
 
 
 

 

  
Abstract— In this paper we synthesize and optimize the delay 

of carry save based multiplier in 65nm technology using field 
programmable gate arrays (FPGA’s) with mode enabled. We 
present a revolutionary design for floating-point decimal 
multiplication that utilizes decimal carry-save addition to 
reduce the critical path delays and power dissipation. A 
multiplier that stores a reduced number of multiplicand, 
multiples and uses decimal carry-save addition in the iterative 
portion of the design is presented. This work proposes a 
refreshing design for carry save based multiplier. The proposed 
logic has been further optimized  to reduce the delay. Glitches 
are eliminated by proper selection of topology  

Index Terms—Carry Save, FPGA, Mode Enabled, 
Multiplier.  

I. INTRODUCTION 
  Due to rapidly growing system-on-chip industry, not only 

the faster units but also smaller area and less power has 
become a major concern for designing very large scale 
integration (VLSI) circuits. Digital circuits make use of 
digital arithmetic’s. Among various arithmetic operations, 
multiplication is one of the fundamental operation used and is 
being performed by an adder. There are many ways to build a 
multiplier each providing trade-off between delays and other 
characteristics, such as area and energy dissipation. However 
no design is considered as superior. Carry-Save based 
Multiplier is one of the promising techniques in terms of 
speed. It provides a compromise between ripple carry adder 
and carry look-ahead adder, but to a lesser extent at the cost 
of its area.  

  Thee are certain applications, like 3D graphics and signal 
processing where performance of the system strongly 
depends on the speed of multiplications. This is due to the 
fact that, these applications need to support high 
multiplication intensive operations. Therefore, there has been 
much work on advanced multiplication algorithms and 
designs [1, 2, 3, 4, 5, 6, 7, and 8].  
  The performance of the multiplier depends upon, how 
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addition is carried out. The type of addition chosen always 
determines tradeoff between various parameters e.g., speed 
and area, power and energy dissipation, complexity and chip 
density, etc. So, a single multiplier cannot be optimized for 
all these parameters. Therefore the design of the multiplier 
depends upon the application of the multiplier. In this work, 
we have concentrated on the pace factor and power 
dissipation in multiplication and we present an insight of a 
fast multiplier based on carry save technique with mode 
enabled. 

II. METHOD 
  The multiplication requires the addition of several 

summands. The addition acceleration process depends upon 
the reduction in the number of summands. Acceleration of 
the formation of summands and acceleration of the addition 
of these summands will also determine the speed. In this 
respect one of the technique, which speeds up the addition 
process is Carry-Save Addition (CSA) technique. This 
technique comprises of a string of full adder circuits of the 
normal sort, where the carry inputs are used for the third 
input number, and the carry outputs for the second output 
number. In multiplication, one buffer-adder or pseudo-adder 
is usually used, and storage is provided for two numbers. On 
each pass through the adder, the stored numbers and one 
multiple of the multiplicand are added and the resulting two 
numbers returned to storage. Thus, the time required varies 
linearly with the number of summands. In any scheme 
employing buffer-adders, the number of adder passes 
occurring in a multiplication before the product is reduced to 
the sum of two numbers, will be two less than the number of 
summands, since each pass through an adder converts three 
numbers to two, reducing the count of numbers by one. 

  A more significant reduction in delay or to improve the 
speed of the multiplication, we must group the summands in 
threes and perform carry-save addition on each of these 
groups in parallel to generate a set of Sum (S) and Carry (C) 
vectors in one full-adder delay. Next, we group all of the S 
and C vectors into threes, and perform carry-save addition on 
them, generating a further set of S and C vectors in one more 
full-adder delay. We continue with this process until there are 
only two vectors remaining. They can then be added in a 
ripple-carry or a carry-look-ahead adder [9] to produce the 
desired product. 

  Delay through the carry-save array is reasonably less than 
delay through the ripple-carry array as sum ‘S’ and carry ‘C’ 
vector outputs from each row are produced in parallel in one 
full-adder delay [10]. Figure-1 shows a set of 12 
buffer-adders connected to take 14 summands (Z0 to Z26) and 
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express their sum as the sum of two numbers in a purely 
combinational adder fashion, which has a considerable speed 
advantage.  

  In general, it has been calculated that approximately 
1.7log2 k - 1.7 levels of CSA steps [10] are needed to reduce k 
summands to 2 vectors, which, when added, produce the 
desired sum. Thus, it is clear that as the number of bits for 
which product is to be determined increases, the delay 
increases less proportionally in case of carry save multiplier 
as compared to other multipliers if proper device and 
topology is used. 

III. ARCHITECTURE PROCEDURE 
The block level representation of Floating Point 

Carry-Save multiplication is implemented, as shown in 
Figure 2. The n-Input pins supply normalized multiplicand 
(having implicit 1 to the left of binary point) and n-more 
supply multiplier bits. Instead of carrying out “AND” 
operation in each block itself, the ANDed bits are produced 
all at once in an ANDer block and then introduced at the 
proper position. These ANDed signals are then added   in 
Carry-Save floating-point representation format as shown 
earlier in Figure 1, to get the final product. The ANDed 
signals are introduced at their proper position within the 
floating-point multiplier. This calculates unnormalized (i.e. 
without implicit 1 to the left of the binary decimal point) 
floating-point product. The product is then passed through 
the normalizer block. This block normalizes the product if 
required depending upon the control signal in the standard 
IEEE format as shown in Figure 3 [11]. The normalized 
product is then outputted through the mode selector, which 
depending upon the mode selected gives either n-bit precise 
output in 1 cycle or n-bit product extended over two clock 
cycles. In case the product needs to be normalized, the 
exponent out from the exponent block is accordingly 
adjusted. The device also raises flag bits indicating the state 
of the output.         

In the proposed architecture, RESET clears the output in 
an asynchronous manner, ENABLE allows chip select and is 
active low. When ENABLE is kept high the device offers 
high input impedance at the input and thus does not load the 
data bus of the device to which this multiplier is connected. 
This feature allows the multiplier to be connected to the 
microprocessor and act as math co-processor where the 
address issued by microprocessor may be decoded to get the 
proper ENABLE signal. Multiplier has the capability of 
either giving 16 bit precise floating point output in a clock 
cycle. 

Alternately, if the multiplier is connected to n/2 bit wide 
bus only, the time division multiplexing is carried out and 
you may get the n-bit output in two clock cycles. This feature 
can be activated by applying the suitable MODE signal. This 
multiplier has flag pins, which indicate the state of the output. 
The output is valid only if VALID is high. SIGN flag 
indicates the sign of the output. ZERO and OVERFLOW 
goes active high in the conditions of zero and overflow 
respectively. 

IV. SIMULATION RESULTS 
In order to measure the performance of the proposed 

algorithm and its implementation, we have designed our 
algorithm using VHDL [12, 13] and synthesized it using 
Altera’s Quartus II Software.  Figure 4 (a), 4 (b) shows the         
Timing analysis of the proposed Carry Save Floating         
Point Fast    Multiplier with   Mode   Select feature in    Mode 
0 and Mode-1 respectively compare to a simple Carry Save 
Multiplier   having   no mode selects option as shown in 
Figure 5.  

The functionality of this multiplier has been fitted on the 
most architecturally advanced, high performance, low power 
FPGA’s in the market place, which provides the ability to 
turn on the performance and turn down the power   
consumption wherever needed. Selectable Core Voltage and 
the latest in silicon process optimizations are also employed 
to deliver the industry’s lowest power, high performance 
FPGA’s. 

The overall analysis of   this multiplier is summarized 
(Table 1) after optimizing the design using proper topology 
and device settings. 

 
 Table 1. Comparison of various parameters 

 

 

V. CONCLUSION 
In this paper, we proposed a novel design for a Floating 

Point Fast Multiplier with Mode select option which    could    
be    used     in    designing     the    latest state of the art 
mathematical processors. Since present day technology uses 
high clock frequencies and low voltage   power supplies, our 

S. 
No. Parameter 

Simple 
Carry Save 

Based 
Multiplier 

Proposed 
Carry-Save 

Based 
Multiplier with 

Mode Select 

1. Total Delay 
Encountered 28.771 ns 9.243 ns 

2. Permissible 
Clock Frequency 35.86 MHz 108.18 MHz 

3. 
Max. no. of 
Calculation in 1 
Sec. 

35,860,000 108,189,000 

4. 
Total Thermal 
Power 
Dissipation 

391.32mW 373.17 mW 

5. 
Core Dynamic 
Thermal Power 
Dissipation 

0.0mW 14.18 mW 

6. 
Core Static 
Thermal Power 
Dissipation 

318.17mW 301.12 mW 

7.. 
I/0 Thermal 
Power 
Dissipation 

72.11mW 57.87 mW 

8. Total Logic 
Elements 102/12480 197/12480 

9. Total Pins 32/343 58/343 
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design is a potential candidate for the same. The 
implementation  of  the   algorithm  with  an  architecture  and 
logic  design  is  presented  wherein  the  Speed  and  
complexity of the design are compared to other designs. 

 Also,  the  proposed  design   is  an   area   efficient 
multiplier  useful  in  decreasing  silicon  area  used  from the 
chip and consequently reduces the cost of the chip. The 
proposed design provides an  simple alternative to   the   
Booth Multiplier   with   speed   that   is at least similar to that 
of a Dadda  Multiplier  or  Recursive  Fast  Multiplier,   as    
the  delay  encountered is   reduced   to  one-third (⅓)  and  the 
processing speed  is  increased  to  almost   four  (4)  times  
than those obtained   in   other  conventional   techniques.  
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Figure 1. The adder tree 
 
 
 
 

 
 

 
 
 

 
Figure 2. Proposed Mode Enabled Normalized Floating Point Multiplier 
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Figure 3.  Floating Point Normalization in IEEE single precision format 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 4(a).  Desired product in one cycle, when 
16-bit data bus is available – Mode 0. 

Figure 4(b). Desired product in two cycles when 
8-bit data bus is available - Mode 1. 

Figure 5. Showing the same desired product in a 
simple conventional  technique – Mode 0 only.
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