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Abstract—Performance Macromodeling facilitates acceler-
ated analog circuit synthesis. It usually consist of two steps: fea-
sibility design space identification and performance macromod-
els generation. A feasibility design space is defined as a multi-
dimensional space in which every design satisfies all the design
constraints. The minimum set of constraints is the one that en-
sures the correct functionality of the given circuit topology. Per-
formance macromodels are only constructed and thereby valid in
the functionally correct design space. Support vector machines
(SVMs) are used as classifier to identify the feasible design space
of analog circuits. A kernel is an integral part of the SVM and
contributes in obtaining an optimized and accurate classifier. The
most commonly used kernels are Radial Basis Function (RBF),
polynomial, spline, multilayer perceptron. In this paper, some
new kernels and some other kernels composed through modifi-
cations on the some of the standard kernels, are explored. The
classifiers using these kernel functions have been tested on differ-
ent analog circuits in order to identify the feasible design space.
HSPICE has been used for generation of learning data. Least
Square SVM toolbox interfaced with MATLAB was used for clas-
sification. We found that use of modified kernels improves classi-
fication accuracy as well as shortens classifier generation time.

Keywords: Analog synthesis, macromodels, Support Vector Ma-
chine, kernel, feasibility classification

1 Introduction

Given a circuit topology, we can pose three types of con-
straints [1].

Geometric constraints, Cg are posed directly on the resis-
tor, capacitor, bias voltage and currents and devices sizes e.g.
width and lengths. The matching constraints on the devices
are satisfied by assigning one design variable to the matched
devices. After matching is taken in to account, the control-
lable device sizes are abstracted into a vector of independent
design variables x = x1, ...., xn ∈ Rn. The constraints on the
device sizes are usually given in the form of lower and upper
bounds. The lower bounds can be determined by the feature
size of a technology. The upper bounds can be selected by the
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designer such that the devices are not excessively large. Ge-
ometry constraint are transformed into the form of eqn. (1).

Cg = {lbi ≤ X ≤ ubi, i = 1...ng} (1)

Functional constraints Cf ensure the desired functionality of
the given circuit topology. They are often biasing constraints
posed on the nodal voltages v and branch currents i in analytic
form. A circuit level simulator is required to obtain these val-
ues in order to check functional constraints. These constraints
can be represented via simple transformation, as in eqn. (2).

Cf = {x : fi(v, i) ≤ 0, i = 1...nf} (2)

Performance constraints Cpare posed on the performance pa-
rameters p chosen according to the applications, viz. open
loop gain, unity gain frequency, phase margin for an op amp.

Cp = {x : fi(p) ≤ 0, i = 1...np} (3)

Device size ranges and functional constraints take part in
defining the feasibility design space, while performance con-
straints don’t. The feasibility design space S ⊆ Rn is defined
as in eqn. (4). Note that x is a vector of all the design vari-
ables.

S =
{
x : x ∈ Rn, C

}
; C = Cg ∪ Cf ∪ Cp (4)

We define a feasibility function y(x), which only takes two
values {+1,-1} depending on whether x ∈ S,

y(x) =
{

+1 if x ∈ S
−1 if x /∈ S (5)

Feasibility design space identification is necessary in building
performance macromodels since it screens out infeasible de-
signs of which performance parameters are essentially noise to
a regression based macromodeling technique. It is also essen-
tial during analog circuit design and synthesis, in general since
it insures the functional correctness of the circuits. Feasibil-
ity function is approximated, since checking whether a design
is feasible or not requires computationally expensive simula-
tion. So it is called as feasibility macromodeling. Feasibility
macromodeling is treated as classification problem and exist-
ing classification techniques are applied to solve it. Instances
from simulations are used to train a selected model with objec-
tive of minimizing the classification error on the training set.
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The technique of Support vector machines (SVMs) that has
been successfully applied to solve many practical problems
in various fields is used for generation of feasibility classifier
models.

2 Previous Work

2.1 Support Vector Classification

SVMs [2] were proposed originally in the context of machine
learning, for classification problems on (typically large) sets of
data which have an unknown dependence on (possibly many)
variables. We consider each of N data points xk ∈ Rn, k =
1, ..., N to be associated with a label yk ∈ {+1,−1} which
classifies the data into one of two sets. In the simplest SVM
formulation, the problem of finding a general representation
of the classifier y(x) becomes that of the construction of a
hyper-plane ωTxk + b which provides ‘maximal separation

2
‖ω‖2 between points xk belonging to the two classes. This
give rise to an optimization problem of the form

P : minω,b
1
2
ωTω s.t. yk[ωTxk + b] ≥ 1, (6)

where the 1
2ω

Tω term represents a cost function to be min-
imized in order to maximize separation. The constraints are
formulated such that the nearest points xk with labels [either
+1 or -1] are (with appropriate input space scaling) at least

1
‖ω‖2 distant from the separating hyper-plane. To solve this
‘primal minimization problem, we construct the dual maxi-
mization of eqn. (6) using the Lagrangian form

D : max
α
L(w, b;α), (7)

where

L(ω, b;α) =
1
2
ωTω −

N∑
k=1

αk(yk[ωTxk + b]− 1), (8)

and αk are the Lagrange multipliers. After applying the con-
ditions for optimality

∂L
∂ω

= 0,
∂L
∂b

= 0,
∂L
∂αk

= 0, (9)

and eliminating ω by expressing it in terms of α =
[α1, ..., αN ], we arrive at a Quadratic Programming (QP)
problem

min(αQα+Bα), (10)

for suitably defined matrices Q,B. Having solved for α, the
following classifier representation is obtained

y(x) = sign

[
#SV∑
k=1

αkykx
T
k x+ b

]
. (11)

Here #SV represents the number of non-zero Lagrange multi-
pliers αk, called support vectors, corresponding to input data
xk. The SVM representation will be sparse if only a few of the
input data, called support vectors, are ‘near to the separating
hyper-plane. A key feature of the Support Vector Machines
is the ability to replace the input data by a non-linear func-
tion φ(x) operating on the input data. This may be viewed as
mapping the input data to higher dimensional space, to enable
classification of data that is not linearly separable in the origi-
nal input space. To do this, we formally replace xTk x (the dot
product between a support vector xk and any point x of the in-
put space) in eqn. (11) by φ(xk)Tφ(x) to represent the action
of this mapping, obtaining

y(x) = sign

[
#SV∑
k=1

αkykφ(xk)Tφ(x) + b

]
. (12)

In the cases where φ(.) is infinite-dimensional, we invoke
the so-called ‘kernel trick’: the expression φ(xk)Tφ(x) may
under certain conditions be replaced by a Kernel function
K(xk, x). An equivalent interpretation is that the kernel func-
tion is a suitably-defined dot product < xk, x > replacing
xTk x in the Hilbert space defined by the mapping φ. In this
way, we avoid ever having to represent the mapping φ explic-
itly. In either case, the use of a kernel function allows the SVM
representation to be independent of the dimensionality of the
input space. There are different kernel functions that provide
the SVM, the ability to model complicated separation hyper-
planes. However, because there is no theoretical tool to predict
which kernel will give the best results for given data set, ex-
perimenting with different kernels is only way to identify the
best function. These kernel functions must satisfy certain cri-
teria known as Mercer conditions for preserving the convexity
of the problem. These Mercer conditions are discussed in next
Section.

2.2 Mercer kernel

If the kernel K is a symmetric positive definite function, which
satisfies the Mercer’s conditions

K(xk, x) =
∞∑
i

aiφi(xk)φi(x), ai > 0 (13)

and

∫ ∫
K(xk, x)g(xk)g(x)dxkdx > 0 (14)

then the kernel K would represents an inner product in feature
space

K(xk, x) = φ(xk) · φ(x) (15)

and is known as Mercer Kernel.

From this condition the simple rules for composition of ker-
nels can be concluded, which also satisfy Mercer’s condi-
tion [3]. Corollary 1 (Linear combinations of kernels): Let
k1(xk, x), k2(xk, x) be Mercer kernels and c1, c2 ≥ 0, then

k(xk, x) = c1k1(xk, x) + c2k2(xk, x) (16)
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is also called a Mercer kernel. Moreover, the product of two
Mercer kernels is a Mercer kernel, which is proved based on
the equivalent definition of Mercer kernel. Similarly, it has
been proposed in [4] that we can modify the kernel functions
by multiplying it by a positive factor, adding bias, or taking
exponential of the kernel. The new kernel so obtained is also
a Mercer Kernel. Mercer condition needs to be satisfied for
keeping the problem convex and hence obtaining a unique so-
lution. Some of the useful modifications on kernels are illus-
trated in eqns. (17) and (18).

k(xk, x) = αk(xk, x) where α > 0 (17)
k(xk, x) = k(xk, x) + b where b > 0 (18)

Also, two of the other kernels that are applied in the present
work are power kernel [5]

k(xk, x) = − ‖ x− xk ‖β (19)

and log kernel [6]

k(xk, x) = −log(1+ ‖ x− xk ‖β) (20)

where the kernels are conditionally positive definite for 0 <
β ≤ 1 All the kernels discussed above satisfy the Mercer’s
condition, which is necessary for the problem to be convex,
and hence providing unique and optimum solution.

2.3 Related Work

An approach to model the feasible design space and evaluate
the performance of sub-blocks at all levels has been proposed
in [7]. In this work, authors have used fractional factorial
experiment design techniques to measure the significance of
input variables. Variable screening and grouping techniques
are employed to select and organize the input variables based
upon their influence on the output response. An adaptive vol-
ume slicing technique is used during regression analysis to dy-
namically distribute regressors such that the number of exper-
imental runs is minimized. However, it is a rule based siz-
ing framework, resulting in less accurate solutions. In [8],
authors calculate feasible design space by linear approxima-
tion. In their work, the functional constraints of an op-amp
are posed by inheriting all the functional constraints of sub-
circuits. Sensitivity analysis is done around a feasible design
to approximate the feasible design space. However, overall ac-
curacy achieved is only 70% while other drawback is that the
selection of design on which sensitivity analysis is performed,
can change the approximated feasibility design space.

Authors in [9] have presented a novel approach for model-
ing the performance space of an analog circuits based on
SVMs. An analog circuit maps a set of input design parame-
ters to a set of performance figures. The function is evaluated
through simulations and its range defines the feasible perfor-
mance space of the circuit. The resulting model provides a
clear separation of abstraction levels, directly modeling per-
formance relations in place of regression on implementation
parameters. In [10] Pareto-optimal hyperplane, which delim-
its the design space for the circuit at hand is derived by the use

of multiple-objective genetic optimization and multivariate re-
gression techniques. It helps designer in exploring the trade-
off between different competing objectives in analog and RF
integrated circuit design. Results obtained can be used both
in the system-level design phase for topology selection and in
the circuit-level design phase for optimal design.

Proposal in [11] is for active learning scheme for feasibility
design space identification. The proposed methodology uses
a committee of classifiers to exclude a large portion of entire
design space and samples only the feasibility region and its
neighboring. It improves the accuracy of the classifier with
much fewer samples, resulting in computation time reduction,
compared to a passive learning scheme using uniform ran-
dom samples. Authors in [12] have presented an approach for
generation of yield aware Pareto surface for hierarchical cir-
cuit design space exploration. A non-dominated sorting based
global optimization algorithm is used to generate the nominal
Pareto front for VCO circuit. Solutions on this Pareto front
with efficient Monte Carlo analysis are then used to compute
the yield aware Pareto fronts. These Pareto surfaces of VCO
are then used to synthesize PLL with a targeted yield.

3 Proposed Work

The scope of the present work is identification of feasible de-
sign space for analog circuits using SVM scheme and evalua-
tion of the scheme on two analog circuits- a two stage op-amp
and a cascode op-amp. Widths of the transistors, Coupling
Capacitor and Bias currents for above two circuits are taken
as design variables. A known instance of all the design vari-
able is considered a tuple. Values of these design variables for
both circuits were randomly generated within upper and lower
bound to get a set of 10000 tuples of design variables. These
10000 tuples of design variable serve as input data. HSPICE
is run for this set of 10000 tuples of design variables. Func-
tional constraints and performance constraints are verified us-
ing HSPICE simulation. For the given set of tuples which
satisfy both functional and performance constraints output is
taken as ’1’ otherwise as ’-1’. This results in 10000 input and
output data pair. Of these 6000 are used to train SVM clas-
sifier and 4000 are used for validation to check accuracy of
classifier. Least Square Support Vector Machine Toolbox [13]
interfaced with MATLAB is used for classification. The tool-
box outputs the value of optimized α and bias. These values
are used to form a classifier as shown in eqn. (12). As it is
evident in Section 2.2 that the kernel has an important role to
play in classification.Suitability of various kernels is explored.
Modifications is carried out on RBF kernel and other suitable
form of kernels to obtain Multiplied kernel eqn. (17) and Bias
kernel eqn. (18). The model is trained using RBF, Log, Power
and modified kernels. Kernels are compared for accuracy and
computation time while they are used for classification.

3.1 Accuracy measurement

Modeled classifier can be made highly accurate by properly
choosing the parameters of SVMs. The generalization ability
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of the classifier is examined by an independent validation data
set. The learned function usually deviates from the true un-
derlying function. Let S denote the entire design space after
application of geometry constraints, as illustrated in the Figure
1.

FN TP FP

F F’

TN

S

Figure 1: Design Space and its subspace

In Figure 1, F is the feasibility design space and F’ is the ap-
proximated feasibility space.Thus S is divided by F and F’ into
four subspace: TP of true positives, TN of true negatives, FP
of false positives and FN of false negatives.Accuracy is cal-
culated using formula shown below. Here TP is true positive,
predicted positive by the classifier which are actual positive,
and similarly TN is true negative.

accuracy =
(| TP | + | TN |)

| S |
(21)

4 Experimental setup

We show two op-amps as our illustrative examples. We will
show the accuracy improvement of the feasibility classifier
constructed by the proposed kernels compared to those con-
structed by standard kernels. The classifiers constructed using
different kernels were trained and tested using data generated
form HSPICE.

4.1 Two Stage op-amp

The two-stage op-amp is shown in Figure 2. As all transistors
are required to operate in saturation mode,we fix the length of
all transistor to a nominal minimum length. This immediately
eliminates nearly half of the free design parameters. Further
the size of transistor M1 should equal M2, and the size of M3
should equal M4 to equalize the currents through the differen-
tial pair. BothW1 = W2 andW3 = W4 are left as free param-
eters. Transistor M6 can be fixed to some minimum nominal
size since its job is to simply mirror the reference current Ib-
ias, which can also be fixed. The width of transistors M5 and

M7 control the current through the differential pair and out-
put stage respectively and are also left as free parameters.In
order to minimize the DC offset voltage at the output node,
width of transistor M8 is taken as 2 ∗W3 ∗W7/W5. This is
because the current through M4 = 0.5 ∗ Ibias ∗W5/W6. As
M3 and M4 transistors are of same size, have equal drain cur-
rents, and have the same gate to source voltages, so the drain
voltage of M4 is equal to the drain/gate voltage of M3. Thus
the gate voltage of M8 is equal to the drain voltage of M4,
which is equal to the drain/gate voltage of M3. This causes
M8 to mirror the current through transistors M3 and M4 by
the ratio W8/W3. Putting this all together we have the cur-
rent through M8 = 0.5 ∗ (Ibias ∗ W5/W6) ∗ W8/W3 and
the current through M7 = Ibias ∗ W7/W6. Equating the
currents through M8 and M7 yields the necessary width of
M8 = 2 ∗W3 ∗W7/W5. Lastly the compensation capacitor
is left as a free variable since it controls the inherent stability
of the op-amp. The load capacitor is taken as fixed variable to
simplifying the modeling problem. The above arguments re-
sult in the 5-dimensional parametric configuration for the two-
stage op-amp. The design variables and geometry constraints
are shown in Table 1. Functional and Performance constraints
are shown in Table 2. The functional constraints ensure all the
transistors are on and in saturation region with some margin.
We set Von,min and Vsat,min to 0.1V.

CL
Ibias

M3 M4

M1M2

M5 M7M6

C1

Vdd

Vss

VoutVin− Vin+

M8

Figure 2: Two-stage op-amp

Table 1: Design Variables of Two stage Op amp
Design parameters Geometric constraints

W1 = W2 [1µm,100µm]
W3 = W4 [1µm,50µm]

W5 [1µm,100µm]
W7 [1µm,100µm]
Cc [5pF,20pF]

4.2 Cascode Op amp

The circuit of cascode op-amp is shown in Figure 3. We fix
the lengths of all transistors to 1µm. Imposing sizing rules
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Table 2: Design constraints of Two-stage op-amp
Functional Vgs − Vth ≥ Von,min
constraints Vds ≥ Vgs − Vth + Vsat,min

Performance Phase Margin ≥ 45o

constraints

[14] similar to that of two-stage op-amp we get five design
variables for cascode op-amp. Load capacitance is set to 1pf.
The design variables and geometry constraints are shown in
Table 3. Other constraints shown in Table 4. The functional
constraints ensure all the transistors are on and in saturation
region with some margin. We set Von,min and Vsat,min to
0.1V.

Vdd

M2

Ibias

M16

M1

M6

M7

M8

M9

Vin+

M3M4M10M12M14

M13

M15 M11

Vss

Vin−

M5

CL

Vout

Figure 3: Cascode op-amp

Table 3: Design Variables of Cascode op-amp
Design parameters Geometric constraints

W1 = W2 [1µm,100µm]
W3 = W4 [1µm,100µm]
W5 = W6 [1µm,100µm]

Ibias [2µA,20µA]
CL [1pF,10pF]

Table 4: Design constraints of Cascode op-amp
Functional Vgs − Vth ≥ Von,min
constraints Vds ≥ Vgs − Vth + Vsat,min

Performance Phase Margin ≥ 60o

constraints

5 Results

We have shown the improvement in accuracy of the classifier
constructed with the use of proposed kernels, the results are
shown in Tables 5 and 6. Table 5 and 6 show the comparison of
accuracy and computation time while using different kernels
for two-stage op-amp and cascode op-amp, respectively. We
observe significant reduction in computation time with similar
or better accuracy. These results suggest an improvement in
performance of the classifier using proposed kernels.

Table 5: Comparing kernels for Two-stage op-amp
Kernels Accuracy Computation Speed-up

(in %) time (in sec)
RBF 92.1 403.37 1.0
Log 96.7 121.20 3.3

Power 96.8 157.27 2.6
Multiplied 94.3 110.31 3.7

Table 6: Comparing kernels for Cascode op amp
Kernels Accuracy Computation Speed-up

(in %) time (in sec)
RBF 90.8 415.23 1.0
Log 95.2 124.42 3.3

Power 95.4 156.94 2.6
Multiplied 95.8 112.33 3.7

6 Conclusions & future work

We have presented a feasibility macromodel, which can be
used during synthesis of analog circuits. The generated model,
incorporating the proposed kernels has been found to be much
more efficient while computing the performance, compared to
those constructed using standard kernels. We treated the fea-
sible design space identification problem as a two-class clas-
sification problem so that comparison can be done for larger
size of data set. Thus, we are able to build accurate and fast
feasibility macromodels, which can tremendously save com-
putation time during circuit sizing when circuit performance
parameters are to be evaluated a large number of times in a
stochastic optimization engine.

Further work using proposed kernels for regression problems
as well is being pursued. Also, a method is to be adopted
to tune the parameters of the kernels for different set of the
application circuits. There still remains a work to be done for
further improving the accuracy of macromodels.
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