
Computing worst case execution time (WCET) by
Symbolically Executing a time-accurate Hardware Model

Bilel Benhamamouch, Bruno Monsuez∗

Abstract—To ensure that a program will respect all its tim-
ing constraints we must be able to compute a safe estimation of
its worst case execution time (WCET). However with the increas-
ing sophistication of the processors, computing a precise estima-
tion of the WCET becomes very difficult. In this paper, we pro-
pose a novel formal method to compute a precise estimation of
the WCET that can be easily parameterized by the hardware ar-
chitecture. Assuming that there exists an executable timedmodel
of the hardware, we first use symbolic execution [1] to precisely
infer the execution time for a given instruction flow. Then we
merge the states relying on the loss of precision we are readyto
accept.
Keywords: static analysis, WCET, processor modelization, symbolic
execution.

1 Introduction

Computing WCET is useful either to determine appropriate
scheduling schemes for the tasks or to perform an overall
schedulability analysis. This is done obviously in order to
guarantee that all timing constraints will be met. Computing
program execution time has always been difficult. Dynamic
methods [11, 12] as well as formal methods [5, 8] have re-
ceived a lot of attention for precise estimation of the worst
case execution time of code snippets. However, current meth-
ods have some difficulties to cope with the increasing com-
plexity of the hardware used to implement critical real time
applications.
In this paper, we present part of our formal method [15] to
compute an upper estimation of the WCET that contains the
loss of precision and that can also be parameterized by current
complex hardware architecture like super-scalar microproces-
sor or multi-processor systems.
The contribution of this paper is twofold, on one hand we show
how easily we abstract the behavior of a current hardware ar-
chitecture in order to highlight its timing properties, andon
the other we propose an approach which uses this abstraction
to compute the WCET of a sequence of code.
The paper is organized as follows: we first present how the
formal methods which are usually used to compute WCET
(Section 2) and we give an overview of our framework (Sec-
tion 3). Then, we show how we compute the execution time
of an instruction sequence using symbolic execution as well

∗Ecole Nationale Supérieure de Techniques Avancées UEI, ENSTA 32
Bd Victor, 75739 Paris cedex 15, France Bilel.Benhamamouch@ensta.fr,
Bruno.Monsuez@ensta.fr

as how we abstract the executable timed model to manage the
explosion of the states generated by the symbolic execution
(Section 4). After that, we illustrate our approach throughan
example (Section 5). In Section 6, we give an overview of
how the merging policy works. Finally, we conclude and we
present ongoing and future works (Section 7).

2 Formal methods

Nowadays the most mature method which allows to compute
an over approximation of the WCET is the one developed by
AbsInt team. This method can be described as follow:
Initially, a control flow graph (CFG) is extracted from the bi-
nary code. Then on this CFG a value analysis is carried out
to produce an approximation (intervals) of the memory ar-
eas which will be reached. This result is in turn exploited by
the following stage represented by the cache analysis whichis
used to classify the memory references in:

• Cache always hit: The memory reference always results
in a cache hit.

• Cache always miss: The memory reference always re-
sults in a cache miss.

• Persist: The referenced memory block will be load at
most once.

• Not classified: The memory reference could not be clas-
sified in one of the above groups.

When this classification is made for all blocks, it is injected as
input of the following analysis. This will define the possible
states of the pipeline at each execution point of the analyzed
program. Therefore, it will be associated to each instruction
various execution times (each one is related to a precise envi-
ronment). At this moment it is useful to specify that the im-
plementation of these various analyses was possible because
it is based on abstract interpretation [9, 10]. This technique
is largely used for program checking, and it makes possible
to associate concrete values to abstract ones (a whole of con-
crete values could thus be represented by an abstract value).
The various results obtained during the preceding stages, are
finally exploited jointly with the source code by the last anal-
ysis called path analysis. This analysis is based on linear pro-
gramming techniques. That enables it to produce the longest
execution path.
This approach is represented by a sequential analysis formed
by black boxes [5, 8]. This is one of the strong points of this
approach, considering that it makes possible to use different

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-7-5 IMECS 2009



techniques at various levels of the study, such as: using ab-
stract interpretation for the cache and the pipeline analysis,
while the path analysis is done by ILP (integer linear program-
ming). But this strength can also be a weakness [6, 7]. Indeed,
the increase in complexity of the hardware platform leads to
an increase in the number of black boxes required to perform
the analysis as well as a more complex design for each black
box that abstracts the hardware semantics.
In addition, those formal methods have three main drawbacks.
During the analysis the dependencies between the black boxes
cannot be identified precisely which leads those methods to
explore a superset of all execution paths. Thus WCETs for un-
feasible execution paths are taken into account (1); To avoid
the state explosion, execution paths are merged using tools
provided by abstract interpretation like widening operator, that
may also conducts to an over-exaggerated approximation of
the execution time (2); The analyzer must explicitly support
the target platform and must provide valuable abstraction of
the hardware components that compose the target platform
(3).

3 Our framework

Our approach is mainly based on the symbolic execution. So
before explaining how the method works let us describe what
is the symbolic execution.

3.1 Background: Symbolic execution

The main idea behind symbolic execution [1, 2] is to use sym-
bolic values instead of actual data to represent the input val-
ues. As a result, the output values computed by a program
are expressed as a function of symbolic values. Evaluation of
assignments is done naturally, the left-hand side variablere-
ceives the resulting symbolic expression, which should be a
polynomial.
Evaluation of alternatives is a bit more complicated. It re-
quires that a "path condition"PC – a Boolean expression over
the symbolic inputs – is added to the execution state. The path
conditionPC is a (quantifier-free) boolean formula over the
symbolic inputs; it accumulates constraints which the inputs
must satisfy in order for an execution to follow the particular
associated execution path. At program start, each symbolic
execution begins withPC initialized to true. When encoun-
tering an alternative, evaluation first starts with the evaluation
of the associated Boolean expression by replacing variables
by their values. Since the values of variables are polynomials
over the symbols, the condition is an expression of the form:
P > 0, whereP is a polynomial. Call such an expression R.
Then we can have three cases:

• PC ⊃ R and PC 6⊃ ¬R: The expression is always
true, the execution continues with the conditional code
sequence.

• PC ⊃ ¬R andPC 6⊃ R: The expression is always false,
the execution continues with the "else" code sequence if
an "else" block is available or simply ignore the condi-
tional code sequence.

• Otherwise, the Boolean condition may be true or false.
In this case, we split the path condition in two paths con-
ditionsPCtrue = PC ∧ R andPCfalse = PC ∧ ¬R. We
continue the concurrent execution of the condition code
sequence withPCtrueand the "else" code sequence or the
code located after the conditional code sequence with the
path conditionPCfalse.

3.2 Conjoint symbolic execution of binary code and
time-accurate system model

To mitigate the drawbacks of the formal methods (section II),
we propose a new approach that extends the classical frame-
works for computing the worst case execution time of a se-
quence of code with no loops or branch instruction. This new
framework provides two main advantages over the methods
currently used: (1) it simply requires an executable timed-
model of the target platform and does not require the design
of black boxes that abstract the hardware semantics, this is
achieved bythe conjoint symbolic execution of the program
code and the executable model of the processor, (2) it pro-
vides a method that allows to identify execution states thatcan
be merged with no loss of precision as well as gives insight in
the resulting loss of precision when merging execution paths
that have similar but different execution times, this is achieved
by the backward execution paths merging with symbolic exe-
cution lookup policy.
In this paper, we focus on the conjoint symbolic execution part
of the analysis method. During symbolic program execution,
the executable model of the processor is used to compute for
each execution point all the states that the processor may reach
when executing this instruction with respect to the execution
history. Following this reasoning we build a symbolic tree
which contains:
(1) All the states that the processor may reach during the exe-
cution (only the possible paths are taken into account).
(2) The transitions are labeled with the maximum number of
clock cycles needed to move from one state to another.
So at the end of the analysis, we easily extract from the tree the
temporally longest execution path. In the next section (Sec-

Program to analyse

instruction 1
instruction 2

....
instruction N

Symbolic
execution

Abstraction
(merging states)

Time-accurate
model

of the processor

Determination of
the temporally

longest execution
path from the

generated graph
(a precise estima-
tion of the WCET)

Figure 1: WCET estimation method

tion 4), we explain how we build a symbolic tree which con-
tains all the possible execution times of the analyzed program
as well as how we abstract it in order to reduce the number
of the generated states whithout introducing any loss of pre-
cision. Then, we present some significant architectural details

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-7-5 IMECS 2009



of the hardware used in our framework as well as a small pro-
gram to illustrate our approach (Section 5). Finally, we give
in section 6 an overview of how the merging policy works.

4 Using an executable timed-model of the tar-
get system to Compute the WCET

4.1 An executable timed model of the target archi-
tecture

During our analysis we must provide an executable timed
model of the hardware. This abstract timed model is first mod-
eled in C++ with some SystemC facilities. Further extensions
could accept full SystemC TLM-T, SystemC Verilog, VHDL
or Verilog descriptions.
The executable timed modelBasically a processor can be
seen as a complex component which is composed by several
units. Each one carries out a number of tasks during a clock
cycle. The current processor state is the product of the states
of all the basic units of the processor.
Definition 1 System unit states & system states A system unit
stateSC[u] is a minimal set of properties that allows to define
what is the next operation that this unitu will perform.
The state of the target systemSC is the product of all the
states of the units that compose this systemSC: SC =
(⊗u unit of SSC[u]).

4.2 Building a symbolic graph

The states of a symbolically executed binary program in-
cludes the system stateSC the processor state (pipeline,
data/instruction cache and thePC), andSV the symbolic val-
ues. The executable timed model is symbolically executed for
the given program. This model takes as an input a current state
SC of the system and returns the processor statesSC′ obtained
after executing the model during one clock cycle.
We begin the symbolic execution of the code snippet with an
empty pipeline(P = empty) 1 and no information about the
cache states(IC = DC = >).
Starting from this initial state and relying on the processor de-
scription we execute the code symbolically. So, we compute
on each clock cycle the set of next states. This set contains
all the states that the processor may reach when it starts ex-
ecuting the code with respect to the execution history. For
instance, after each cache miss the processor initiates a mem-
ory transaction that loads a cache line. If during the execution
a cache miss occurs when accessing a word, the cache gets up-
dated. So accessing the double word that follows immediately
the loaded word will result in a cache hit.

4.3 Simplifying the generated symbolic graph

The model of the target architecture must be timed, that means
that it must preserve the time (number of clock cycles) the

1This assumption is made because starting an execution with an unknown
pipeline state implies having some information about the running application,
which implies other assumptions.

processor needs to execute an instruction. The simplest im-
plementation of timed model use the clock as the base cycle.
So for each clock cycle, it computes the new state of the pro-
cessor. However, in the presence of cache misses and pipeline
stalls, it may lead to unnecessary intermediate states, since the
processor is waiting for some data. A more efficient imple-
mentation is the time-accurate model, as shown on figure 2.
It is achieved when returning the next processor state that is
different from the current one as well as the number of clock
cycles required to reach this processor state.
Definition 2 Clock-accurate model & Time-accurate model
An executableclock-accurate modelis an executable function
that maps a system stateSC to the next system stateSC′ at
the next clock cycle. An executabletime-accurate modelis an
executable function that maps a system stateSC to the pair of
a system stateSC′ and the timet ∈ T needed to reach this
system state.
The atomic times that are associated to a particular cache op-
eration are:
th: time associated to a cache hit.
tm: time associated to a cache miss.
trl : time associated to a cache line reloading.
(d): data cache.(i): instruction cache.
During the execution data and instruction caches are ab-
stracted to indicate the state of the cache (busy or idle) as well
as to tell if the requested data is present in the cache.

4.4 Symbolic execution of the time-accurate model

As described before, the time-accurate model takes as an input
a current stateSC of the system and returns the next processor
stateSC′ that is different from the current one as well as the
number of clock cycles required to reach this system state.
Symbolic execution of the time-accurate model takes as an
entry the current symbolic states of the system and returns a
set final states as well as the respective times required to reach
this final states:{(s1, t1), . . . , (sn, tn)}.
Definition 3 Intermediate states If s ∈ S is a valid sys-
tem state, we call “intermediate states” the final states
{(s1, t1), . . . , (sn, tn)} generated by one step of symbolic exe-
cution of the time-accurate model when starting the execution
with the states.

Definition 4 Timed Symbolic Execution Graph The sym-
bolic execution graph(N , TR,M) is a graph that describes
the symbolic execution of a code sequence and is defined as
follow:

• the nodesN of the graphs are symbolic states,
• the transitions TR: (N ×N ) map a nodeN to another

nodeN .
• the labeling functionM maps TR−→ T and associates

to each transition tr= (ns × ne) the number of clock
cycles that the system takes to go from the starting state
ns to the ending statene of the transition.

Now, we present the algorithm that builds thetimed symbolic
execution treefor a sequence of binary instructions.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-7-5 IMECS 2009



Sj1

.
Sk1

S0

Si

.
Sn

Si1

.
Sn1

Si2

.
Sn2

Si3

.
Sn3

Sj

.
Sk

Sj2′

.
Sk2′

...

...

...

(ETM)

Sj1

.
Sk1

S0

Sj

.
Sk

Sj2

.
Sk2

Sj3

.
Sk3

(TAM)

1 1 1 1 1

1

1

1

tm(d)

th

tm(i)

th(i)

Figure 2: Symbolic execution of the executable timed (ETM)
and the time-accurate model (TAM)

r ← { initial processor state (pipeline & data cache),PC
= true }, ; // Initialization
current_states← {r}, G ← {r};
while current_states is not emptydo //
Propagation

Removes states from current_states;
Computes the symbolic successors
{(ss

1, t1), . . . , (s
s
n, tn)} of s;

Adds all transitionss −→ti ss
i to the symbolic

execution graphG;
Adds to the setcurrent_states all the statesss

i

that are not terminal states (terminal states are the
final states generated by the last instruction of the
code sequence);

5 Framework’s illustration

In this section we propose a description of a hardware archi-
tecture in order to show how we abstract this description and
how we use the resulting abstraction to compute a precise es-
timation of the WCET. Before starting the processor’s mod-
elization, we should decide about the characteristics thatwe
will need during the analysis. These characteristics represent,
on each clock cycle, not only the state of the processor but also
allow to identify precisely what are the reachable states onthe
next clock cycle.

5.1 Processor’s description

To build the processor state, first we can imagine that a combi-
nation of the pipeline and the cache states will suffice to have
a precise representation of the hardware. However, during the
analysis, relying on this representation we cannot identify pre-
cisely the next reachable states. To solve this problem, thepro-
cessor’s state must be enriched with a "path condition (PC)"
(Section 3). This PC provides to identify at each execution
point of the control flow graph which path should be taken.
So we represent a processor state by a combination of:

(1) a pipeline state (see below the definition).
(2) cache state (instruction and data): it is represented bythe
instruction (or data) that it contains.
(3) a PC: as seen in section 3, it accumulates constraints which
the inputs must satisfy in order for an execution to follow the
particular associated execution path.
Now we will focus on describing the pipeline state. Note that
most of the pipelines developed in order to be integrated into
an embedded system contain at least :
Fetch: On each clock cycle, this unit retrieves instruction(s)
from the memory system and computes the location of the next
instruction(s).
Dispatch: This unit decodes the instructions supplied by the
instruction fetch stage and dispatches them to the appropriate
execution unit.
Execute: Each execution unit that has an executable instruc-
tion executes the selected instruction, and notifies the comple-
tion stage that the instruction has finished execution. Nowa-
days, most of the pipelines integrate at least five execution
units : an integer unit (IU), a floating-point unit (FPU), a
branch processing unit (BPU), a load/store unit (LSU), and
a system register unit (SRU).
Complete/writeback: This pipeline stage maintains the cor-
rect architectural machine state and transfers the resultsto the
appropriate registers as instructions are retired.
The following table summarizes the pipeline stages.

Processor units
F: Fetcher CU: Completion Unit
D: Dispatcher SRU: System Register Unit
LSU: Load Store Unit RS: Reservation Station
IU : Integer Unit FPU: Float Point Unit
BPU: Branch Processing Unit

During the execution the states of the units are characterized
by the instructions that are currently executed (eg.IU2 indi-
cates that the integer unit executes the second instructionof
the program).

5.2 Processor’s modelization

Before starting the analysis we must provide a model of the
processor. it is a simple program (see figure 3 which repre-
sents the fetch Unit) that describes the processor’s behavior.
The processor’s model works as follow: every time the fetcher
is free (instruction A), it tries to fetch an instruction from the
instruction cache. First it associates an identifier to the instruc-
tion (instruction B), then the virtual address of the instruction
is converted to a real one (instruction C), and it sends a request
to the cache (instruction D). Finally it gets the time required
to fetch the instruction (instruction E).
The instruction E shows that this description leads to build
a time accurate model (TAM) (see figure 5). Indeed, every
time the fetcher fetches an instruction, the program line E re-
turns the time that this request takes. This behavior matches
the definition of a time accurate model (Section 4). So each
symbolic execution step of this model returns the next pro-
cessor stateSC′ that is different from the current one as well

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-7-5 IMECS 2009



vo id S e q u e n t i a l f e t c h e r : : f e t c h e _ i n s t r u c t i o n ( boo l∗

V i r t ua lAdd re s s , i n t I d e n t i f i e r )
{ / / t e s t i f t he f e t c h e r i s f r e e
A. i f ( g e t t i m e ( ) ==0)

{ / / a s s o c i a t e each i n s t r u c t i o n to an i d e n t i f i e r
B . I d e n t i f i e r V i r t u a l A d d r e s s . i n s e r t ( p a i r < i n t , boo l

∗> ( I d e n t i f i e r , V i r t u a l A d d r e s s ) ) ;
/ / c o n v e r t t he v i r t u a l a d d r e s s to a r e a l one
C . r e a l a d d r e s s = pMemoryManagementUnit−>

E f fe c t i ve Add re s s T oR e a lAdd re s s ( V i r t u a l A d d r e s s ) ;
/ / f e t c h the i n s t r u c t i o n from the cache
D. pC on t ro l c a c he−>r e a d r e q u e s t ( V i r t ua lAdd re s s ,

r e a l a d d r e s s , I d e n t i f i e r ) ;
/ / ge t t he r e q u i r e d t ime to f e t c h the i n s t r u c t i o n
E . t ime = pC on t ro l c a c he−>r e q u e s t t i m e ( ) ;
}

}

Figure 3: Processor’s modelization: Fetch Unit (F)

as the number of clock cycles required to reach this system
state. However, an executable timed model (figure 4) would
split the instruction E into E1;E2....En steps (n depends onthe
scenario). Each step takes one clock cycle to be executed

5.3 Illustration of the conjoint symbolic execution

To illustrate the analysis method, we symbolically executean
assembly instruction (gray background) relying on the proces-
sor’s model shown on figure 3. This is a load operation that

1 . lwz %r1 , o f f (@N

transfers a word from the memory to the register 1. Note that
during the analysis each instruction has an identifier which
represents its position in the program. Before explaining the
execution, let us recall that we start the analysis with an empty
pipeline(P = empty) and no information about the cache
states(IC = DC = >).
Starting from this initial state and relying on the processor’s

model, the analysis is carried out as follow:
On each clock cycle we test the fetcher (instruction A of the
model), if it is busy we wait until the next clock cycle, else we
associate an identifier to the instruction (instruction B).Then,
the address of the instruction is converted from a virtual ad-
dress to a real one (instruction C). After that, the fetcher sends
a request to the instruction cache (instruction D). At this ex-
ecution point we must first distinguish among two cases: the
instruction is in the cache (cache hit) and the instruction is not
in the cache (cache miss). We also must distinguish between
the case wherethe cache is idle: we did not wait to request
the instruction and the case wherethe cache is busy: we must
first wait until the cache-line-reload operation terminates. So
we can resume all the possible scenarios as follow:
(1) cache hit and the cache is idle (execution trace
A;B;C;D;E).
(2) cache miss and the cache is idle (execution trace
A;B;C;D;E1;E2..E5).
(3) cache hit and the cache is busy (execution trace
A;B;C;D;E1;E2..E6).
(4) cache miss and the cache is busy (execution trace
A;B;C;D;E1;E2..E12).
On the graphs presented by the figure 4 and 5 we see that,

Figure 4: Symbolic execution steps of the executable timed
model (ETM) for the assembly instruction

S0

P = empty

IC = >
DC = >

PC = true

S1

P = F1
IC = > ∧ I1

DC = >
PC = true

S2

P = F1
IC = > ∧ I1

DC = >
PC = true

S3

P = F1
IC = > ∧ I1 −
N (a cache line)

DC = >
PC = true

S4

P = F1
IC = > ∧ I1 −
N (a cache line)

DC = >
PC = true

A;B;C

th(i)
tmtrl + th(i)

trl + tm | STEP D;E

Figure 5: Symbolic execution steps of the time-accurate
model (TAM) for the assembly instruction

concerning the scenario (1)–i.e., from the stateS0 to S1, after
one clock cycle: (A) the pipeline fetches the instruction thus
its state moves from(P = empty) to (P = F1), (B) the in-
struction cache contains the instruction so its state movesfrom
(IC = >) to (IC = >∧I1), (C) the cache state(DC) as well
as thePC stay at the same state. Now, in order to understand
the interest behind abstracting the executable timed model, we
focus on the last instruction of the model (instruction E). This
instruction allows to know the time needed to get the instruc-
tion from the instruction cache. So in the presence of a cache
miss (or pipeline stalls) if we choose to build the tree usingan
executable timed model (The simplest implementation which
use the clock as the base cycle) it may lead to unnecessary in-
termediate states since the processor is waiting during thetime
returned by the instruction E. A more efficient implementation
is the time-accurate model. It is achieved when returning the
next processor state that is different from the current one as
well as the number of clock cycles required to reach this pro-
cessor state. Like we see on the figure 5 , this abstraction does
not introduce any loss of precision. Thus we explore the same

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-7-5 IMECS 2009



paths .i.e. the scenarios presented above. But now instead of
executing the program clock cycle by clock cycle, we compute
immediately the set of pertinent “intermediate states”. Sothe
previous scenarios become:
(1) cache hit and the cache is idle takesth clock cycles.
(2) cache miss and the cache is idle takestm clock cycles.
(3) cache hit and the cache is busy. takesth+trl clock cycles.
(4) cache miss and the cache is busy takestm + trl clock cy-
cles.
Now if we compare the graph on figure 5 with the one pre-
sented on figure 4 we conclude easily that:
- The number of the generated states has decreased (the ex-
ecution trace has decreased from A;B;C;D;E0;E1;E2..En to
A;B;C;D;E).
- Both of them contain the same information (we do not intro-
duce any loss of precision).

6 Merging states

The symbolic execution allows to represent all the states that
the processor may reach at each program point. So, the num-
ber of the generated states during the execution increases ex-
ponentially. Assuming thatρ represents the pipeline depth,σ

denotes the maximal efficiency of the processor i.e. the num-
ber of instructions that are handled per clock-cycle, andη de-
notes the number of instructions of the code snippet, then an
upper bound of the number of the states generated is:3σ η ρ

To avoid this exponential states explosion, the second partof
the analysis consists in merging those states relying on theloss
of precision we are ready to accept. Indeed, we developed a
merging policy (see [15] for details) to reduce the previous
exponential increase to a linear one which is equal to:
γ σ η 3ρ+λ whereγ is the maximum number of set of “inter-
mediate states”.

7 Conclusion and future work

We presented a part of our analysis method to compute an up-
per estimation of the WCET that can be parameterized by cur-
rent complex hardware architecture, the only requirement is
that an executable time-accurate model of the target systemis
available.
Instead of trying to build semi-automatically from the for-
mal hardware description of the target system the black boxes
of the analyzer that abstract the behavior of the target sys-
tem [13], we have described a new approach that: Uses a sim-
ple model–.i.e, it is easy to develop this model or to modify
it (1). Can easily adapted to complex hardware architectures
(2). Takes into account all the dependencies and the inter-
actions that happen between the processor’s units during the
execution (3).
This approach is currently being implemented and fully tested
with time-accurate model of PPC 603e [3, 4] as well as multi-
core PPC 5554 processors.

References

[1] J. C. King.,“Symbolic Execution and Program Testing,”,
Communications of the ACM, V19, 7/76.

[2] J. A. Darringer., “The application of program verification
techniques to hardware verification”,Annual ACM IEEE
Design Automation Conferencepp. 376–381, 88

[3] MOTOROLA., MPC603e EC603e RISC Microproces-
sors User’s Manual with Supplement for PowerPC
603TM Microprocessor, 97

[4] Freescale Semiconductor.,PowerPC 603 RISC Micro-
processors Technical Summary, 94

[5] C. Ferdinand and D. Kastner and M. Langenbach and F.
Martin and M. Schmidt and J. Schneider and H. Theil-
ing and S. Thesing and R. Wilhelm., “Run-Time Guar-
antees for Real-Time Systems – The USES Approach”,
GI Jahrestagung, pp. 410–419, 99

[6] J. Souyris, E. Le Pavec, G. Himbert, V. Jégu, G. Borios
and R. Heckmann., “Computing the worst case execution
time of an avionics program by abstract interpretation”

[7] P. Lokuciejewski, H. Falk, M. Schwarzer, P. Mar-
wedel, H. Theiling., “Influence of procedure cloning on
WCET prediction”Proceedings of the 5th IEEE/ACM
international conference on Hardware/software code-
signSalzburg, Austria, pp. 137–142, 07

[8] R. Heckmann, C. Ferdinand., “Worst case execution time
prediction by static program analysis”18th Parallel and
Distributed Processing Symposium, pp. 125–134, 04/04

[9] P. Cousot., “Semantic Foundations of Program Analy-
sis”, Program Flow Analysis: Theory and Applications,
New Jersey pp. 303–342, 81

[10] P. Cousot and R. Cousot., “Abstract interpretation: a uni-
fied lattice model for static analysis of programs by con-
struction or approximation of fixpoints”,Fourth Annual
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, Los Angeles, California, pp.
238–252, 77

[11] Y. Zhang., “Evaluation of Methods for Dynamic
Time Analysis for CC-Systems AB”Technical Report
Mälardalen University, 08/05

[12] D. B. Stewart., “Measuring Execution Time and Real-
Time Performance”Embedded Systems Conference, San
Francisco, 04/01

[13] M. Schlickling and M. Pister., “A Framework for Static
Analysis of VHDL Code”7th Intl. Workshop on WCET
Analysis, 07

[14] S.Thesing.,Safe and Precise WCET Determination by
Abstract Interpretation of Pipeline Models, 04

[15] B. Benhamamouch and B. Monsuez and F. Védrine.,
“Computing WCET using symbolic execution”,2nd In-
ternational Workshop on Verification and Evaluation
of Computer and Communication Systems. Leeds GB,
08/08

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-7-5 IMECS 2009


