Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II
IMECS 2009, March 18 - 20, 2009, Hong Kong

Computing worst case execution time (WCET) by
Symbolically Executing a time-accurate Hardware Model

Bilel Benhamamouch, Bruno Monsuéz

Abstract—To ensure that a program will respect all its tim- as how we abstract the executable timed model to manage the
ing constraints we must be able to compute a safe estimatiorf o explosion of the states generated by the symbolic execution
its worst case execution time (WCET). However with the incras- (Section 4). After that, we illustrate our approach throagh
ing sophistication of the processors, computing a precisesema- example (Section 5). In Section 6, we give an overview of
tion of the WCET becomes very difficult. In this paper, we pro- how the merging policy works. Finally, we conclude and we
pose a novel formal method to compute a precise estimation of present ongoing and future works (Section 7).
the WCET that can be easily parameterized by the hardware ar-
chitecture. Assuming that there exists an executable timeshodel 2 Formal methods
of the hardware, we first use symbolic execution [1] to precily
infer the execution time for a given instruction flow. Then we Nowadays the most mature method which allows to compute
merge the states relying on the loss of precision we are readg an over approximation of the WCET is the one developed by

accept. AbsInt team. This method can be described as follow:
Keywords: static analysis, WCET, processor modelization, symbolic Initially, a control flow graph (CFG) is extracted from the bi
execution. nary code. Then on this CFG a value analysis is carried out
to produce an approximation (intervals) of the memory ar-
1 Introduction eas which will be reached. This result is in turn exploited by

the following stage represented by the cache analysis vidiich
Computing WCET is useful either to determine appropriatesed to classify the memory references in:
scheduling schemes for the tasks or to perform an overally Cache always hit: The memory reference always results
schedulability analysis. This is done obviously in order to jn a cache hit.
guarantee that all timing constraints will be met. Compmtin
program execution time has always been difficult. Dynamic
methods [11, 12] as well as formal methods [5, 8] have re- .)
ceived a lot of attention for precise estimation of the worst ® Persist: The referenced memory block will be load at
case execution time of code snippets. However, currentmeth mostonce.
ods have some difficulties to cope with the increasing com- Not classified: The memory reference could not be clas-
plexity of the hardware used to implement critical real time sified in one of the above groups.
applications. When this classification is made for all blocks, it is injettes
In this paper, we present part of our formal method [15] ti;put of the following analysis. This will define the possibl
compute an upper estimation of the WCET that contains tBeates of the pipeline at each execution point of the andlyze
loss of precision and that can also be parameterized byrdurrgrogram. Therefore, it will be associated to each instoucti
complex hardware architecture like super-scalar microgge various execution times (each one is related to a precise env
sor or multi-processor systems. ronment). At this moment it is useful to specify that the im-
The contribution of this paper is twofold, on one hand we shoglementation of these various analyses was possible becaus
how easily we abstract the behavior of a current hardware fris based on abstract interpretation [9, 10]. This techeiq
chitecture in order to highlight its timing properties, amd s largely used for program checking, and it makes possible
the other we propose an approach which uses this abstractoassociate concrete values to abstract ones (a whole of con
to compute the WCET of a sequence of code. crete values could thus be represented by an abstract value)
The paper is organized as follows: we first present how th#e various results obtained during the preceding stages, a
formal methods which are usually used to compute WCHinally exploited jointly with the source code by the last Bna
(Section 2) and we give an overview of our framework (Segsis called path analysis. This analysis is based on linear p
tion 3). Then, we show how we compute the execution tingramming techniques. That enables it to produce the longest
of an instruction sequence using symbolic execution as wehkecution path.

*Ecole Nationale Supérieure de Techniques Avancées UEI,TENER This approach is represented by a sequential analysis frme

Bd Victor, 75739 Paris cedex 15, France Bilel.Benhamam@asta.fr, PY black boxes _[5, 8] This i_S one of the St_rong points (?f this
Bruno.Monsuez@ensta.fr approach, considering that it makes possible to use differe

e Cache always miss: The memory reference always re-
sults in a cache miss.

ISBN: 978-988-17012-7-5 IMECS 2009

Proceedings of the International MultiConference of Engineers and Com(guter Scientists 2009 Vol 11

IMEERM HG,SM‘&r}{ﬁrl%u-szb?‘ﬁjéd?fﬁg'ﬁg%ﬁ such as: using abe Otherwise, the Boolean condition may be true or false.

stract interpretation for the cache and the pipeline aislys In this case, we split the path condition in two paths con-
while the path analysis is done by ILP (integer linear pragra ditions PGirye = PCA R andPCigge = PCA —~R. We
ming). But this strength can also be a weakness [6, 7]. Indeed continue the concurrent execution of the condition code
the increase in complexity of the hardware platform leads to sequence witlPGyye and the "else" code sequence or the
an increase in the number of black boxes required to perform code located after the conditional code sequence with the
the analysis as well as a more complex design for each black path conditiorPCiyse

box that abstracts the hardware semantics. . . i)

In addition, those formal methods have three main drawbacRs2 ~C0njoint symbolic execution of binary code and
During the analysis the dependencies between the blaclsboxe ~ ime-accurate system model

cannot be identified precisely which leads those methods_ltg mitigate the drawbacks of the formal methods (sectign II)

explore a superset of all execution paths. Thus WCETSs for un- :
) ;) i we propose a new approach that extends the classical frame-
feasible execution paths are taken into account (1); Todavol ; T
. . . wprks for computing the worst case execution time of a se-
the state explosion, execution paths are merged using toQIs

provided by abstract interpretation like widening operztet guence of code with no loops or branch instruction. This new

L fre}mework provides two main advantages over the methods
may also conducts to an over-exaggerated approximation o

S) - currently used: (1) it simply requires an executable timed-
the execution time (2); The analyzer must explicitly suppor : :
. model of the target platform and does not require the design

the target platform and must provide valuable abstraction g . e
of black boxes that abstract the hardware semantics, this is

the hardware components that compose the target platform_. L . .
3) achieved bythe conjoint symbolic execution of the program

code and the executable model of the proces&r it pro-

vides a method that allows to identify execution statesdhat

3 Our framework be merged with no loss of precision as well as gives insight in
the resulting loss of precision when merging execution gath

Our approach is mainly based on the symbolic execution. gt have similar but different execution times, this isiaetd

before explaining how the method works let us describe wt‘@, the backward execution paths merging with symbolic exe-

is the SymbOIiC execution. Cution |Ookup po“cy
.) . In this paper, we focus on the conjoint symbolic executian pa
3.1 Background: Symbolic execution of the analysis method. During symbolic program execution,

the executable model of the processor is used to compute for

Thg main |de.a behind symbolic execution [1, 2] is to US€ SYMach execution point all the states that the processor raajire
bolic values instead of actual data to represent the input v,

A It th tout val ted b fihen executing this instruction with respect to the executi
ues. As a resufl, the output values computed by a prqgr%ﬁgtory_ Following this reasoning we build a symbolic tree
are expressed as a function of symbolic values. Evaluafion ich contains:
assignments is done naturally, the left-hand side variedle }

; 1) All the states that the processor may reach during the exe
ceives the resulting symbolic expression, which should be(P y 9

. cttion (only the possible paths are taken into account).
pE(\)/IylnomlaI. (2) The transitions are labeled with the maximum number of
guanon OT, alternat|v§§ I a bit more compl|catgd. It rlock cycles needed to move from one state to another.
quires that a _path condltlorP'C— a Boolean EXPressIOn OVeIg, ot the end of the analysis, we easily extract from the tree t
the SYT“bO"C _mputs -Is a_xdded to the execution state. Tte IO?émporally longest execution path. In the next section{Sec
conditionPC is a (quantifier-free) boolean formula over the
symbolic inputs; it accumulates constraints which the tapu

must satisfy in order for an execution to follow the partaul (Program to analy3 —
associated execution path. At program start, each symbolic instruction 1 Symbolic Abstraction
execution begins witPC initialized to true. When encoun- struction 2 execution (merging states)
tering an alternative, evaluation first starts with the eatibn \Slinstuclion N Ep)

of the associated Boolean expression by replacing vagable / (ﬁl
Determination of

by their values. Since the values of variables are polyntsmia

the temporally

over the symbols, the condition is an expression of the form: Time-acurate 'Ogg;ﬂfriﬁﬁgon
P > 0, whereP is a polynomial. Call such an expression R. of the processor generated graph
Then we can have three cases: — R L

e PC O R andPC) —R: The expression is always
true, the execution continues with the conditional code
sequence. tion 4), we explain how we build a symbolic tree which con-

e PC > —R andPC % R: The expression is always fa|se,tains all the possible execution times of the analyzed progr

the execution continues with the "else” code sequencé¥ well as how we abstract it in order to reduce the number
an "else" block is available or simply ignore the congiof the generated states whithout introducing any loss of pre
tional code sequence. cision. Then, we present some significant architecturalildet

Figure 1: WCET estimation method

ISBN: 978-988-17012-7-5 IMECS 2009

Proceedings of the International MultiConference of Engineers and Comeputer Scientists 2009 Vol I
H\,@féelgez godnRresed ¥ oM jeam fs well as'a small prorocessor needs to execute an instruction. The simplest im-
gram to illustrate our approach (Séction 5). Finally, weegivplementation of timed model use the clock as the base cycle.

in section 6 an overview of how the merging policy works. So for each clock cycle, it computes the new state of the pro-
cessor. However, in the presence of cache misses and gipelin
stalls, it may lead to unnecessary intermediate states fire
processor is waiting for some data. A more efficient imple-
mentation is the time-accurate model, as shown on figure 2.
It is achieved when returning the next processor state ¢hat i
different from the current one as well as the number of clock
cycles required to reach this processor state.

During our analysis we must provide an executable timdeefinition 2 Clock-accurate model & Time-accurate model
model of the hardware. This abstract timed model is first mo4n executablelock-accurate modés an executable function
eled in C++ with some SystemC facilities. Further extensiofthat maps a system staf& to the next system staffC’ at
could accept full SystemC TLM-T, SystemC Verilog, VHDLthe next clock cycle. An executakile-accurate modes an

or Verilog descriptions. executable function that maps a system sgtdo the pair of
The executable timed modeBasically a processor can bea system stat€C’ and the timet € 7 needed to reach this
seen as a complex component which is composed by sevédditem state.

units. Each one carries out a number of tasks during a clotke atomic times that are associated to a particular cache op
cycle. The current processor state is the product of thesstagration are:

of all the basic units of the processor. th: time associated to a cache hit.
Definition 1 System unit states & system states A system unit tm: time associated to a cache miss.

stateSC[u] is a minimal set of properties that allows to defingr : time associated to a cache line reloading.

4 Using an executable timed-model of the tar-
get system to Compute the WCET

4.1 An executable timed model of the target archi-
tecture

what is the next operation that this unitwill perform. (d): data cache(i): instruction cache.

The state of the target systefiC is the product of all the During the execution data and instruction caches are ab-
states of the units that compose this syst8th SC = stracted to indicate the state of the cache (busy or idle)edis w
(®u witor sSC[u]). as to tell if the requested data is present in the cache.

42 Building a symbolic graph 4.4 Symbolic execution of the time-accurate model

The states of a symbolically executed binary proaram in_As described before, the time-accurate model takes as ah inp
5 y y y program %, o rrent statéC of the system and returns the next processor
cludes the system stai8C the processor state (pipeline

i i : stateSC’ that is different from the current one as well as the
data/instruction cache and tR€), andSV the symbolic val- SC s di u w

: . . mber of clock les r ir r h thi m .
ues. The executable timed model is symbolically executed @u be Ot clock cycles requ ed to reach this system state
T)/mbollc execution of the time-accurate model takes as an

the given program. This model takes as an inputa curreMStgntry the current symbolic stateof the system and returns a
SCofthe sy§tem and returns t_he processor stsfEobtained set final states as well as the respective times requirecdthre
after executing the model during one clock cycle. this final states{ (s1, 1) (S, tn)}

We begin the symbolic eXECLlJtiOI’I of the code snippet with %1efinition 3 Interrrﬁéd?a:[é;t’ateglfns .e S is a valid sys-
empty pipeling P = empty) - and no information about the : ” .

cache statedC = DC = T). tem state, we call “intermediate states” the final states

Starting from this initial state and relying on the procest® {(s1,%1), ..., (8n, tn)} generated by one step of symbolic exe-
scription we execute the code symbolically. So, we compu‘[’@t'on of the time-accurate model when starting the exenuti
on each clock cycle the set of next states. This set contam'gh the states.

all the states that the processor may reach when it starts Befinition 4 Timed Symbolic Execution Graph The sym-
ecuting the code with respect to the execution history. Fbplic execution grapiA\, TR M) is a graph that describes
instance, after each cache miss the processor initiatesra méhe symbolic execution of a code sequence and is defined as
ory transaction that loads a cache line. If during the exenut follow:

a cache miss occurs when accessing a word, the cache gets up-

dated. So accessing the double word that follows immegiatel ® the nodes\V of the graphs are symbolic states,

the loaded word will result in a cache hit. e the transitions TR (N x N') map a nodeV to another
node)N.
4.3 Simplifying the generated symbolic graph o the labeling functionM maps TR— 7 and associates

_) to each transition tr= (n, x n.) the number of clock
The model of the target architecture must be timed, that smiean cycles that the system takes to go from the starting state
that it must preserve the time (number of clock cycles) the ns to the ending state.. of the transition.

1This assumption is made because starting an execution witimknown
pipeline state implies having some information about theing application, NOW, we present the algorithm that builds tireed symbolic

which implies other assumptions. execution tredor a sequence of binary instructions.

ISBN: 978-988-17012-7-5 IMECS 2009

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vfl 11 .
IMECS 2009, March 18 - 20, 2009, Hong Kong S 1) apipeline staFe (see _be ow the deflqltl_on).
b (2) cache state (instruction and data): it is representetthdy
s, " Sa Sa s, e instruction (or data) that it contains.
S ; S ; 3 ; 3 qf 3 ; (3) a PC: as seen in section 3, it accumulates constrainthwhi
o o ’ NS ; the inputs must satisfy in order for an execution to follow th
" 3 . particular associated execution path.
S “ Now we will focus on describing the pipeline state. Note that
E™) most of the pipelines developed in order to be integrates int
Sit an embedded system contain at least :
w oy Su Fetch: On each clock cycle, this unit retrieves instruction(s)
S e from the memory system and computes the location of the next
2 e e instruction(s).
~N S0 wy S Dispatch: This unit decodes the instructions supplied by the
G - i instruction fetch stage and dispatches them to the ap@atepri

execution unit.
Execute Each execution unit that has an executable instruc-
Figure 2: Symbolic execution of the executable timed (ETMjon executes the selected instruction, and notifies thept®m
and the time-accurate model (TAM) tion stage that the instruction has finished execution. Nowa
days, most of the pipelines integrate at least five execution
r « { initial processor state (pipeline & data cacHeg, units : an integer unit (IU), a floating-point unit (FPU), a

(TAM)

=true},; /I Initialization branch processing unit (BPU), a load/store unit (LSU), and
current _states «— {r},G — {r}; a system register unit (SRU).
while cur rent _st at es is not emptydo Il Complete/writeback This pipeline stage maintains the cor-
Propagation rect architectural machine state and transfers the rdsue
Removes statefrom curr ent _st at es; appropriate registers as instructions are retired.
Computes the symbolic successors The following table summarizes the pipeline stages.
{(s5,t1),...,(s5,tn)} Of s;
Adds all transitions —* s? to the symbolic Processor units
execution graply; F: Fetcher CU: Completion Unit
Adds to the setur r ent _st at es all the states? D: Dispatcher SRU: System Register Unif
that are not terminal states (terminal states are the LSU: Load Store Unit RS: Reservation Station
final states generated by the last instruction of the IU: Integer Unit FPU: Float Point Unit
code sequence); BPU: Branch Processing Unit

_ _ During the execution the states of the units are charaettriz
5 Framework’s illustration by the instructions that are currently executed g2 indi-

. . o cates that the integer unit executes the second instruofion
In this section we propose a description of a hardware arcfie program).

tecture in order to show how we abstract this description and

how we use the resulting abstraction to compute a precise B2 Processor’s modelization

timation of the WCET. Before starting the processor’'s mod-

elization, we should decide about the characteristicswieat Before starting the analysis we must provide a model of the
will need during the analysis. These characteristics gsgre Processor. it is a simple program (see figure 3 which repre-
on each clock cycle, not only the state of the processor bat afents the fetch Unit) that describes the processor’s behavi
allow to identify precisely what are the reachable statethen The processor’s model works as follow: every time the fetche

next clock cycle. is free (instruction A), it tries to fetch an instruction fnathe
instruction cache. First it associates an identifier tortisguc-
5.1 Processor’s description tion (instruction B), then the virtual address of the instion

is converted to a real one (instruction C), and it sends ag&tqu
To build the processor state, first we can imagine that a comtn the cache (instruction D). Finally it gets the time reqdir
nation of the pipeline and the cache states will suffice tehato fetch the instruction (instruction E).
a precise representation of the hardware. However, dunimg fThe instruction E shows that this description leads to build
analysis, relying on this representation we cannot idgptié- a time accurate model (TAM) (see figure 5). Indeed, every
cisely the nextreachable states. To solve this problenprihve time the fetcher fetches an instruction, the program lineE r
cessor’s state must be enriched with a "path condition (PQ)tns the time that this request takes. This behavior matche
(Section 3). This PC provides to identify at each executidhe definition of a time accurate model (Section 4). So each
point of the control flow graph which path should be taken. symbolic execution step of this model returns the next pro-
So we represent a processor state by a combination of: cessor stat&C’ that is different from the current one as well

ISBN: 978-988-17012-7-5 IMECS 2009

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol 11
INECS50(9¢ Miretilge1 002 009! Higngtetys o (bool | e
VirtualAddress , int ldentifi T)
{/l test if the fetcher is free Popty ; Py | P 1 Pty
A. if (gettime()==0) 1] Step D;E IC=T 7> IC=T L—p IC=T > c=T
{ I/l associate each instruction to an identifier e P%St:r;/re Pg(::t:r;e P%Ct:r;e
B. IdentifierVirtualAddress.insert(pair <int , bool 1|Step DIET
x> (ldentifier ,VirtualAddress)); .|. s, vﬁ‘
I/l convert the virtual address to a real one S, s, 7c=fr1m
C. realaddress= pMemoryManagementUsmit P=empty 1 o “N(a cache line)| ¢ ! P_,Zmﬁty
EffectiveAddressToRealAddress (VirtualAddress); [')CC'JT DC=T (2= pe=T
/I fetch the instruction from the cache PC=true 4 PC=true Festue posme
D. pControlcache>readrequest(VirtualAddress , i
realaddress , ldentifier); S, S, { :esm‘ =ef,;
/l get the required time to fetch the instruction P:,ec'jﬁ’y 1 Premply Femey mﬂiz 2
}E. time= pControlcache>requesttime () ; Jpe=1. oot i e
U Tistep/E3 1
} \
o 1 P=e§i‘pry P:esmmply P:e%:pty
1C=TAl |&———] IC=T Ic=T —| 1c=T
. s . . . DC=T DC=T DC=T 1|StepE4 DC=T
Figure 3: Processor’s modelization: Fetch Unit (F) Pesiue posinue PC=true PC=true
J | 1|Step E5 .
as the number of clock cycles r_eqwred to rea_ch this system peSy 1ton 7 ’“792?” theped Prempy
state. However, an executable timed model (figure 4) would e OT S e [P ber
. =true C=tr =true
split the instruction E into E1;E2....En steps (n dependthen jo=Tam Pci o e
. o tep
scenario). Each step takes one clock cycle to be executed Fette s 5 s
R
5.3 lllustration of the conjoint symbolic execution o Poctue e
PC=true

To illustrate the analysis method, we symbolically exeeute
assembly instruction (gray background) relying on the gsec Figure 4: Symbolic execution steps of the executable timed

sor’s model shown on figure 3. This is a load operation that model (ETM) for the assembly instruction
1. Iwz %1, off (@N [

JAB;,C

So
transfers a word from the memory to the register 1. Note that Poemty | | STEP D:E
during the analysis each instruction has an identifier which : o=
represents its position in the program. Before explainireg t /
execution, let us recall that we start the analysis with aptgm 5 = - p B
pipeline (P = empty) and no information about the cache[u mn] ["iw”r“] o W o
state(IC = DC = T). v ime) Lo ime
Starting from this initial state and relying on the processo
model, the analysis is carried out as follow: _ Figure 5: Symbolic execution steps of the time-accurate
On each clock cycle we test the fetcher (instruction A of the model (TAM) for the assembly instruction

model), if it is busy we wait until the next clock cycle, else w

associate an identifier to the instruction (instructionB)en, concerning the scenario (1)—i.e., from the stggao S, after

the address of the instruction is converted from a virtual adne clock cycle: (A) the pipeline fetches the instructiongh
dress to a real one (instruction C). After that, the fetcleads its state moves fronilP = empty) to (P = F1), (B) the in-

a request to the instruction cache (instruction D). At this e struction cache contains the instruction so its state mivwas
ecution point we must first distinguish among two cases: tfiEC = T) to (IC = T A1), (C) the cache sta{@®C) as well
instruction is in the cache (cache hit) and the instructiomat as thePC' stay at the same state. Now, in order to understand
in the cache (cache miss). We also must distinguish betwebg interest behind abstracting the executable timed moeel
the case wherthe cache is idle we did not wait to request focus on the last instruction of the model (instruction B)isT
the instruction and the case wheine cache is busywe must instruction allows to know the time needed to get the instruc
first wait until the cache-line-reload operation termisat8o tion from the instruction cache. So in the presence of a cache

we can resume all the possible scenarios as follow: miss (or pipeline stalls) if we choose to build the tree using

(1) cache hit and the cache is idle (execution tramxecutable timed model (The simplest implementation which
A;B;C;D;E). use the clock as the base cycle) it may lead to unnecessary in-
(2) cache miss and the cache is idle (execution tratermediate states since the processor is waiting durinijntee
A;B;C;D;EL;E2..E5). returned by the instruction E. A more efficientimplemeati

(3) cache hit and the cache is busy (execution tratethe time-accurate model. Itis achieved when returnieg th
A;B;C;D;E1;E2..EB). next processor state that is different from the current ane a
(4) cache miss and the cache is busy (execution tramell as the number of clock cycles required to reach this pro-
A;B;C,D;E1;E2..E12). cessor state. Like we see on the figure 5, this abstraction doe

On the graphs presented by the figure 4 and 5 we see thmatt introduce any loss of precision. Thus we explore the same

ISBN: 978-988-17012-7-5 IMECS 2009

Proceedl S of the International MulthOnf rence of Engineers anddg ?lé)uter Scientists 2009 Vol II
@ %gﬁq@al’ﬂﬁ %6§€H \$ But now insteadR&TeErenc
Cc

executlng 'the program clock cycle by clock cycle, we compute .)] o
immediately the set of pertinent “intermediate states”ttgo [1] J- C. King.,“Symbolic Execution and Program Testing,",

previous scenarios become: Communications of the ACW19, 7/76.

(1) cache hit and the cache is idle tak#sclock cycles. [2] J. A. Darringer., “The application of program verifiaati
(2) cache miss and the cache is idle takesclock cycles. technigues to hardware verificatiomnnual ACM IEEE
(3) cache hit and the cache is busy. takles-trl clock cycles. Design Automation Conferenpp. 376-381, 88

(4) cache miss and the cache is busy takast- trl clock cy- [3] MOTOROLA., MPC603e EC603e RISC Microproces-
cles. sors User's Manual with Supplement for PowerPC

Now if we compare the graph on figure 5 with the one pre- 603™ Microprocessoy97

sented on figure 4 we conclude easily that:

- The number of the generated states has decreased (the &4 Freescale SemiconductoPpwerPC 603 RISC Micro-
ecution trace has decreased from A;B;C;D;EQ;E1;E2..En to Processors Technical Summagg

A;B;C;D;E). [5] C. Ferdinand and D. Kastner and M. Langenbach and F.
- Both of them contain the same information (we do notintro- Martin and M. Schmidt and J. Schneider and H. Theil-
duce any loss of precision). ing and S. Thesing and R. Wilhelm., “Run-Time Guar-

antees for Real-Time Systems — The USES Approach”,
Gl Jahrestagung, pp. 410-419, 99

[6] J. Souyris, E. Le Pavec, G. Himbert, V. Jégu, G. Borios
and R. Heckmann., “Computing the worst case execution
time of an avionics program by abstract interpretation”

'l P. Lokuciejewski, H. Falk, M. Schwarzer, P. Mar-
wedel, H. Theiling., “Influence of procedure cloning on
WCET prediction”Proceedings of the 5th IEEE/ACM
international conference on Hardware/software code-

6 Merging states

The symbolic execution allows to represent all the statas th
the processor may reach at each program point. So, the nu
ber of the generated states during the execution increases e
ponentially. Assuming that represents the pipeline depth,
denotes the maximal efficiency of the processor i.e. the num-

ber of instructions that are handled per clock-cycle, auie- signSalzburg, Austria,_pp. 137-142,07 o
notes the number of instructions of the code snippet, then d8] R. Heckmann, C. Ferdinand., “Worst case execution time
upper bound of the number of the states generatedf i%” prediction by static program analysi$8th Parallel and

To avoid this exponential states explosion, the secondgbart ~ Distributed Processing Symposiupp. 125-134, 04/04
the analysis consists in merging those states relying dosise [9] P. Cousot., “Semantic Foundations of Program Analy-
of precision we are ready to accept. Indeed, we developed a sis”, Program Flow Analysis: Theory and Applicatigns
merging policy (see [15] for details) to reduce the previous New Jersey pp. 303-342, 81

exponerltial increase to a linear one which is equalto: 110] P, Cousot and R. Cousot., “Abstract interpretationnia u
7 o 377" wherey is the maximum number of set of “inter- fied lattice model for static analysis of programs by con-
mediate states”. struction or approximation of fixpointsEourth Annual

ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Language$.0s Angeles, California, pp.
238-252,77

[11] Y. Zhang., “Evaluation of Methods for Dynamic

We presented a part of our analysis method to compute an up- 1ime Analysis for CC-Systems ABTechnical Report
per estimation of the WCET that can be parameterized by cur- Méalardalen University 08/05

rent complex hardware architecture, the only requirement[iLl2] D. B. Stewart., “Measuring Execution Time and Real-
that an executable time-accurate model of the target syistem Time PerformanceEmbedded Systems Confergrigan
available. Francisco, 04/01

Instead of trying to build semi-automatically from the for{13] M. Schlickling and M. Pister., “A Framework for Static
mal hardware description of the target system the black®oxe Analysis of VHDL Code”7th Intl. Workshop on WCET
of the analyzer that abstract the behavior of the target sys- Analysis 07

tem [13], we have described a new approach that: Uses a tﬁh]
ple model-.i.e, it is easy to develop this model or to modi

it (1). Can easily adapted to complex hardware architestur,
(2). Takes into account all the dependencies and the inter
actions that happen between the processor’s units duréng th
execution (3).

This approach is currently being implemented and fullygdst
with time-accurate model of PPC 603e [3, 4] as well as multi-
core PPC 5554 processors.

7 Conclusion and future work

S.Thesing. Safe and Precise WCET Determination by
Abstract Interpretation of Pipeline Modelg4

5] B. Benhamamouch and B. Monsuez and F. Védrine.,
“Computing WCET using symbolic executior2nd In-
ternational Workshop on Verification and Evaluation
of Computer and Communication Systems. Leeds GB
08/08

ISBN: 978-988-17012-7-5 IMECS 2009

