Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II

IMECS 2009, March 18 - 20, 2009, Hong Kong

Performance Evaluation on FFT Software
Implementation

Xiangyang Lid, Xiaoyu Son§ and Yuke Wany

Abstract—It is known that FFT algorithms have complexity
of O(nlog,n), where n is the input size. Many new algorithms
claim certain theoretical advantage; however, their real
performance in application is questionable. The paperesents a
systematic performance evaluation on different FFT aftware
implementations. Different code techniques such a®cursive,
iterative, TFBBGM, TFRM with further expansion are used for
real application sizes from 512 to 2048 points. Ctnary to the
common belief that recursive programs are slower, @ find that
recursive programs are not necessarily slower forammonly
used FFT. Our comparative study constitutes the firsattempt to
evaluate the real performance of different FFT appraches.

Index Terms—FFT, DFT.

I. INTRODUCTION

In digital signal processing, the discrete Feutransform
(DFT) plays an important role in the analysis, dasand
implementation of discrete-time signal-processilggathms
and systems [1, 2]. The fast Fourier transformsT{Fé&re
efficient algorithms to compute DFT. FFT is usediely in
digital signal processing fields. Its performangeriitical for
many real-time applications.

| Stage1 | Stage2 | Stage3

X
A A+BxW
X|
X|
B w A-BxW
W -- Twiddle factor
(a) Basic radix-2 DIT FFT butterfly

(b) Complete 8-pt radix-2 DIT FFT diagram

Figure 1. The 8-pt radix-2 DIT FFT diagram.

purpose processors as building block of simulatitata
processing systems [11]. Software-based implemientabf
FFT on general processors are less cost and fig)bilt they
are typically slower than hardware on comparable
technologies. Digital signal processors (DSPs) srecific
processors optimized for various signhal-processing
applications such as FIR, IIR filters and FFT. @afte
implementations of FFTs on DSPs are getting popidar
their excellent tradeoff among cost, performantaxilfility,

and implementation complexity.

It is known that FFT algorithms have complexity
O(nlogyn), wheren is the input size. Many new algorithms
claim some advantage in terms of a constant impnen;
however, their real performances are unknown. Tgep

The FFT algorithms are based on the principle dyresents a systematic and synergic study on tiweeity of

decomposing the computation of DFT into sequendes

smaller DFTs. The first FFT algorithm was discodei®y
Guass in the 18th century and rediscovered by Qoahel
Tukey [3] in 1960s. Significant advances includghter radix
FFT algorithms [4],

mixed-radix FFT algorithms [5],

gifferent implementations of FFT programming. Imtjgalar,
we propose different ways to program FFT. Differeatle
techniques such as recursive, iterative, TFBBGM],[12
TFRM [13] with further expansion are explored. Atemsive
experiment is conducted for input size from 512218

split-radix FFT algorithms [6][7], recursive FFTgakithm points. Some important findings are obtained onFET

[8], and the decimation-in-time (DIT) and
decimation-in-frequency (DIF) FFT algorithms [9].0lt of
these algorithms illustrate FFT with similar FFTagiiams,
which are evolved from the nature of the FFT altpons and
constructed by basic butterfly structures, sucthas3-point
radix-2 FFT diagram shown in Figure 1.

FFT algorithms can be implemented on multiple platfs.

For example, FFT algorithms have been implemented

application specific integrated circuits (ASIC) &T
processors [10] for high-speed or low power har@vemsign.
However, FFT algorithms designed in hardware prameare
often tailored to specific application, hence id fiexible.
FFT has also been implemented in software on gknera

Xiangyang Liu is with the Department of ComputeieBce, University
of Texas at Dallas, Richardson TX, 75080, USA (émeI063000@
utdallas.edu).

Xiaoyu Song, is with Department of Electrical andongputer
Engineering, Portland State University, P.O.Box 7Bbrtland, OR
97207-0751, USA (e-mail: song@ee.pdx.edu).

Yuke Wang is with the Department of Computer Saéendniversity of

Texas at Dallas, Richardson, TX, 75080, USA (e-nyaike@utdallas.edu).

ISBN: 978-988-17012-7-5

theCOdeS on existing major DSP architectures. Funthanual

tuning optimizations are possible. Contrary to doenmon
belief that recursive program is slower, we findttrecursive
programs are not necessarily slower for commondg=-T.
Instead its performances are determined by manwgroth
factors. Our comparative study constitutes the &iteempt to
understand the real performance evaluation of rdiffe

gpproaches.

The paper is organized as follows. In Section d give the
preliminaries of DIF/DIT FFT algorithms and code
techniques such as TFRM, TFBBGM, etc. Section Il
describes the implementations of twenty FFT codes.
Experiment results are shown in Section IV. Sectibn
concludes the paper.

Il. PRELIMINARIES

We first present the basic ideas of DIT FFT & FFT.
Then we describe two code structures: iterativerandrsive
codes. Two methods of TFRM and TFBBGM are introduce
to reduce the number of memory references due ity
factor.

IMECS 2009

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II

IMECS 2009, March 18 - 20, 2009, Hong Kong

A. DITand DIF FFT
The DFT of discrete signal x[n] can be direatbmputed

N-1

X[kl = x[nw*

n=0

, k:O,:L...,N—l (1)

as where

WI\Tk = g i@ Nk

numbers, an¢f = -1.

The basic ideas of DIT and DIF FFT algorithme &
decompose the input sequenfd] and output sequencgn]
of (1) into smaller sequences. E.g. the radix-2 Bhd DIF

FFT algorithms are obtained by splitting the inpetuence
x[n] and output sequenc¥[n] into odd and even indexed

, X[n] and X[K] are sequences of complex

recursive code of factorial function. It is only eth
multiplication process that determines the code pderity.
Hence, the complexity of the original problem caa b
decreased.
int fact(int n) {
if (n==0) return 1;
el et nacto1y]
} Function call inside
the same function

int fact(int n) {
intj=1;
for(i=1;i<=n;i++){
=
return j;

}
(a) Factorial function in recursive structure (b) Factorial function in iterative structure

Figure 4. Example of recursive code and iterativeec

As Figure 4(a) illustrates, the recursive codeicsure
involves function call inside the same functioryght needs

elements. Figures 1(b) and 2(b) show the Comlou]tati(?nemory stack operation to fulfill this task. Due toe
diagrams of the DIT and DIF algorithms, respectivel

| Stage1 | Stage2 | Stage3

X[0]
X[1]

A A+B X121
X)
w
B (A-B)XW y14)
W -- Twiddle factor
(a) Basic radix-2 DIF FFT butterfly X[5]

x(6]
X(71

(b) Complete 8-pt radix-2 DIF FFT diagram

Figure 2. The 8-pt radix-2 DIF FFT diagram

The butterflies are computed according to thenoleler

expensiveness of memory operation in clock cyctks,
recursive code structure also increases the nuotbelock
cycles to some extent.

Iterative code structure is the common structure/tiich
the same phase of code is executed multiple tifigsre 4(b)
shows the iterative code of factorial functionwill not incur
memory stack operation due to function call wittiie same
function, hence it requires fewer clock cycles thegursive
code. However, the iterative structure is more demphan
recursive structure in code size, which also médkesquire
more clock cycles to some extent.

We explore the overall performance of these twede
structures by performing thorough experiment oniousr
iterative and recursive FFT codes.

C. TFBBGM

The TFBBGM (twiddle-factor-based butterfly grouping
method) groups the butterflies in the radix-2 FRagdam
according to the twiddle factor. Each twiddle fadtoloaded
only once in the computation order, thus the numifer
redundant memory references due to twiddle factor i
conventional radix-2 DIF FFT algorithm can be restlic
Since there are Igh twiddle factors for aN-points radix-2
DIF FFT algorithm, the computation requires onlyg,

Loop kel o sch steps.
><Mb“'imyw From Figure 2(b), we have some important obsermatio
There areN/2 different twiddle factors in the first stage of

Comp!
X[, twiddle factor wfia] */
xt = (e

of the stages and groups by patrtitioning the r&didT and
DIF FFT diagrams. Within the same group, the bflitsrare
computed from top to bottom. Figure 3(a) showsitirative
C code implementation of-points radix-2 DIF FFT
algorithm taken from TI's DSP library [14], whengs given
as an input parameter to the C code. Figure 3(@vshhe
corresponding iterative C code implementationngfoints
radix-2 DIT FFT algorithm.

void DIF_FFT(short xy]short n,short wi]) { void DIT_FFT(short xy[Jshort n,short wi]) {
short n, o short n1,n2,ie,ja,i.jk;
Loop for stage in the short xtytc,s;

FFT diagram n2

Loop for stage in the
FFT diagram

Loop for group in the

FFT diagram Lks et

Loop for group in the
FFT diagram

) {
iddle factor Wlia] */

Loop kernel for each
butterfly

27 + S'xy[2'H1)>>15;
*xy[2"

Ly radix-2 N-points DIF FFT diagram, expressedNams where
y R e m=0, 1, 2, 3, ...N/2-1. The twiddle factors of odd m among
N/2 twiddle factors in the first stage do not ocaurater

stages. At any stage the twiddle factor for any butterfly

0]
xy[2'] = (c*xt + s*yt)>>15;

xy[2*H+1] = (c'yt- s"xt)>>15;
))
e =je<<T;
))
) }

(a) Conventional C code of radix-2 DIF FFT from [15]

(b) Similar C code of radix-2 DIT FFT

Figure 3. The C code of radix-2 DIF FFT and radi@{Z FFT. [nmod%)xzs‘l

. o (nmod%szs_1 .
The C code in Figure 3 shows a three-loop itegatiiS . soitis clearthat 2=/ will not
structure: 1) the outermost loop, théop, counts the stages, be odd whers is greater than 1. Thus, butterflies of twiddle
loops for logN times; 2) the second loop, tidpop, counts factor W withm=1, 3, 5, ... N/2-1 can be grouped and thus
the groups within each stage and decides whictuteifhctor N/4 butterflies are computed in the first stage bé t
to load; 3) the innermost loop, théoop counts the number of TFBBGM.

butterflies within each group. Variablésandj indicate the |n thesth stage, except those butterflies computed in the

stages and group number, respectively. Variablesd |
indicate the upper and lower input indexes of thédsfly
computed by the innermost loop, respectively. \ldeaa
indicates the index of the twiddle factor to beded.

B. Recursive and Iterative Code Structures

Recursion plays an elegant role in solving peotd in
design and analysis of computer algorithms and ¢exitp

first stage, butterflies with twiddle factors trdd not occur
after Stages of radix-2 N-points DIF FFT diagram as in
Figure 2(b) will be computed.

There aré\N/4 butterflies in Stage 8I/8 butterflies in Stage
s-1, N/16 butterflies in Stage-2, ..., and\N/2°"* butterflies in
Stage 1. Twiddle factors of the corresponding bfliés are

N, wherem = 2% 3xFL 5xZFL | (N/FYx2t

theory [15] A Comp|ex prob'em can be decomposed in Particularly, whers is 2, N/4 butterflies in Stage 2 and/'8

smaller problems of the same structure. Figure siajvs the

ISBN: 978-988-17012-7-5

butterflies in Stage 1 of radix-2 DIF FFT diagramFigure 2

IMECS 2009

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II

IMECS 2009, March 18 - 20, 2009, Hong Kong

(b) will be computed in stage 2 of the new methbdiddle

factors of these butterflies af® wherem = 2,6, 10, ...,
(N/2)-2.

The last stage computes totallyl butterflies with twiddle
WY

factor "'~ | together in the radix-R-point DIF FFT diagram.

W mO[0,N/4)
W = W4 VYA = -4 mO[N/4,N/2)
N T N/2 m-N/2 _ m-N/2
W2 W] W, mO[N/2,3N/4)
WM Ve = v mO[3N/4,N)

Also, as observed from radix-2 DIF FFT diagram iguiFe

By using these new stages, the new method loads e&(b), we know any single butterfly in the Stegef radix-2

twiddle factor only once in the computation. Weread the
computation diagram of radix-2 DIF FFT as showifrigure
2(b) into Figure 5. From the new diagram, it isyetassee that

0
totally N-1 butterflies with twiddle facto?™ =1 will be
computed without multiplication, which is conducite
reduce the number of clock cycles.
- | Stage 1 | Stage 2 |
X| e} o—o0 o0—0O o0—o0 o—0Q

Stage 3 | (0]
x1] X[4]
x[2] X[2]
X[3] X[6]
X[4] X[1]
x[5] X[5]

x[6] X[3]

x[7] o o X[7]

Figure 5. The radix-2 DIF FFT diagram with TFBBGM
Similarly, TFBBGM can also be applied to radi&2T

FFT with TFBBGM. But due to the difference betweerl:omputed by loading one twiddle factdi'

radix-2 DIT FFT and radix-2 DIF FFT, butterflies thi

twiddle factor™s need to be grouped and computed before

butterflies with other twiddle factors are groupeahd

computed. In the later stepTFBBGM groups and computes

butterflies with twiddle factoWNm, wherem = N/2°, 3xN/2°,
5xN/25, ...

identical twiddle factors.

| Stage 1 | Stage 2 | Stage 3 |

x[0] X[0]

x[4] X[l

2

(2]

X[2]

3

X[6]

X[3]

2

x[1] X[4]

W,
X(5]

X[5]

W
X[3] We

X[6]
W W

X[7] X[7]
Figure 6. The 8-pts radix-2 DIT FFT diagram withBEEGM.

D. TFRM
Based on the complex properties of the twiddietdr,

TFRM (Twiddle factor Reduce Method) can reduce the m

3

number of twiddle factor to be referenced. For qxdamws
_ apgl
can be replaced by !V
the property of the complex number, here is theéveton
procedure:
W3 —e - jx(2m/8)x3 _ —e jx(2m/8)x2)y jx(2mig)x1 —

-j

The similar derivation can be applled\% . Hence, onl)yv8

1
and" are actually required in the computation of 8 p®in

radix-2 DIF and DIT FFT.
By using the property of complex number, thedtilé
factor has the following property:

ISBN: 978-988-17012-7-5

, (1) xN/2°. Figure 6 shows the radix-2 DIT
FFT diagram redrawn by grouping the butterflies hwit

in Figure 1 and Figure 2 by using

N-point DIF FFT can be illustrated in the diagrammfat as in

Figure 7.
x[n]
[nmod%}qs*l
W, °
x[n+N/2°]

Figure 7. Single butterfly in Stagef N-pt radix-2 DIF FFT.

The butterfly withx[n] as the upper input angin+N/2s] as the
(nmod%jXZs'l
. W, 2 .
lower input uses” N as twiddle factor. For
example, in the stage 1 of Figure 1, the butterfith the
upper inputx[2] and x[2+8/21], namelyx[6] as lower input
ZmOdZ%JXZH 2
uses twiddle factoW8 =We .

Hence, we have the following property for the ra2livIF
FFT diagram:

Two butterflies in stage s as illustrated in Feg8(¢a) can be

, Where
=(n mod —) x5t o
as illustrated in Figure 8(b).
x[n] x[n]
X[N+N/2 X[N+N/2%)
WTH
X[n+N/27] x[n+N/29]
m+N/4
x[n+3N/25* x[n+3N/2°*
(@) (b)

Figure 8. Two butterflies computation using onediie
factor in DIF FFT diagram.

Likewise, after applying TFRM to DIT FFT diagramew
have the similar property for radix-2 DIT FFT diagr:
Two butterflies in stageas illustrated in Figure 9(a) can be

computed by loading one twiddle factWNm, wherem = (n
mod 2)x2%!as illustrated in Figure 9(b).

x[n] X[n]

x[n+N/2%] x[n+N/2%]

w
X[n+N/25Y] X[n+N/2%

m+N/4,

X[N+3N/25*]

—ij

X[n+3N/2°*

(@ (b)
Figure 9. Two butterflies computation using onediie
factor in DIT FFT diagram.

Ill. FFTIMPLEMENTATIONS

TFRM and TFBBGM can reduce the number of memory
references due to twiddle factors, thus decreabimgumber
of clock cycles. However, they also increase theleco
complexity to some extent, thus increasing the remdf
clock cycles. In this section, these methods amamented

IMECS 2009

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II
IMECS 2009, March 18 - 20, 2009, Hong Kong

with iterative and recursive codes respectively.peoform to some extent. Like iterative code structure, TEBBand
thorough study on different FFT code performance, wWTFRM can still be applied to the recursive code
further expand those iterative codes applied WRBBGM to implementation oN-point radix-2 DIF and DIT FFT.

make them in different iterative structures whigquire Recursive C code implementation is also based ® kBT

fewer loops but take more code space. diagram, but the way butterflies are grouped ifedit from

Iterative C code. Figure 12 shows the computatiod the

A. DIF/DIT FFT with TFBBGM and TFRM partitioning of the 8-points radix-2 DIF and DIT FF
TFRM reduces the memory references due to teifiditor diagram.

by half |n each Stage Of Computat|0n, and Compm 0] & \ Stage1 \ Stage2 | Stage3 \ & X(0] X0l \ Stage1 \ Stage2 | Stage3X[\0]

butterflies in last two stages without twiddle fast [13], sO 4 4
the number of memory references due to twiddleofacts x2] &
reduced to (logN-2) x N/4. TFBBGM reduces the numberof xa
memory references due to twiddle factor by groupimg X(4]
butterflies with identical twiddle factor and theitterflies Ms] ¢

X[4] x[1]
X[2] 2]
X[6] x[3] =
X[1] x[4] o 0 = ” X[1]
X[5] X[5] Nay AA‘.,.,% NG X[5]
X[3] xI6] o m‘ N 3 X3

i) 0 . x[6] @ ——0
with twiddle factor v do not need twiddle factor to o,/ Y, o < VAR AN Do
complete multiplication, so the number of memorfgrences () banitioning of Sopt w2 DIF P diagram (b) Partitiontog of S-pt radied DIT FET ramnam
due to twiddle factor i8l/2-1 according to overlapping twiddle factors according to overlapping twiddle factors

Figure 12. Partitioning of DIF and DIT FFT diagram

After applying TFRM and TFBBGM together, the numbe according tooverlapping twiddle factors.

of memory references due to twiddle factor in they madix-2
N-points DIF FFT code will be reduced h#4-1. Figure 10 The diagram is also partitioned into stages and the
shows the computation diagram of a 8-points radix-Butterflies in the same stage are grouped accortirteir
DIF-FFT with TFRM and TFBBGM. Since the butterfliespositions, not according to the same twiddle facidrus,
computed in the last step do not need twiddle fate to the butterflies which overlap with each other are gexdipThe
fact that'™v = 1 only 1 twiddle factors are required. butterflies in Stags of N-point radix-2 DIF and DIT FFT are

\ Stage 1 , \ Stage 2 \ divided into 2* groups.

b X1 All butterflies are computed according to the grauger.
X X E.g. butterflies in group 3 are computed after drflies in
x2] X2] group 2 are computed, and butterflies in the saroapyare

X[6] computed from top to bottom. In Figure 12(a), tviedfhctors
are increased by valué™or butterflies in the same group in
Stages.
We apply TFRM, TFBBGM on recursive DIF FFT and
recursive DIT FFT respectively, thus we have reger®IF
7o ° X7l FFT with TFRM, recursive DIF FFT with TFBBGM,
Figure 10. Radix-2 DIF FFT diagram with TFBBGM and TFRM acursive DIT FET with TERM and recursive DIT FFTttw
We also apply TFBBGM and TFRM to radix-2 DIT FFT.TFBBGM. Since TFBBGM and TFRM can be applied
Like radix-2 DIF FFT with TFBBGM and TFRM, the nueb together, we apply both of them to get recursivie BFT with
of memory references due to twiddle factor will greatly TFBBGM & TFRM and recursive DIT FFT with TFBBGM
reduced. However, due to the difference of DIFRREFFT, & TFRM. Experiments of these codes with differempuit
the input of radix-2 DIT FFT should be in bit-reged order Sizes are performed to get the clock cycle datfagriollowing
before TFBBGM and TFRM are applied together toxali Section.
DIT FFT. Figure 11 shows the computation diagram & e and DIT EET with expansion

8-points radix-2 DIT FFT with TFBBGM and TFRM.)
Stage 1 | Stage2 | In order to completely study how the code techréque

Ml XM reflect the performance, we further expand theaitee DIF
X[and DIT FFT applied with TFBBGM (as illustrated in

x[3]
x[4] X1
X[5] X[9]

x[6] X[3]

&

x[4]

2

2] Xi2] computation diagram in Figure 5 and 6) into 3 stdpw

6] e xz iterative DIF FFT with TFBBGM in Figure 5, the firstep
m

1] . X[4] computes butterflies with twiddle factor \c%* , Wwherem is

5] ¢ W x5 0dd number; the second step groups the buttenflidis

. W W X(6] identical twiddle factors and compute them in dalg loops,

W W W the third step computes the butterflies with twiddactor

X[7] X[7] 0
Figure 11. Radix-2 DIT FFT diagram with TFBBGM andR¥A. WN 1 name|y Computes butterflies without mu|t|pt|oa

From the diagram, it is easy to see that only ddve factor For iterative DIT FFT.WIth .TFBBGM_m_ F|gure_6_ thest
step computes butterflies without multiplicatiokelithird step

0
are used during computation. Sin\é/eI = 1, twiddle factor in jterative DIF FFT with TFBBGM, the second step i
will not be loaded in Stage 1. Hence, only 1 tweéiictors similar to the second step as iterative DIF FFAWiEBBGM
are loaded during the computation. with only the order changed, and the third stepéssimilar to
step 1 in DIF, with order changed. Thus we get lagotwo

B. Recursive DIF and DIT FFT implementation p iterat DIE EET with TEBBGM in 3 st q
codes: iterative wi in 3 steps an
N-point radix-2 DIF and DIT FFT can be programmed 'r?teratlve DIT FFT with TEBBGM in 3 steps P
recursive structures which will decrease the camtepdexity '

ISBN: 978-988-17012-7-5 IMECS 2009

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II

IMECS 2009, March 18 - 20, 2009, Hong Kong

We also apply the same further expansion to itezddilF
FFT with TFBBGM & TFRM and iterative DIT FFT with
TFBBGM & TFRM to get iterative DIF FFT with TFBBGM
& TFRM in 3 steps and iterative DIT FFT with TFBBG&/
TFRM in 3 steps.

VI. PERFORMANCEEVALUATION

We have made total 20 different FFT codes based o
different integrations of iterative, recursive, TBGM,
TFRM with further expansion. Due to the space ki,

20 FFT codes are identified using shortcut. Codéetative
DIF FFT, Code 2: Iterative DIF FFT with TFBBGM, Gad
3: lterative DIF FFT with TFBBGM in 3 steps, Code 4
Iterative DIF FFT with TFRM, Code 5: Iterative DFFT
with TFBBGM and TFRM, Code 6: Iterative DIF FFT it
TFBBGM and TFRM in 3 Steps, Code 7: Recursive DIF
FFT, Code 8: Recursive DIF FFT with TFBBGM, Code 9:
Recursive DIF FFT with TFRM, Code 10: Recursive DIF
FFT with TFBBGM and TFRM, Code 11: Iterative DIT
FFT, Code 12: Iterative DIT FFT with TFBBGM, Codg:1
Iterative DIT FFT with TFBBGM in 3 steps, Code 14:
Iterative DIT FFT with TFRM, Code 15: Iterative DAFT
with TFBBGM and TFRM, Code 16: Iterative DIT FFTthi
TFBBGM and TFRM in 3 Steps, Code 17: Recursive DIT
FFT, Code 18: Recursive DIT FFT with TFBBGM, Code
19: Recursive DIT FFT with TFRM and Code 20: Remars
DIT FFT with TFBBGM and TFRM.

These 20 codes are tested on 4 major DSP procéssors
the industry: Tl TMS320C64xx, ARM ARM7TDMI
processor, ADSP-TS101 TigerSHARC processor, and
freescale SC3400 StarCore DSP.

After testing each FFT code on 4 DSP processors at
different input sizes of 512, 1024 and 2048, we g 20
FFT codes for each DSP processor in terms of abycle.

As illustrated in Figure 13, we find that the resiue codes

nalways interleave between iterative codes. Thisigrary to

the belief that recursive code is always slowen titerative
code. Due to space limitation, we use digit 1Qdd®identify
code 1 to code 20 in Figure 13.

We also compare the slowest code and the fastest co
within recursive FFT and iterative FFT codes. Bat the
space limitation, we could not list the table tonpare their
speed, here the fastest code is compared with staweele
through Figure 13 only. For instance, we compare th
number of clock cycle of the fastest recursive caith the
slowest recursive code when platform is freesc&8480
StarCore DSP and the input is 2048-pts, we findfdlseest
one is 2.1 faster than slowest one, and similarirepplies
to the rest cases. Such as 20 FFT codes testbe pratform
TI TMS320C64xx processor at input size of 512, fdstest
iterative code is 2.08 times faster than the slowetative
code. Hence, it is clear that he code techniquesamted in
this paper can increase the FFT code executiordspeend
2 times within iterative codes or recursive codes.

M [terative code O Recursive code

100000
90000
80000
70000
60000
50000
40000
30000
20000

1l

10000

6 3 9 161314 1 2 8 15 7 19 10 4 5 12 11 18 17 20
20 FFT codes on TI TMSC320C64x (sorted by 512 pts)

M [terative code DRecursive code

m

6 3 9161314 1 2 8 15 7 1019 5 4 12 11 18 17 20
20 FFT codes on TI TMSC320C64x (sorted by 1024 pts)

220000
200000
180000
160000
140000
120000
100000

80000

60000 IEIE
0

40000
20000

M terative Code ERecursive Code

500000
450000
400000
350000
300000
250000
200000
150000
100000
50000
0

6 3 91613 1 2 8 14 7 1510 5 19 12 4 11 18 17 20

20 FFT codes on TI TMSC320C64x (sorted by 2048 pts)

M [terative code B Recursive code

200000
180000
160000
140000 =
120000
100000

= E%
o]

80000
40000
20000

1514 5 10 2 8 122018 1619 4 9 1 111317 6 3 7
20 FFT codes on ARM7TDMI(sorted by 512 pts)

M [terative code B Recursive code

450000
400000
350000
300000
250000
200000
150000
100000
50000
0

1514 5 10 2 8 122018 1916 4 1 11 9 1317 6 7 3

20 FFT codes on ARM7TDMI(sorted by 1024 pts)

ISBN: 978-988-17012-7-5

M iterative code ERecursive code

1l

1514 5 10 2 12 8 18201916 1 11 4 9 1713 6 7 3

1000000
900000
800000
700000
600000
500000
400000
300000
200000
100000

o}

20 FFT codes on ARM7TDMI(sorted by 2048 pts)

IMECS 2009

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II
IMECS 2009, March 18 - 20, 2009, Hong Kong

M lterativecode ERecursive code M Iterative code ERecursive code

80000 160000 =
70000 = 140000 L
60000
50000
40000
30000
20000

[120000 ——

[100000 ——

[80000 ——

[60000 ——

l l [40000 I
10000 lllllllll — 20000 1
0 0
4 9 14 6 5 1 1016 15 2 20 8 19 11 3 13 7 12 17 18 4 9 514 1 10 6 16 15 2 8 19 20 11 3 7 12 13 17 18
20 FFT codes on ADSP-TS101 (sorted by 512 pts) 20 FFT codes on ADSP-TS101 (sorted by 1024 pts)
M lterative code E Recursive code M Iterative code @ Recursive code
350000 — 60000 —
ul 55000 ——
300000 - . 50000 e
| B 45000 S [B
250000 20000 || E RN
200000 B 35000 | | B 0
30000 — 8
150000 i e 25000 — B
20000 — 1
100000 = i 15000 | | HEEE
50000 = i 10000 - E e
5000 — 1
0 0
4 9 5101 14 6 16 2 15 8 19 2011 7 3 12 17 13 18 4 9 6 10 5 1 1614 2 3 15 8 20 19 11 12 7 13 18 17
20 FFT codes on ADSP-TS101 (sorted by 2048 pts) 20 FFT codes on SC3400 StarCore (sorted by 512 pts)
M lterative code HERecursive code M Iterative code @ Recursive code
130000 — 280000
120000 11— 260000 I
110000 = 240000 1
100000 i 220000 [
90000 | N (- 200000 [——
B . . - 180000 - || -
?8888 M . . L 160000 N | || L
H B NN 140000 | o
60000 120000 B -
50000 N e 100000 - - .
40000 R o
80000 | ——
30000 R o 60000 || -
20000 = i 40000 u i
10000 . 1 20000 |1 1
0 0
4 9 6 5 101 1416 2 8 15 3 2019 11 7 12 13 17 18 4 9 6 5 101 14 2 8 1615 3 2019 11 7 12 13 17 18
20 FFT codes on SC3400 StarCore (sorted by 1024 pts) 20 FFT codes on SC3400 StarCore (sorted by 2048pts)

Figure 13. 20 FFT codes’ Clock cycles on 4 DSP &chires at input of 512, 1024 and 2048 pts.

[4] G.D. Bergland, “A Radix-Eight Fast-Fourier TransfoSubroutine for
Real-Valued Series|EEE Trans. Electroacoust., vol. 17, no. 2, pp.
138-144, June 1969.

We presented a systematic and synergic studyhen [5] R.C. Singleton, “An Algorithm for Computing the Mig Radix Fast

V. CONCLUSION

efficiency of different FFT software implementation Fourier Transform,1EEE Trans. Audio Electroacoust., vol. 1, no. 2,
: . . . pp. 93-103, June 1969.

Different code techniques such as recursive, WAt (g b puhamel, and H. Hollmann, “Split Radix FFT Algom,”
TFBBGM, TFRM with further expansion were explorégh Electronics Letters, vol. 20, pp. 14-16, Jan. 5, 1984.
extensive experiment was conducted for input frdi@ [7] D. Takahashi, “An Extended Split-Radix FFT Algoritlt IEEE
2048 points. We implemented 20 FFT codes on 4 reiffie 8] ASQEa' F\’/roif!gKLettefS’ }{Xl- 8R. no. 5, pp-F14?-1:7, May§&01.

. . . arkonyi-Koczy, ecursive as ourier orm
DSP processors. Contrary to the.com_mon belief that Algorithm,” IEEE Trans. Circuits and Systems, lloly42, pp.
recursive programs are slower than iterative prograve 614-616, Sep. 1995.

find that recursive programs are not necessardwest for [9] A. Saidi, “Decimation-in-Time-Frequency FFT Algdmih,” Proc.
commonly used FFT. Instead its performances are _ ICAPSS pp.Il:453-456, April 1994.

: : [10] B.M. Baas, “A low-power, high-performance, 1024goiFFT
determined by many factors. Also we find the code processor” [EEE J.Solid-State Circuits, vol. 34uis 3, pp.380-387.

techniques presented in this paper can increaseceH® March 1999.
execution speed 2 times for both iterative coded an [11] Mathwork Inc., Matlab function reference — FFT,
recursive codes. http://www.mathworks.com/access/helpdesk/help/techef/fft.sht
ml?BB=1
[12] Y. Jiang, Y. Tang, and Y. Wang, “Twiddle-factor-bds FFT
REFERENCES algorithm with reduced memory accesBrbc. IDPDS, pp. 653-660,
[1] C.S. Burrus and T.W. Parks, “DFT/FFT and Convolutidgorithms 2002.) _)
and Implementation,NY John Wiley & Sons, 1985. [13] Y. Tang, L. Qian, Y. Wang, and Y. Jiang, “Twiddladfor Based
[2] A. V. Oppenheim and C. M. Rader’®2d., Discrete-Time Signal Memory Reduction Method for FFT Implementation 08" to be
Processing. Upper Saddle River, NJ: Prentice-HaB9. published)
[3] J.W. Cooley and J.W. Tukey, “An algorithm for theachine [14] Texas Instrument, “TMS320C64x DSP Library Programsne
calculation of complex Fourier seriedyfath. Compu., vol. 19, pp. Reference (Rev. B),” SPRU565A, Oct. 23, 2003.
297-301, 1965. [15] Tanner.R. “A recursive approach to low complexitydes” IEEE

Transactions on Information Theory.

ISBN: 978-988-17012-7-5 IMECS 2009

