

Abstract— In this paper we synthesize and optimize the delay

of carry save based multiplier in 65nm technology using field
programmable gate arrays (FPGA’s) with mode enabled. We
present a revolutionary design for floating-point decimal
multiplication that utilizes decimal carry-save addition to
reduce the critical path delays and power dissipation. A
multiplier that stores a reduced number of multiplicand,
multiples and uses decimal carry-save addition in the iterative
portion of the design is presented. This work proposes a
refreshing design for carry save based multiplier. The proposed
logic has been further optimized to reduce the delay. Glitches
are eliminated by proper selection of topology

Index Terms—Carry Save, FPGA, Mode Enabled,
Multiplier.

I. INTRODUCTION
 Due to rapidly growing system-on-chip industry, not only

the faster units but also smaller area and less power has
become a major concern for designing very large scale
integration (VLSI) circuits. Digital circuits make use of
digital arithmetic’s. Among various arithmetic operations,
multiplication is one of the fundamental operation used and is
being performed by an adder. There are many ways to build a
multiplier each providing trade-off between delays and other
characteristics, such as area and energy dissipation. However
no design is considered as superior. Carry-Save based
Multiplier is one of the promising techniques in terms of
speed. It provides a compromise between ripple carry adder
and carry look-ahead adder, but to a lesser extent at the cost
of its area.

 Thee are certain applications, like 3D graphics and signal
processing where performance of the system strongly
depends on the speed of multiplications. This is due to the
fact that, these applications need to support high
multiplication intensive operations. Therefore, there has been
much work on advanced multiplication algorithms and
designs [1, 2, 3, 4, 5, 6, 7, and 8].
 The performance of the multiplier depends upon, how

Manuscript received December 2, 2008.
Umer Nisar Misgar was with ECE Dept, with National Institutional

Institute of Technology, Srinagar India and is presently with Department of
Process Automation – Composite Plants, ABB Ltd., Bangalore, Karnataka,
India, 560 010 (corresponding author: +919901979884; fax:+911942474576
e-mail: umer.nisar@ gmail.com).

Wasim Ahmad Khan was with ECE Dept, National Institutional Institute
of Technology, Srinagar India and is presently with Tata Tele Services, New
Delhi, India (e-mail: wasim_nit@yahoo.co.in).

Najeeb-ud-din is with Electronics & Communication Engineering,
National Institutional Institute of Technology, Srinagar India (email:
hnds@rediffmail.com).

addition is carried out. The type of addition chosen always
determines tradeoff between various parameters e.g., speed
and area, power and energy dissipation, complexity and chip
density, etc. So, a single multiplier cannot be optimized for
all these parameters. Therefore the design of the multiplier
depends upon the application of the multiplier. In this work,
we have concentrated on the pace factor and power
dissipation in multiplication and we present an insight of a
fast multiplier based on carry save technique with mode
enabled.

II. METHOD
 The multiplication requires the addition of several

summands. The addition acceleration process depends upon
the reduction in the number of summands. Acceleration of
the formation of summands and acceleration of the addition
of these summands will also determine the speed. In this
respect one of the technique, which speeds up the addition
process is Carry-Save Addition (CSA) technique. This
technique comprises of a string of full adder circuits of the
normal sort, where the carry inputs are used for the third
input number, and the carry outputs for the second output
number. In multiplication, one buffer-adder or pseudo-adder
is usually used, and storage is provided for two numbers. On
each pass through the adder, the stored numbers and one
multiple of the multiplicand are added and the resulting two
numbers returned to storage. Thus, the time required varies
linearly with the number of summands. In any scheme
employing buffer-adders, the number of adder passes
occurring in a multiplication before the product is reduced to
the sum of two numbers, will be two less than the number of
summands, since each pass through an adder converts three
numbers to two, reducing the count of numbers by one.

 A more significant reduction in delay or to improve the
speed of the multiplication, we must group the summands in
threes and perform carry-save addition on each of these
groups in parallel to generate a set of Sum (S) and Carry (C)
vectors in one full-adder delay. Next, we group all of the S
and C vectors into threes, and perform carry-save addition on
them, generating a further set of S and C vectors in one more
full-adder delay. We continue with this process until there are
only two vectors remaining. They can then be added in a
ripple-carry or a carry-look-ahead adder [9] to produce the
desired product.

 Delay through the carry-save array is reasonably less than
delay through the ripple-carry array as sum ‘S’ and carry ‘C’
vector outputs from each row are produced in parallel in one
full-adder delay [10]. Figure-1 shows a set of 12
buffer-adders connected to take 14 summands (Z0 to Z26) and

Design of a Floating Point Fast Multiplier with
Mode Enabled

Umer Nisar Misgar, Wasim Ahmad Khan, and Najeeb-ud-din

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-7-5 IMECS 2009

express their sum as the sum of two numbers in a purely
combinational adder fashion, which has a considerable speed
advantage.

 In general, it has been calculated that approximately
1.7log2 k - 1.7 levels of CSA steps [10] are needed to reduce k
summands to 2 vectors, which, when added, produce the
desired sum. Thus, it is clear that as the number of bits for
which product is to be determined increases, the delay
increases less proportionally in case of carry save multiplier
as compared to other multipliers if proper device and
topology is used.

III. ARCHITECTURE PROCEDURE
The block level representation of Floating Point

Carry-Save multiplication is implemented, as shown in
Figure 2. The n-Input pins supply normalized multiplicand
(having implicit 1 to the left of binary point) and n-more
supply multiplier bits. Instead of carrying out “AND”
operation in each block itself, the ANDed bits are produced
all at once in an ANDer block and then introduced at the
proper position. These ANDed signals are then added in
Carry-Save floating-point representation format as shown
earlier in Figure 1, to get the final product. The ANDed
signals are introduced at their proper position within the
floating-point multiplier. This calculates unnormalized (i.e.
without implicit 1 to the left of the binary decimal point)
floating-point product. The product is then passed through
the normalizer block. This block normalizes the product if
required depending upon the control signal in the standard
IEEE format as shown in Figure 3 [11]. The normalized
product is then outputted through the mode selector, which
depending upon the mode selected gives either n-bit precise
output in 1 cycle or n-bit product extended over two clock
cycles. In case the product needs to be normalized, the
exponent out from the exponent block is accordingly
adjusted. The device also raises flag bits indicating the state
of the output.

In the proposed architecture, RESET clears the output in
an asynchronous manner, ENABLE allows chip select and is
active low. When ENABLE is kept high the device offers
high input impedance at the input and thus does not load the
data bus of the device to which this multiplier is connected.
This feature allows the multiplier to be connected to the
microprocessor and act as math co-processor where the
address issued by microprocessor may be decoded to get the
proper ENABLE signal. Multiplier has the capability of
either giving 16 bit precise floating point output in a clock
cycle.

Alternately, if the multiplier is connected to n/2 bit wide
bus only, the time division multiplexing is carried out and
you may get the n-bit output in two clock cycles. This feature
can be activated by applying the suitable MODE signal. This
multiplier has flag pins, which indicate the state of the output.
The output is valid only if VALID is high. SIGN flag
indicates the sign of the output. ZERO and OVERFLOW
goes active high in the conditions of zero and overflow
respectively.

IV. SIMULATION RESULTS
In order to measure the performance of the proposed

algorithm and its implementation, we have designed our
algorithm using VHDL [12, 13] and synthesized it using
Altera’s Quartus II Software. Figure 4 (a), 4 (b) shows the
Timing analysis of the proposed Carry Save Floating
Point Fast Multiplier with Mode Select feature in Mode
0 and Mode-1 respectively compare to a simple Carry Save
Multiplier having no mode selects option as shown in
Figure 5.

The functionality of this multiplier has been fitted on the
most architecturally advanced, high performance, low power
FPGA’s in the market place, which provides the ability to
turn on the performance and turn down the power
consumption wherever needed. Selectable Core Voltage and
the latest in silicon process optimizations are also employed
to deliver the industry’s lowest power, high performance
FPGA’s.

The overall analysis of this multiplier is summarized
(Table 1) after optimizing the design using proper topology
and device settings.

 Table 1. Comparison of various parameters

V. CONCLUSION
In this paper, we proposed a novel design for a Floating

Point Fast Multiplier with Mode select option which could
be used in designing the latest state of the art
mathematical processors. Since present day technology uses
high clock frequencies and low voltage power supplies, our

S.
No. Parameter

Simple
Carry Save

Based
Multiplier

Proposed
Carry-Save

Based
Multiplier with

Mode Select

1. Total Delay
Encountered 28.771 ns 9.243 ns

2. Permissible
Clock Frequency 35.86 MHz 108.18 MHz

3.
Max. no. of
Calculation in 1
Sec.

35,860,000 108,189,000

4.
Total Thermal
Power
Dissipation

391.32mW 373.17 mW

5.
Core Dynamic
Thermal Power
Dissipation

0.0mW 14.18 mW

6.
Core Static
Thermal Power
Dissipation

318.17mW 301.12 mW

7..
I/0 Thermal
Power
Dissipation

72.11mW 57.87 mW

8. Total Logic
Elements 102/12480 197/12480

9. Total Pins 32/343 58/343

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-7-5 IMECS 2009

design is a potential candidate for the same. The
implementation of the algorithm with an architecture and
logic design is presented wherein the Speed and
complexity of the design are compared to other designs.

 Also, the proposed design is an area efficient
multiplier useful in decreasing silicon area used from the
chip and consequently reduces the cost of the chip. The
proposed design provides an simple alternative to the
Booth Multiplier with speed that is at least similar to that
of a Dadda Multiplier or Recursive Fast Multiplier, as
the delay encountered is reduced to one-third (⅓) and the
processing speed is increased to almost four (4) times
than those obtained in other conventional techniques.

REFERENCES
[1] L. Dadda, “Some Schemes for Parallel Multiplier,” Alta Frequenza,

vol. 34, pp. 349-356, 1965.
[2] A. D. Booth, “A Signed Binary Multiplication Technique, Quarterly

Journal of Mechanical and Applied Math., vol. 4, pp. 236-240, 1951.
[3] A. Farooqui and V. Oklobdzija, “General Data-Path Organization of A

MAC Unit for VLSI Implementation of DSP Processors” Proceedings
IEEE Int’l Symposium on Circuits and Systems, vol. 2, pages 260-263,
1998.

[4] P. F. Stelling, C. U. Mattel, V. G. Oklobdzija, and R. Ravi, “Optimal
Circuits for Parallel Multipliers,” IEEE Transactions on Computers,
vol. 47(3): 273 - 285, 1998.

[5] C. S. Wallace, “A Suggestion for a Fast Multiplier,” IEEE Transactions
on Computers, vol. 13 (2), pp.14-17, 1964.

[6] A. Weinberger, “4:2 Carry-Save Adder Module,” IBM Technical
Disclosure Bull, vol. 23, 1981.

[7] W. C. Yeh, and C. W. Jen, “High-Speed Booth Encoded Parallel
Multiplier Design,” IEEE Transactions on Computers, vol. 49 (7), pp.
692-701, 2000.

[8] V. G. Oklobdzija, D. Villeger, and S. S. Liu, “A Method for Speed
Optimized Partial Product Reduction and Generation of Fast Parallel
Multipliers Using an Algorithmic Approach,” IEEE Transactions
on Computers, vol. 45 (3), pp. 294-306, 1996.

[9] William Stallings, Computer Organization and Architecture:
Designing for Performance, New Delhi, Prentice Hall, Sixth Ed. 2005.

[10] Carl Hamacher, Zvonko Vranesic, and Safwat Zaky, Computer
Organization, McGrawHill, International Edition, 2002.

[11] Institute of Electrical and Electronics Engineers, “IEEE Standard for
Binary Floating – Point Architecture,” ANSI/IEEE Standard 754
–1985, August 1985.

[12] Kevin Skahill, VHDL for Programmable Logic, New Delhi, Pearson
Education2nd Edition, 2006.

[13] Peter J. Ashenben, The Designers Guide to VHDL, CA, USA,
Elsevier, Second Edition, 2005.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-7-5 IMECS 2009

 10
S C

 4
S C

FINAL SUM

 LEVEL 6

LEVEL 1

 LEVEL 2

LEVEL 3

LEVEL 4

LEVEL 5

 2
S C

 3
S C

 7
S C

CARRY PROPAGATING ADDER

 1
S C

 6
S C

 5
S C

 11
S C

 9
S C

 8
S C

 12
S C

Z2 Z0

Z4
Z6

Z8Z10

Z12

Z14

Z16

Z18

Z20

Z22

Z24

B

C D A

E
F

G

HI J

J

Z26

Figure 1. The adder tree

Figure 2. Proposed Mode Enabled Normalized Floating Point Multiplier

Adder
Block

Carry-Save based Floating

Point Multiplier

Sign
Block

Exponential
Block

Control
Block

Normalizer Block

Mode Selector

S Exponent Mantissa

Input

Flag

Reset

Mode

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-7-5 IMECS 2009

0 1000100 0010100. . .

1000010 0010100 . . .

Value Represented = 1.0110 . . . x 26

 Value Represented = ± 0.0010110 x 2 9

(There is no implicit 1 to the left of the binary point)

(a) Unnormalized

(b) Normalized

Figure 3. Floating Point Normalization in IEEE single precision format

Figure 4(a). Desired product in one cycle, when
16-bit data bus is available – Mode 0.

Figure 4(b). Desired product in two cycles when
8-bit data bus is available - Mode 1.

Figure 5. Showing the same desired product in a
simple conventional technique – Mode 0 only.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-7-5 IMECS 2009

