
 
 

 

  
Abstract—It is known that FFT algorithms have complexity 

of O(nlog2n), where n is the input size. Many new algorithms 
claim certain theoretical advantage; however, their real 
performance in application is questionable. The paper presents a 
systematic performance evaluation on different FFT software 
implementations. Different code techniques such as recursive, 
iterative, TFBBGM, TFRM with further expansion are used for 
real application sizes from 512 to 2048 points. Contrary to the 
common belief that recursive programs are slower, we find that 
recursive programs are not necessarily slower for commonly 
used FFT. Our comparative study constitutes the first attempt to 
evaluate the real performance of different FFT approaches. 
 

Index Terms—FFT, DFT.  
 

I. INTRODUCTION 

   In digital signal processing, the discrete Fourier transform 
(DFT) plays an important role in the analysis, design and 
implementation of discrete-time signal-processing algorithms 
and systems [1, 2]. The fast Fourier transforms (FFT) are 
efficient algorithms to compute DFT. FFT is used widely in 
digital signal processing fields. Its performance is critical for 
many real-time applications.  

The FFT algorithms are based on the principle of 
decomposing the computation of DFT into sequences of 
smaller DFTs. The first FFT algorithm was discovered by 
Guass in the 18th century and rediscovered by Cooley and 
Tukey [3] in 1960s. Significant advances include higher radix 
FFT algorithms [4], mixed-radix FFT algorithms [5], 
split-radix FFT algorithms [6][7], recursive FFT algorithm 
[8], and the decimation-in-time (DIT) and the 
decimation-in-frequency (DIF) FFT algorithms [9]. Most of 
these algorithms illustrate FFT with similar FFT diagrams, 
which are evolved from the nature of the FFT algorithms and 
constructed by basic butterfly structures, such as the 8-point 
radix-2 FFT diagram shown in Figure 1.  

FFT algorithms can be implemented on multiple platforms. 
For example, FFT algorithms have been implemented on 
application specific integrated circuits (ASIC) as FFT 
processors [10] for high-speed or low power hardware design. 
However, FFT algorithms designed in hardware processor are 
often tailored to specific application, hence is not flexible. 
FFT has also been implemented in software on general- 

 
Xiangyang Liu is with the Department of Computer Science, University 

of Texas at Dallas, Richardson TX, 75080, USA (e-mail: xxl063000@ 
utdallas.edu).  

Xiaoyu Song, is with Department of Electrical and Computer 
Engineering, Portland State University, P.O.Box 751 Portland, OR 
97207-0751,  USA (e-mail: song@ee.pdx.edu). 

Yuke Wang is with the Department of Computer Science , University of 
Texas at Dallas, Richardson, TX, 75080, USA (e-mail: yuke@utdallas.edu). 

 
Figure 1. The 8-pt radix-2 DIT FFT diagram. 

purpose processors as building block of simulation data 
processing systems [11]. Software-based implementations of 
FFT on general processors are less cost and flexible, but they 
are typically slower than hardware on comparable 
technologies. Digital signal processors (DSPs) are specific 
processors optimized for various signal-processing 
applications such as FIR, IIR filters and FFT. Software 
implementations of FFTs on DSPs are getting popular for 
their excellent tradeoff among cost, performance, flexibility, 
and implementation complexity. 
   It is known that FFT algorithms have complexity of 
O(nlog2n), where n is the input size. Many new algorithms 
claim some advantage in terms of a constant improvement; 
however, their real performances are unknown. The paper 
presents a systematic and synergic study on the efficiency of 
different implementations of FFT programming. In particular, 
we propose different ways to program FFT. Different code 
techniques such as recursive, iterative, TFBBGM [12], 
TFRM [13] with further expansion are explored. An extensive 
experiment is conducted for input size from 512 to 2048 
points. Some important findings are obtained on 20 FFT 
codes on existing major DSP architectures. Further manual 
tuning optimizations are possible. Contrary to the common 
belief that recursive program is slower, we find that recursive 
programs are not necessarily slower for commonly used FFT. 
Instead its performances are determined by many other 
factors. Our comparative study constitutes the first attempt to 
understand the real performance evaluation of different 
approaches. 

The paper is organized as follows. In Section II, we give the 
preliminaries of DIF/DIT FFT algorithms and code 
techniques such as TFRM, TFBBGM, etc. Section III 
describes the implementations of twenty FFT codes. 
Experiment results are shown in Section IV. Section V 
concludes the paper. 

II.  PRELIMINARIES 

   We first present the basic ideas of DIT FFT and DIF FFT. 
Then we describe two code structures: iterative and recursive 
codes. Two methods of TFRM and TFBBGM are introduced 
to reduce the number of memory references due to twiddle 
factor.  
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A. DIT and DIF FFT 

   The DFT of discrete signal x[n] can be directly computed 

as
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N eW )/2( π−= , x[n] and X[k] are sequences of complex 
numbers, and j2 = -1. 
   The basic ideas of DIT and DIF FFT algorithms are to 
decompose the input sequence x[n] and output sequence X[n] 
of (1) into smaller sequences. E.g. the radix-2 DIT and DIF 
FFT algorithms are obtained by splitting the input sequence 
x[n] and output sequence X[n] into odd and even indexed 
elements. Figures 1(b) and 2(b) show the computation 
diagrams of the DIT and DIF algorithms, respectively.  

 
Figure 2. The 8-pt radix-2 DIF FFT diagram 

 The butterflies are computed according to the index order 
of the stages and groups by partitioning the radix-2 DIT and 
DIF FFT diagrams. Within the same group, the butterflies are 
computed from top to bottom. Figure 3(a) shows the iterative 
C code implementation of n-points radix-2 DIF FFT 
algorithm taken from TI’s DSP library [14], where n is given 
as an input parameter to the C code. Figure 3(b) shows the 
corresponding iterative C code implementation of n-points 
radix-2 DIT FFT algorithm. 

 Figure 3. The C code of radix-2 DIF FFT and radix-2 DIT FFT. 

The  C code in Figure 3 shows a three-loop iterative 
structure: 1) the outermost loop, the k-loop, counts the stages, 
loops for log2N times; 2) the second loop, the j-loop, counts 
the groups within each stage and decides which twiddle factor 
to load; 3) the innermost loop, the i-loop counts the number of 
butterflies within each group. Variables k and j indicate the 
stages and group number, respectively. Variables i and l 
indicate the upper and lower input indexes of the butterfly 
computed by the innermost loop, respectively. Variable ia 
indicates the index of the twiddle factor to be loaded.  

B. Recursive and Iterative Code Structures 

   Recursion plays an elegant role in solving problems in 
design and analysis of computer algorithms and complexity 
theory [15]. A complex problem can be decomposed into 
smaller problems of the same structure. Figure 4(a) shows the 

recursive code of factorial function. It is only the 
multiplication process that determines the code complexity. 
Hence, the complexity of the original problem can be 
decreased. 

 
Figure 4. Example of recursive code and iterative code. 

   As Figure 4(a) illustrates, the recursive code structure 
involves function call inside the same function, thus it needs 
memory stack operation to fulfill this task. Due to the 
expensiveness of memory operation in clock cycles, the 
recursive code structure also increases the number of clock 
cycles to some extent. 

Iterative code structure is the common structure in which 
the same phase of code is executed multiple times. Figure 4(b) 
shows the iterative code of factorial function. It will not incur 
memory stack operation due to function call within the same 
function, hence it requires fewer clock cycles than recursive 
code. However, the iterative structure is more complex than 
recursive structure in code size, which also makes it require 
more clock cycles to some extent.    
   We explore the overall performance of these two code 
structures by performing thorough experiment on various 
iterative and recursive FFT codes. 

C. TFBBGM 

The TFBBGM (twiddle-factor-based butterfly grouping 
method) groups the butterflies in the radix-2 FFT diagram 
according to the twiddle factor. Each twiddle factor is loaded 
only once in the computation order, thus the number of 
redundant memory references due to twiddle factor in 
conventional radix-2 DIF FFT algorithm can be reduced. 
Since there are log2N twiddle factors for a N-points radix-2 
DIF FFT algorithm, the computation requires only log2N 
steps. 

From Figure 2(b), we have some important observations. 
There are N/2 different twiddle factors in the first stage of 

radix-2 N-points DIF FFT diagram, expressed as
m

NW , where 
m = 0, 1, 2, 3, …, N/2-1. The twiddle factors of odd m among 
N/2 twiddle factors in the first stage do not occur in later 
stages. At any stage s, the twiddle factor for any butterfly 

is

1
1

2
2

mod −
−

×






 s
s

N
n

NW
, so it is clear that 

1

1
2

2
mod

−

− ×






 s

s

N
n

 will not 
be odd when s is greater than 1. Thus, butterflies of twiddle 

factor 
m

NW with m = 1, 3, 5, … , N/2-1 can be grouped and thus 
N/4 butterflies are computed in the first stage of the 
TFBBGM. 
 In the s-th stage, except those butterflies computed in the 
first stage, butterflies with twiddle factors that do not occur 
after Stage s of radix-2 N-points DIF FFT diagram as in 
Figure 2(b) will be computed.  

There are N/4 butterflies in Stage s, N/8 butterflies in Stage 
s-1, N/16 butterflies in Stage s-2, …, and N/2s+1 butterflies in 
Stage 1. Twiddle factors of the corresponding butterflies are 

m
NW , where m = 2s-1, 3×2s-1, 5×2s-1, … , (N/2s-1)×2s-1. 

Particularly, when s is 2, N/4 butterflies in Stage 2 and N/8 
butterflies in Stage 1 of radix-2 DIF FFT diagram in Figure 2 
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(b) will be computed in stage 2 of the new method. Twiddle 

factors of these butterflies are 
m

NW  where m = 2, 6, 10, … , 
(N/2)-2. 
 The last stage computes totally N-1 butterflies with twiddle 

factor 
0

NW , together in the radix-2 N-point DIF FFT diagram. 
 By using these new stages, the new method loads each 
twiddle factor only once in the computation. We redraw the 
computation diagram of radix-2 DIF FFT as shown in Figure 
2(b) into Figure 5. From the new diagram, it is easy to see that 

totally N-1 butterflies with twiddle factor 
0

NW =1 will be 
computed without multiplication, which is conducive to 
reduce the number of clock cycles. 

 
Figure 5. The radix-2 DIF FFT diagram with TFBBGM. 

   Similarly, TFBBGM can also be applied to radix-2 DIT 
FFT with TFBBGM. But due to the difference between 
radix-2 DIT FFT and radix-2 DIF FFT, butterflies with 

twiddle factor 
0

16W  need to be grouped and computed before 
butterflies with other twiddle factors are grouped and 
computed. In the later step s, TFBBGM groups and computes 

butterflies with twiddle factor 
m

NW , where m = N/2s, 3×N/2s, 
5×N/2s, … , (2s-1-1) ×N/2s. Figure 6 shows the radix-2 DIT 
FFT diagram redrawn by grouping the butterflies with 
identical twiddle factors. 

 
Figure 6. The 8-pts radix-2 DIT FFT diagram with TFBBGM. 

D. TFRM 

   Based on the complex properties of the twiddle factor, 
TFRM (Twiddle factor Reduce Method) can reduce the 

number of twiddle factor to be referenced. For example, 
3

8W  

can be replaced by 
1

8jW−  in Figure 1 and Figure 2 by using 
the property of the complex number, here is the derivation 
procedure: 

1
8

1)8/2(2)8/2(3)8/2(3
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The similar derivation can be applied to 

2
8W . Hence, only 

0
8W  

and 
1

8W  are actually required in the computation of 8 points 

radix-2 DIF and DIT FFT. 
   By using the property of complex number, the twiddle 
factor has the following property: 
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Also, as observed from radix-2 DIF FFT diagram in Figure 
2(b), we know any single butterfly in the Stage s of radix-2 
N-point DIF FFT can be illustrated in the diagram format as in 
Figure 7. 
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Figure 7. Single butterfly in Stage s of N-pt radix-2 DIF FFT. 

The butterfly with x[n] as the upper input and x[n+N/2s] as the 

lower input uses 

1
1

2
2

mod −
− ×






 s
s

N
n

NW  as twiddle factor. For 
example, in the stage 1 of Figure 1, the butterfly with the 
upper input x[2] and x[2+8/21], namely x[6] as lower input 

uses twiddle factor 

11
11

2
2

8
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8

−
− ×
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

W =
2

8W . 
Hence, we have the following property for the radix-2 DIF 

FFT diagram: 
 Two butterflies in stage s as illustrated in Figure 8(a) can be 

computed by loading one twiddle factor 
m

NW , where 
1

1
2)

2
mod( −

− ×= s

s
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 as illustrated in Figure 8(b).  
x[n]

x[n+N/2s]
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W
m

W
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W
m

W
m

(a) (b)

x[n+N/2s+1]

x[n+3N/2s+1]

 
Figure 8. Two butterflies computation using one twiddle 

 factor in DIF FFT diagram. 

Likewise, after applying TFRM to DIT FFT diagram, we 
have the similar property for radix-2 DIT FFT diagram: 

Two butterflies in stage s as illustrated in Figure 9(a) can be 

computed by loading one twiddle factor 
m

NW , where m = (n 
mod 2s)×2s-1as illustrated in Figure 9(b). 
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W
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Figure 9. Two butterflies computation using one twiddle 

factor in DIT FFT diagram. 

III.  FFT IMPLEMENTATIONS 

TFRM and TFBBGM can reduce the number of memory 
references due to twiddle factors, thus decreasing the number 
of clock cycles. However, they also increase the code 
complexity to some extent, thus increasing the number of 
clock cycles. In this section, these methods are implemented 
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with iterative and recursive codes respectively. To perform 
thorough study on different FFT code performance, we 
further expand those iterative codes applied with TFBBGM to 
make them in different iterative structures which require 
fewer loops but take more code space. 

A. DIF/DIT FFT with TFBBGM and TFRM 

   TFRM reduces the memory references due to twiddle factor 
by half in each stage of computation, and computes the 
butterflies in last two stages without twiddle factors [13], so 
the number of memory references due to twiddle factors is 
reduced to (log2N-2) × N/4. TFBBGM reduces the numberof 
memory references due to twiddle factor by grouping the 
butterflies with identical twiddle factor and the butterflies 

with twiddle factor 
0

NW  do not need twiddle factor to 
complete multiplication, so the number of memory references 
due to twiddle factor is N/2-1. 
 After applying TFRM and TFBBGM together, the number 
of memory references due to twiddle factor in the new radix-2 
N-points DIF FFT code will be reduced to N/4-1. Figure 10 
shows the computation diagram of a 8-points radix-2 
DIF-FFT with TFRM and TFBBGM. Since the butterflies 
computed in the last step do not need twiddle factor due to the 

fact that 
0

NW  = 1, only 1 twiddle factors are required.  

 
Figure 10. Radix-2 DIF FFT diagram with TFBBGM and TFRM. 

We also apply TFBBGM and TFRM to radix-2 DIT FFT. 
Like radix-2 DIF FFT with TFBBGM and TFRM, the number 
of memory references due to twiddle factor will be greatly 
reduced. However, due to the difference of DIF and DIT FFT, 
the input of radix-2 DIT FFT should be in bit-reversed order 
before TFBBGM and TFRM are applied together to radix-2 
DIT FFT. Figure 11 shows the computation diagram of 
8-points radix-2 DIT FFT with TFBBGM and TFRM.  

 
Figure 11. Radix-2 DIT FFT diagram with TFBBGM and TFRM. 

From the diagram, it is easy to see that only 4 twiddle factor 

are used during computation. Since 
0

NW  = 1, twiddle factor 
will not be loaded in Stage 1. Hence, only 1 twiddle factors 
are loaded during the computation.  

B. Recursive DIF and DIT FFT implementation 

N-point radix-2 DIF and DIT FFT can be programmed in 
recursive structures which will decrease the code complexity 

to some extent. Like iterative code structure, TFBBGM and 
TFRM can still be applied to the recursive code 
implementation of N-point radix-2 DIF and DIT FFT. 

Recursive C code implementation is also based on the FFT 
diagram, but the way butterflies are grouped is different from 
Iterative C code. Figure 12 shows the computation and the 
partitioning of the 8-points radix-2 DIF and DIT FFT 
diagram. 

Figure 12. Partitioning of DIF and DIT FFT diagram  
according to overlapping twiddle factors. 

The diagram is also partitioned into stages and the 
butterflies in the same stage are grouped according to their 
positions, not according to the same twiddle factor. Thus, 
butterflies which overlap with each other are grouped. The 
butterflies in Stage s of N-point radix-2 DIF and DIT FFT are 
divided into 2s-1 groups.  

All butterflies are computed according to the group order. 
E.g. butterflies in group 3 are computed after butterflies in 
group 2 are computed, and butterflies in the same group are 
computed from top to bottom. In Figure 12(a), twiddle factors 
are increased by value 2s-1 for butterflies in the same group in 
Stage s.  

We apply TFRM, TFBBGM on recursive DIF FFT and 
recursive DIT FFT respectively, thus we have recursive DIF 
FFT with TFRM, recursive DIF FFT with TFBBGM, 
recursive DIT FFT with TFRM and recursive DIT FFT with 
TFBBGM. Since TFBBGM and TFRM can be applied 
together, we apply both of them to get recursive DIF FFT with 
TFBBGM & TFRM and recursive DIT FFT with TFBBGM 
& TFRM. Experiments of these codes with different input 
sizes are performed to get the clock cycle data in the following 
Section.  

C. DIF and DIT FFT with expansion 

In order to completely study how the code techniques 
reflect the performance, we further expand the iterative DIF 
and DIT FFT applied with TFBBGM (as illustrated in 
computation diagram in Figure 5 and 6) into 3 steps: For 
iterative DIF FFT with TFBBGM in Figure 5, the first step 

computes butterflies with twiddle factor as 
m

NW , where m is 
odd number; the second step groups the butterflies with 
identical twiddle factors and compute them in only two loops, 
the third step computes the butterflies with twiddle factor 

0
NW =1 , namely computes butterflies without multiplication. 

For iterative DIT FFT with TFBBGM in Figure 6, the first 
step computes butterflies without multiplication like third step 
in iterative DIF FFT with TFBBGM, the second step is 
similar to the second step as iterative DIF FFT with TFBBGM 
with only the order changed, and the third step is the similar to 
step 1 in DIF, with order changed. Thus we get another two 
codes: iterative DIF FFT with TFBBGM in 3 steps and 
iterative DIT FFT with TFBBGM in 3 steps. 
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We also apply the same further expansion to iterative DIF 
FFT with TFBBGM & TFRM and iterative DIT FFT with 
TFBBGM & TFRM to get iterative DIF FFT with TFBBGM 
& TFRM in 3 steps and iterative DIT FFT with TFBBGM & 
TFRM in 3 steps. 

VI.  PERFORMANCE EVALUATION  

We have made total 20 different FFT codes based on 
different integrations of iterative, recursive, TFBBGM, 
TFRM with further expansion. Due to the space limitation, 
20 FFT codes are identified using shortcut. Code 1: Iterative 
DIF FFT, Code 2: Iterative DIF FFT with TFBBGM, Code 
3: Iterative DIF FFT with TFBBGM in 3 steps, Code 4: 
Iterative DIF FFT with TFRM, Code 5: Iterative DIF FFT 
with TFBBGM and TFRM, Code 6: Iterative DIF FFT with 
TFBBGM and TFRM in 3 Steps, Code 7: Recursive DIF 
FFT, Code 8: Recursive DIF FFT with TFBBGM, Code 9: 
Recursive DIF FFT with TFRM, Code 10: Recursive DIF 
FFT with TFBBGM and TFRM, Code 11: Iterative DIT 
FFT, Code 12: Iterative DIT FFT with TFBBGM, Code 13: 
Iterative DIT FFT with TFBBGM in 3 steps, Code 14: 
Iterative DIT FFT with TFRM, Code 15: Iterative DIT FFT 
with TFBBGM and TFRM, Code 16: Iterative DIT FFT with 
TFBBGM and TFRM in 3 Steps, Code 17: Recursive DIT 
FFT, Code 18: Recursive DIT FFT with TFBBGM, Code 
19: Recursive DIT FFT with TFRM and Code 20: Recursive 
DIT FFT with TFBBGM and TFRM.  

These 20 codes are tested on 4 major DSP processors in 
the industry: TI TMS320C64xx, ARM ARM7TDMI 
processor, ADSP-TS101 TigerSHARC processor, and 
freescale SC3400 StarCore DSP.  

After testing each FFT code on 4 DSP processors at 
different input sizes of 512, 1024 and 2048, we sort the 20 
FFT codes for each DSP processor in terms of clock cycle. 
As illustrated in Figure 13, we find that the recursive codes 
always interleave between iterative codes. This is contrary to 
the belief that recursive code is always slower than iterative 
code.  Due to space limitation, we use digit 1 to 20 to identify 
code 1 to code 20 in Figure 13. 

We also compare the slowest code and the fastest code 
within recursive FFT and iterative FFT codes. But for the 
space limitation, we could not list the table to compare their 
speed, here the fastest code is compared with slowest code 
through Figure 13 only. For instance, we compare the 
number of clock cycle of the fastest recursive code with the 
slowest recursive code when platform is freescale SC3400 
StarCore DSP and the input is 2048-pts, we find the fastest 
one is 2.1 faster than slowest one, and similar result applies 
to the rest cases. Such as 20 FFT codes tested on the platform 
TI TMS320C64xx processor at input size of 512, the fastest 
iterative code is 2.08 times faster than the slowest itetative 
code. Hence, it is clear that he code techniques presented in 
this paper can increase the FFT code execution speed around 
2 times within iterative codes or recursive codes. 
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Figure 13. 20 FFT codes’ Clock cycles on 4 DSP architectures at input of 512, 1024 and 2048 pts. 

 

V.  CONCLUSION 

    We presented a systematic and synergic study on the 
efficiency of different FFT software implementations. 
Different code techniques such as recursive, iterative, 
TFBBGM, TFRM with further expansion were explored. An 
extensive experiment was conducted for input from 512 to 
2048 points. We implemented 20 FFT codes on 4 different 
DSP processors. Contrary to the common belief that 
recursive programs are slower than iterative programs, we 
find that recursive programs are not necessarily slower for 
commonly used FFT. Instead its performances are 
determined by many factors. Also we find the code 
techniques presented in this paper can increase FFT code 
execution speed 2 times for both iterative codes and 
recursive codes.  
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