη

η
σ

++++= ccσσαα II  

 ppαα ˆˆ T
Pη−= rrwwsrs

r

&~~1)(ˆ 31 η
ε +−−+  

 rrwwsrs
r

&~~1)(ˆ 31 η
ε +−−≤  

 rrwwsrwwsrwwsrs
r

&~~1)()()(ˆ 31
*

31
*

31 η
ε +−−−+−−≤  
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rrwwsrwwsrs
r

&~~1)()(~
31

*
31 η

ε +−−−+=  

31
*

31 ]~1)([~ wwsrsrwwsr
r

−−++−= ε
η

&  (50) 

Choose the rule estimation laws as 
)(ˆ~

31 wwsrr r −−=−= η&&  (51) 
and using (47), (50) becomes 

)( 31 wwssVb −+−= κεε&  

031 ≤−−= wwsκ  (52) 
As a result, the stability of the proposed ATWNC system can 
be guaranteed. 

 

IV. SIMULATION RESULTS 
Chaotic system is a nonlinear deterministic system that 

displays complex, noisy-like and unpredictable behavior. It 
can be observed in many nonlinear circuits and mechanical 
systems. For control engineers, control of a chaotic system 
has become a significant research topic in physics, 
mathematics and engineering communities. The simulation 
results of the chaotic system are presented here to verify the 
effectiveness of the proposed ATWNC scheme. It should be 
emphasized that the derivation of ATWNC do not need to 
know the system dynamic function. The proposed ATWNC 
is applied to chaotic dynamic system again. The control 
parameters are selected as 21 =k , 12 =k , 20== PI ηη  and 

1== cηησ . All the gains in the ATWNC are chosen to 
achieve good transient control performance in the simulation 
considering the requirement of stability and possible 
operating conditions. As 0=Pη , the learning algorithm of 
the proposed method is the same as conventional 
WNN-based adaptive control. The simulation results of 
ATWNC with 0=Pη  for 1.2=q  and 0.7=q  are shown in 

Fig. 5. The tracking responses of state x  are shown in Figs. 
5(a) and 5(d); the tracking responses of state x&  are shown in 
Figs. 5(b) and 5(e); and the associated control efforts are 
shown Figs. 5(c) and 5(f) for 1.2=q  and 0.7=q , 
respectively. The simulation results show that it can achieve 
favorable tracking performance; however, the convergence 
of controller parameter and tracking error is slow. Moreover, 
to achieve faster convergence performance, 20=Pη  is 
reconsidered. The simulation results of ATWNC with 

20=Pη  for 1.2=q  and 0.7=q  are shown in Fig. 6. The 

tracking responses of state x  are shown in Figs. 6(a) and 
6(d); the tracking responses of state x&  are shown in Figs. 6(b) 
and 6(e); and the associated control efforts are shown Figs. 
6(c) and 6(f) for 1.2=q  and 0.7=q , respectively. From the 
simulation results, it is seen that the convergence of 
controller parameter and tracking error converge quickly. 
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Fig. 5. Simulation results of ATWNC with 0=Pη . 
 

time (sec)
(a)

st
at

e,
 x

trajectory 
command

state 
trajectory

time (sec)
(a)

st
at

e,
 x

trajectory 
command

state 
trajectory

 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-7-5 IMECS 2009



 
 

 

time (sec)
(b)

st
at

e,
 x&

trajectory
command

state 
trajectory

time (sec)
(b)

st
at

e,
 x& x&

trajectory
command

state 
trajectory

 

time (sec)
(c)

co
nt

ro
l e

ff
or

t

time (sec)
(c)

co
nt

ro
l e

ff
or

t

 

time (sec)
(d)

st
at

e,
 x

trajectory 
command

state 
trajectory

time (sec)
(d)

st
at

e,
 x

trajectory 
command

state 
trajectory

 

time (sec)
(e)

st
at

e,
 x&

trajectory
command

state 
trajectory

time (sec)
(e)

st
at

e,
 x& x&

trajectory
command

state 
trajectory

 

time (sec)
(f)

co
nt

ro
l e

ff
or

t

time (sec)
(f)

co
nt

ro
l e

ff
or

t

 
Fig. 6. Simulation results of ATWNC with 20=Pη . 

 

V. CONCLUSIONS 
An adaptive tuning wavelet neural control (ATWNC) with 

a PI type learning algorithm is proposed for a chaotic 
dynamic system. The stability is proven by Lyapunov 
function with the online parameter tuning laws are given to 
adjust the interconnection weights, dilation and translation 
parameters of wavelet functions. The effectiveness of the 
ATWNC system is verified by some simulations. The main 
contributions of this paper are: (1) a learning algorithm with 
PI adaptation learning algorithm can achieve better tracking 
performance; and (2) the smooth compensator design uses a 
simple fuzzy system can remove completely the chattering 
phenomena.  
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