

Abstract—It is known that FFT algorithms have complexity

of O(nlog2n), where n is the input size. Many new algorithms
claim certain theoretical advantage; however, their real
performance in application is questionable. The paper presents a
systematic performance evaluation on different FFT software
implementations. Different code techniques such as recursive,
iterative, TFBBGM, TFRM with further expansion are used for
real application sizes from 512 to 2048 points. Contrary to the
common belief that recursive programs are slower, we find that
recursive programs are not necessarily slower for commonly
used FFT. Our comparative study constitutes the first attempt to
evaluate the real performance of different FFT approaches.

Index Terms—FFT, DFT.

I. INTRODUCTION

 In digital signal processing, the discrete Fourier transform
(DFT) plays an important role in the analysis, design and
implementation of discrete-time signal-processing algorithms
and systems [1, 2]. The fast Fourier transforms (FFT) are
efficient algorithms to compute DFT. FFT is used widely in
digital signal processing fields. Its performance is critical for
many real-time applications.

The FFT algorithms are based on the principle of
decomposing the computation of DFT into sequences of
smaller DFTs. The first FFT algorithm was discovered by
Guass in the 18th century and rediscovered by Cooley and
Tukey [3] in 1960s. Significant advances include higher radix
FFT algorithms [4], mixed-radix FFT algorithms [5],
split-radix FFT algorithms [6][7], recursive FFT algorithm
[8], and the decimation-in-time (DIT) and the
decimation-in-frequency (DIF) FFT algorithms [9]. Most of
these algorithms illustrate FFT with similar FFT diagrams,
which are evolved from the nature of the FFT algorithms and
constructed by basic butterfly structures, such as the 8-point
radix-2 FFT diagram shown in Figure 1.

FFT algorithms can be implemented on multiple platforms.
For example, FFT algorithms have been implemented on
application specific integrated circuits (ASIC) as FFT
processors [10] for high-speed or low power hardware design.
However, FFT algorithms designed in hardware processor are
often tailored to specific application, hence is not flexible.
FFT has also been implemented in software on general-

Xiangyang Liu is with the Department of Computer Science, University

of Texas at Dallas, Richardson TX, 75080, USA (e-mail: xxl063000@
utdallas.edu).

Xiaoyu Song, is with Department of Electrical and Computer
Engineering, Portland State University, P.O.Box 751 Portland, OR
97207-0751, USA (e-mail: song@ee.pdx.edu).

Yuke Wang is with the Department of Computer Science , University of
Texas at Dallas, Richardson, TX, 75080, USA (e-mail: yuke@utdallas.edu).

Figure 1. The 8-pt radix-2 DIT FFT diagram.

purpose processors as building block of simulation data
processing systems [11]. Software-based implementations of
FFT on general processors are less cost and flexible, but they
are typically slower than hardware on comparable
technologies. Digital signal processors (DSPs) are specific
processors optimized for various signal-processing
applications such as FIR, IIR filters and FFT. Software
implementations of FFTs on DSPs are getting popular for
their excellent tradeoff among cost, performance, flexibility,
and implementation complexity.
 It is known that FFT algorithms have complexity of
O(nlog2n), where n is the input size. Many new algorithms
claim some advantage in terms of a constant improvement;
however, their real performances are unknown. The paper
presents a systematic and synergic study on the efficiency of
different implementations of FFT programming. In particular,
we propose different ways to program FFT. Different code
techniques such as recursive, iterative, TFBBGM [12],
TFRM [13] with further expansion are explored. An extensive
experiment is conducted for input size from 512 to 2048
points. Some important findings are obtained on 20 FFT
codes on existing major DSP architectures. Further manual
tuning optimizations are possible. Contrary to the common
belief that recursive program is slower, we find that recursive
programs are not necessarily slower for commonly used FFT.
Instead its performances are determined by many other
factors. Our comparative study constitutes the first attempt to
understand the real performance evaluation of different
approaches.

The paper is organized as follows. In Section II, we give the
preliminaries of DIF/DIT FFT algorithms and code
techniques such as TFRM, TFBBGM, etc. Section III
describes the implementations of twenty FFT codes.
Experiment results are shown in Section IV. Section V
concludes the paper.

II. PRELIMINARIES

 We first present the basic ideas of DIT FFT and DIF FFT.
Then we describe two code structures: iterative and recursive
codes. Two methods of TFRM and TFBBGM are introduced
to reduce the number of memory references due to twiddle
factor.

Performance Evaluation on FFT Software
Implementation

Xiangyang Liu1, Xiaoyu Song2, and Yuke Wang1

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-7-5 IMECS 2009

A. DIT and DIF FFT

 The DFT of discrete signal x[n] can be directly computed

as
∑

−

=

=
1

0

][][
N

n

nk
NWnxkX

, 1...,,1,0 −= Nk (1) where
nkNjnk

N eW)/2(π−= , x[n] and X[k] are sequences of complex
numbers, and j2 = -1.
 The basic ideas of DIT and DIF FFT algorithms are to
decompose the input sequence x[n] and output sequence X[n]
of (1) into smaller sequences. E.g. the radix-2 DIT and DIF
FFT algorithms are obtained by splitting the input sequence
x[n] and output sequence X[n] into odd and even indexed
elements. Figures 1(b) and 2(b) show the computation
diagrams of the DIT and DIF algorithms, respectively.

Figure 2. The 8-pt radix-2 DIF FFT diagram

 The butterflies are computed according to the index order
of the stages and groups by partitioning the radix-2 DIT and
DIF FFT diagrams. Within the same group, the butterflies are
computed from top to bottom. Figure 3(a) shows the iterative
C code implementation of n-points radix-2 DIF FFT
algorithm taken from TI’s DSP library [14], where n is given
as an input parameter to the C code. Figure 3(b) shows the
corresponding iterative C code implementation of n-points
radix-2 DIT FFT algorithm.

 Figure 3. The C code of radix-2 DIF FFT and radix-2 DIT FFT.

The C code in Figure 3 shows a three-loop iterative
structure: 1) the outermost loop, the k-loop, counts the stages,
loops for log2N times; 2) the second loop, the j-loop, counts
the groups within each stage and decides which twiddle factor
to load; 3) the innermost loop, the i-loop counts the number of
butterflies within each group. Variables k and j indicate the
stages and group number, respectively. Variables i and l
indicate the upper and lower input indexes of the butterfly
computed by the innermost loop, respectively. Variable ia
indicates the index of the twiddle factor to be loaded.

B. Recursive and Iterative Code Structures

 Recursion plays an elegant role in solving problems in
design and analysis of computer algorithms and complexity
theory [15]. A complex problem can be decomposed into
smaller problems of the same structure. Figure 4(a) shows the

recursive code of factorial function. It is only the
multiplication process that determines the code complexity.
Hence, the complexity of the original problem can be
decreased.

Figure 4. Example of recursive code and iterative code.

 As Figure 4(a) illustrates, the recursive code structure
involves function call inside the same function, thus it needs
memory stack operation to fulfill this task. Due to the
expensiveness of memory operation in clock cycles, the
recursive code structure also increases the number of clock
cycles to some extent.

Iterative code structure is the common structure in which
the same phase of code is executed multiple times. Figure 4(b)
shows the iterative code of factorial function. It will not incur
memory stack operation due to function call within the same
function, hence it requires fewer clock cycles than recursive
code. However, the iterative structure is more complex than
recursive structure in code size, which also makes it require
more clock cycles to some extent.
 We explore the overall performance of these two code
structures by performing thorough experiment on various
iterative and recursive FFT codes.

C. TFBBGM

The TFBBGM (twiddle-factor-based butterfly grouping
method) groups the butterflies in the radix-2 FFT diagram
according to the twiddle factor. Each twiddle factor is loaded
only once in the computation order, thus the number of
redundant memory references due to twiddle factor in
conventional radix-2 DIF FFT algorithm can be reduced.
Since there are log2N twiddle factors for a N-points radix-2
DIF FFT algorithm, the computation requires only log2N
steps.

From Figure 2(b), we have some important observations.
There are N/2 different twiddle factors in the first stage of

radix-2 N-points DIF FFT diagram, expressed as
m

NW , where
m = 0, 1, 2, 3, …, N/2-1. The twiddle factors of odd m among
N/2 twiddle factors in the first stage do not occur in later
stages. At any stage s, the twiddle factor for any butterfly

is

1
1

2
2

mod −
−

×






 s
s

N
n

NW
, so it is clear that

1

1
2

2
mod

−

− ×






 s

s

N
n

 will not
be odd when s is greater than 1. Thus, butterflies of twiddle

factor
m

NW with m = 1, 3, 5, … , N/2-1 can be grouped and thus
N/4 butterflies are computed in the first stage of the
TFBBGM.
 In the s-th stage, except those butterflies computed in the
first stage, butterflies with twiddle factors that do not occur
after Stage s of radix-2 N-points DIF FFT diagram as in
Figure 2(b) will be computed.

There are N/4 butterflies in Stage s, N/8 butterflies in Stage
s-1, N/16 butterflies in Stage s-2, …, and N/2s+1 butterflies in
Stage 1. Twiddle factors of the corresponding butterflies are

m
NW , where m = 2s-1, 3×2s-1, 5×2s-1, … , (N/2s-1)×2s-1.

Particularly, when s is 2, N/4 butterflies in Stage 2 and N/8
butterflies in Stage 1 of radix-2 DIF FFT diagram in Figure 2

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-7-5 IMECS 2009

(b) will be computed in stage 2 of the new method. Twiddle

factors of these butterflies are
m

NW where m = 2, 6, 10, … ,
(N/2)-2.
 The last stage computes totally N-1 butterflies with twiddle

factor
0

NW , together in the radix-2 N-point DIF FFT diagram.
 By using these new stages, the new method loads each
twiddle factor only once in the computation. We redraw the
computation diagram of radix-2 DIF FFT as shown in Figure
2(b) into Figure 5. From the new diagram, it is easy to see that

totally N-1 butterflies with twiddle factor
0

NW =1 will be
computed without multiplication, which is conducive to
reduce the number of clock cycles.

Figure 5. The radix-2 DIF FFT diagram with TFBBGM.

 Similarly, TFBBGM can also be applied to radix-2 DIT
FFT with TFBBGM. But due to the difference between
radix-2 DIT FFT and radix-2 DIF FFT, butterflies with

twiddle factor
0

16W need to be grouped and computed before
butterflies with other twiddle factors are grouped and
computed. In the later step s, TFBBGM groups and computes

butterflies with twiddle factor
m

NW , where m = N/2s, 3×N/2s,
5×N/2s, … , (2s-1-1) ×N/2s. Figure 6 shows the radix-2 DIT
FFT diagram redrawn by grouping the butterflies with
identical twiddle factors.

Figure 6. The 8-pts radix-2 DIT FFT diagram with TFBBGM.

D. TFRM

 Based on the complex properties of the twiddle factor,
TFRM (Twiddle factor Reduce Method) can reduce the

number of twiddle factor to be referenced. For example,
3

8W

can be replaced by
1

8jW− in Figure 1 and Figure 2 by using
the property of the complex number, here is the derivation
procedure:

1
8

1)8/2(2)8/2(3)8/2(3
8 WjeeeW jjj ⋅−=⋅== ××−××−××− πππ

The similar derivation can be applied to

2
8W . Hence, only

0
8W

and
1

8W are actually required in the computation of 8 points

radix-2 DIF and DIT FFT.
 By using the property of complex number, the twiddle
factor has the following property:













∈⋅=⋅
∈−=⋅
∈⋅−=⋅

∈

=

−−

−−

−−

),43[

)43,2[

)2,4[

)4,0[

434343

222

444

NNmWjWW

NNmWWW

NNmWjWW

NmW

W

Nm
N

Nm
N

N
N

Nm
N

Nm
N

N
N

Nm
N

Nm
N

N
N

m
N

m
N

Also, as observed from radix-2 DIF FFT diagram in Figure
2(b), we know any single butterfly in the Stage s of radix-2
N-point DIF FFT can be illustrated in the diagram format as in
Figure 7.

x[n]

x[n+N/2s]

12
12

mod −×













−
s

s
N

n

N
W

Figure 7. Single butterfly in Stage s of N-pt radix-2 DIF FFT.

The butterfly with x[n] as the upper input and x[n+N/2s] as the

lower input uses

1
1

2
2

mod −
− ×






 s
s

N
n

NW as twiddle factor. For
example, in the stage 1 of Figure 1, the butterfly with the
upper input x[2] and x[2+8/21], namely x[6] as lower input

uses twiddle factor

11
11

2
2

8
mod2

8

−
− ×








W =
2

8W .
Hence, we have the following property for the radix-2 DIF

FFT diagram:
 Two butterflies in stage s as illustrated in Figure 8(a) can be

computed by loading one twiddle factor
m

NW , where
1

1
2)

2
mod(−

− ×= s

s

N
nm

 as illustrated in Figure 8(b).
x[n]

x[n+N/2s]

x[n]

x[n+N/2s]

x[n+N/2s+1]

x[n+3N/2s+1]
-j

W
m

W
m+N/4

W
m

W
m

(a) (b)

x[n+N/2s+1]

x[n+3N/2s+1]

Figure 8. Two butterflies computation using one twiddle

 factor in DIF FFT diagram.

Likewise, after applying TFRM to DIT FFT diagram, we
have the similar property for radix-2 DIT FFT diagram:

Two butterflies in stage s as illustrated in Figure 9(a) can be

computed by loading one twiddle factor
m

NW , where m = (n
mod 2s)×2s-1as illustrated in Figure 9(b).

x[n]

x[n+N/2s+1]

x[n]

x[n+3N/2s+1]
-j

W
m

W
m+N/4

W
m

(a) (b)

x[n+N/2s]

x[n+3N/2s+1]

x[n+N/2s+1]

x[n+N/2s]

W
m

Figure 9. Two butterflies computation using one twiddle

factor in DIT FFT diagram.

III. FFT IMPLEMENTATIONS

TFRM and TFBBGM can reduce the number of memory
references due to twiddle factors, thus decreasing the number
of clock cycles. However, they also increase the code
complexity to some extent, thus increasing the number of
clock cycles. In this section, these methods are implemented

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-7-5 IMECS 2009

with iterative and recursive codes respectively. To perform
thorough study on different FFT code performance, we
further expand those iterative codes applied with TFBBGM to
make them in different iterative structures which require
fewer loops but take more code space.

A. DIF/DIT FFT with TFBBGM and TFRM

 TFRM reduces the memory references due to twiddle factor
by half in each stage of computation, and computes the
butterflies in last two stages without twiddle factors [13], so
the number of memory references due to twiddle factors is
reduced to (log2N-2) × N/4. TFBBGM reduces the numberof
memory references due to twiddle factor by grouping the
butterflies with identical twiddle factor and the butterflies

with twiddle factor
0

NW do not need twiddle factor to
complete multiplication, so the number of memory references
due to twiddle factor is N/2-1.
 After applying TFRM and TFBBGM together, the number
of memory references due to twiddle factor in the new radix-2
N-points DIF FFT code will be reduced to N/4-1. Figure 10
shows the computation diagram of a 8-points radix-2
DIF-FFT with TFRM and TFBBGM. Since the butterflies
computed in the last step do not need twiddle factor due to the

fact that
0

NW = 1, only 1 twiddle factors are required.

Figure 10. Radix-2 DIF FFT diagram with TFBBGM and TFRM.

We also apply TFBBGM and TFRM to radix-2 DIT FFT.
Like radix-2 DIF FFT with TFBBGM and TFRM, the number
of memory references due to twiddle factor will be greatly
reduced. However, due to the difference of DIF and DIT FFT,
the input of radix-2 DIT FFT should be in bit-reversed order
before TFBBGM and TFRM are applied together to radix-2
DIT FFT. Figure 11 shows the computation diagram of
8-points radix-2 DIT FFT with TFBBGM and TFRM.

Figure 11. Radix-2 DIT FFT diagram with TFBBGM and TFRM.

From the diagram, it is easy to see that only 4 twiddle factor

are used during computation. Since
0

NW = 1, twiddle factor
will not be loaded in Stage 1. Hence, only 1 twiddle factors
are loaded during the computation.

B. Recursive DIF and DIT FFT implementation

N-point radix-2 DIF and DIT FFT can be programmed in
recursive structures which will decrease the code complexity

to some extent. Like iterative code structure, TFBBGM and
TFRM can still be applied to the recursive code
implementation of N-point radix-2 DIF and DIT FFT.

Recursive C code implementation is also based on the FFT
diagram, but the way butterflies are grouped is different from
Iterative C code. Figure 12 shows the computation and the
partitioning of the 8-points radix-2 DIF and DIT FFT
diagram.

Figure 12. Partitioning of DIF and DIT FFT diagram
according to overlapping twiddle factors.

The diagram is also partitioned into stages and the
butterflies in the same stage are grouped according to their
positions, not according to the same twiddle factor. Thus,
butterflies which overlap with each other are grouped. The
butterflies in Stage s of N-point radix-2 DIF and DIT FFT are
divided into 2s-1 groups.

All butterflies are computed according to the group order.
E.g. butterflies in group 3 are computed after butterflies in
group 2 are computed, and butterflies in the same group are
computed from top to bottom. In Figure 12(a), twiddle factors
are increased by value 2s-1 for butterflies in the same group in
Stage s.

We apply TFRM, TFBBGM on recursive DIF FFT and
recursive DIT FFT respectively, thus we have recursive DIF
FFT with TFRM, recursive DIF FFT with TFBBGM,
recursive DIT FFT with TFRM and recursive DIT FFT with
TFBBGM. Since TFBBGM and TFRM can be applied
together, we apply both of them to get recursive DIF FFT with
TFBBGM & TFRM and recursive DIT FFT with TFBBGM
& TFRM. Experiments of these codes with different input
sizes are performed to get the clock cycle data in the following
Section.

C. DIF and DIT FFT with expansion

In order to completely study how the code techniques
reflect the performance, we further expand the iterative DIF
and DIT FFT applied with TFBBGM (as illustrated in
computation diagram in Figure 5 and 6) into 3 steps: For
iterative DIF FFT with TFBBGM in Figure 5, the first step

computes butterflies with twiddle factor as
m

NW , where m is
odd number; the second step groups the butterflies with
identical twiddle factors and compute them in only two loops,
the third step computes the butterflies with twiddle factor

0
NW =1 , namely computes butterflies without multiplication.

For iterative DIT FFT with TFBBGM in Figure 6, the first
step computes butterflies without multiplication like third step
in iterative DIF FFT with TFBBGM, the second step is
similar to the second step as iterative DIF FFT with TFBBGM
with only the order changed, and the third step is the similar to
step 1 in DIF, with order changed. Thus we get another two
codes: iterative DIF FFT with TFBBGM in 3 steps and
iterative DIT FFT with TFBBGM in 3 steps.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-7-5 IMECS 2009

We also apply the same further expansion to iterative DIF
FFT with TFBBGM & TFRM and iterative DIT FFT with
TFBBGM & TFRM to get iterative DIF FFT with TFBBGM
& TFRM in 3 steps and iterative DIT FFT with TFBBGM &
TFRM in 3 steps.

VI. PERFORMANCE EVALUATION

We have made total 20 different FFT codes based on
different integrations of iterative, recursive, TFBBGM,
TFRM with further expansion. Due to the space limitation,
20 FFT codes are identified using shortcut. Code 1: Iterative
DIF FFT, Code 2: Iterative DIF FFT with TFBBGM, Code
3: Iterative DIF FFT with TFBBGM in 3 steps, Code 4:
Iterative DIF FFT with TFRM, Code 5: Iterative DIF FFT
with TFBBGM and TFRM, Code 6: Iterative DIF FFT with
TFBBGM and TFRM in 3 Steps, Code 7: Recursive DIF
FFT, Code 8: Recursive DIF FFT with TFBBGM, Code 9:
Recursive DIF FFT with TFRM, Code 10: Recursive DIF
FFT with TFBBGM and TFRM, Code 11: Iterative DIT
FFT, Code 12: Iterative DIT FFT with TFBBGM, Code 13:
Iterative DIT FFT with TFBBGM in 3 steps, Code 14:
Iterative DIT FFT with TFRM, Code 15: Iterative DIT FFT
with TFBBGM and TFRM, Code 16: Iterative DIT FFT with
TFBBGM and TFRM in 3 Steps, Code 17: Recursive DIT
FFT, Code 18: Recursive DIT FFT with TFBBGM, Code
19: Recursive DIT FFT with TFRM and Code 20: Recursive
DIT FFT with TFBBGM and TFRM.

These 20 codes are tested on 4 major DSP processors in
the industry: TI TMS320C64xx, ARM ARM7TDMI
processor, ADSP-TS101 TigerSHARC processor, and
freescale SC3400 StarCore DSP.

After testing each FFT code on 4 DSP processors at
different input sizes of 512, 1024 and 2048, we sort the 20
FFT codes for each DSP processor in terms of clock cycle.
As illustrated in Figure 13, we find that the recursive codes
always interleave between iterative codes. This is contrary to
the belief that recursive code is always slower than iterative
code. Due to space limitation, we use digit 1 to 20 to identify
code 1 to code 20 in Figure 13.

We also compare the slowest code and the fastest code
within recursive FFT and iterative FFT codes. But for the
space limitation, we could not list the table to compare their
speed, here the fastest code is compared with slowest code
through Figure 13 only. For instance, we compare the
number of clock cycle of the fastest recursive code with the
slowest recursive code when platform is freescale SC3400
StarCore DSP and the input is 2048-pts, we find the fastest
one is 2.1 faster than slowest one, and similar result applies
to the rest cases. Such as 20 FFT codes tested on the platform
TI TMS320C64xx processor at input size of 512, the fastest
iterative code is 2.08 times faster than the slowest itetative
code. Hence, it is clear that he code techniques presented in
this paper can increase the FFT code execution speed around
2 times within iterative codes or recursive codes.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-7-5 IMECS 2009

Figure 13. 20 FFT codes’ Clock cycles on 4 DSP architectures at input of 512, 1024 and 2048 pts.

V. CONCLUSION

 We presented a systematic and synergic study on the
efficiency of different FFT software implementations.
Different code techniques such as recursive, iterative,
TFBBGM, TFRM with further expansion were explored. An
extensive experiment was conducted for input from 512 to
2048 points. We implemented 20 FFT codes on 4 different
DSP processors. Contrary to the common belief that
recursive programs are slower than iterative programs, we
find that recursive programs are not necessarily slower for
commonly used FFT. Instead its performances are
determined by many factors. Also we find the code
techniques presented in this paper can increase FFT code
execution speed 2 times for both iterative codes and
recursive codes.

REFERENCES

[1] C.S. Burrus and T.W. Parks, “DFT/FFT and Convolution Algorithms
and Implementation,” NY John Wiley & Sons, 1985.

[2] A. V. Oppenheim and C. M. Rader, 2nd ed., Discrete-Time Signal
Processing. Upper Saddle River, NJ: Prentice-Hall, 1989.

[3] J.W. Cooley and J.W. Tukey, “An algorithm for the machine
calculation of complex Fourier series,” Math. Compu., vol. 19, pp.
297-301, 1965.

[4] G.D. Bergland, “A Radix-Eight Fast-Fourier Transform Subroutine for
Real-Valued Series,” IEEE Trans. Electroacoust., vol. 17, no. 2, pp.
138-144, June 1969.

[5] R.C. Singleton, “An Algorithm for Computing the Mixed Radix Fast
Fourier Transform,” IEEE Trans. Audio Electroacoust., vol. 1, no. 2,
pp. 93-103, June 1969.

[6] P. Duhamel, and H. Hollmann, “Split Radix FFT Algorithm,”
Electronics Letters, vol. 20, pp. 14-16, Jan. 5, 1984.

[7] D. Takahashi, “An Extended Split-Radix FFT Algorithm,” IEEE
Signal Processing Letters, vol. 8, no. 5, pp. 145-147, May 2001.

[8] A. R. Varkonyi-Koczy, “A Recursive Fast Fourier Transform
Algorithm,” IEEE Trans. Circuits and Systems, II, vol. 42, pp.
614-616, Sep. 1995.

[9] A. Saidi, “Decimation-in-Time-Frequency FFT Algorithm,” Proc.
ICAPSS, pp. III:453-456, April 1994.

[10] B.M. Baas, “A low-power, high-performance, 1024-point FFT
processor” IEEE J.Solid-State Circuits, vol. 34, issue 3, pp.380-387.
March 1999.

[11] Mathwork Inc., Matlab function reference – FFT,
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/fft.sht
ml?BB=1

[12] Y. Jiang, Y. Tang, and Y. Wang, “Twiddle-factor-based FFT
algorithm with reduced memory access,” Proc. IDPDS, pp. 653-660,
2002.

[13] Y. Tang, L. Qian, Y. Wang, and Y. Jiang, “Twiddle Factor Based
Memory Reduction Method for FFT Implementation on DSP.” to be
published

[14] Texas Instrument, “TMS320C64x DSP Library Programmer's
Reference (Rev. B),” SPRU565A, Oct. 23, 2003.

[15] Tanner.R. “A recursive approach to low complexity codes” IEEE
Transactions on Information Theory.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-7-5 IMECS 2009

