
 
 

 

  
Abstract—Since there is no reliable surface-area formula 

available for the calculation of the heat transfer characteristics 
of an insulated oblate spheroid, in this investigation, highly 
accurate oblate spheroid surface area is obtained by a simple 
numerical integration method. Based on the accurate oblate 
spheroid surface area, a reliable one-dimensional approximate 
solution of an insulated oblate spheroid container can be 
obtained with a one-dimensional RPSWT model. By comparing 
with accurate three-dimensional numerical results, it is found 
that in cases of low external convective coefficient (ho =8.3 
Wm-2K-1), long-short-axes ratio a/b 3≦ , and insulation thickness 
t/R2 2, errors are within 3 %≦ . In rarer situations with a/b 5 ≦
and t/R2 2, ≦ the errors are within 5.5 %. The above results are 
almost independent with the internal flow convective coefficient 
(hi from 30 to 105 Wm-2K-1) and dimensionless container size 
(0.5R2ho/Ks from 1.55 to 155). 
 

Index Terms—insulation, oblate spheroid, RPSWT model, 
integral method 
 

I. INTRODUCTION 
The insulation of hot and cold ducts and containers has been 
one of the most important engineering problems. Yet, simple 
constant surface area plate thermal resistance (PTR) model 

has long been the main stream method to analyze the heat 
transfer characteristics of insulated polygonal ducts or 
polyhedron containers. This model assumes that the insulated 
surface area of the external insulation is the same as that of a 
bare duct or container, a practice neglecting the excessive 
surface area caused by insulation layer thickness, which in 
turn significantly reduces the magnitude of heat transfer rate. 
Wong et al. [1] proposed a plane wedge thermal resistance 
(PWTR) model aimed to investigate the heat-transfer 
characteristics associated with insulated polygonal pipes. In 
general, if the one-dimensional PWTR model is used to 
analyze the two-dimensional heat transfer problems of 
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insulated polygonal ducts, accuracy deteriorates with 
decreasing the number of edges. Therefore, Wong et al. [2] 
studied the heat-transfer characteristics of an insulated long 
rectangular or square duct 64-CPWTR model. Wong et al. [3] 
extended the various CPWTR models to obtain a reliable 
one-dimensional model for insulated regular polygonal 
ducts. 
As far as an insulated container is concerned, Wong and 
Chou [4] developed a regular polygonal-top solid wedge 
thermal-resistance (RPSWT) model to obtain the heat 
transfer characteristics of an insulated regular polyhedron; 
Chen et al. [5] used combined 60% and RPSWT model and 
40% PTR model to obtain a reliable one-dimensional method 
applied to heat-transfer problems associated with insulated 
rectangular tanks. Recently, Chen et al. [6] proposed a 
reliable model for an insulted oval duct using 
one-dimensional PWTR model and 91-CPWTR model based 
on very accurate oval perimeter obtained by a simple 
numerical integration method. In the present investigation, a 
follow-up study to Chen et al. [6], the results are calculated 
by one-dimensional RPSWT model [4] based on highly 
accurate oblate spheroid surface areas calculated by a reliable 
simple numerical integration method extended from Chen et 
al. [6]. The results are compared with those of 
three-dimensional numerical results for insulated oblate 
spheroid containers with different long-short-axes ratios, 
from 1.5 to 5, and with three group dimensionless container 
sizes and in several practical thermal conditions. 

 

II. PROBLEM FORMULATION 
Fig. 1 shows the bare oval cross-sectional profile at x-y 

coordinates of an insulated oblate spheroid container with the 
external half-long-axis length of a, half-short-axis length of 
b, wall thickness of t1, wall conductivity of K1. An insulation 
layer with thickness of t and conductivity of Ks is wrapped 
around the oblate spheroid. The oblate spheroid is then 
assumed to be exposed to internal and external fluids with 
convection heat transfer coefficients of hi and ho and 
temperatures of Ti and To, respectively. In addition, Fig. 2 
shows that various oblate spheroid containers with different 
long-short-axes ratios a/b of 1.5, 2, 3, 4 and 5, transformed 
from a bare sphere with the same external surface area, are 
analyzed in this study. 

A. The oblate spheroid container’s surface area 
The following approximate oval perimeter formula [7] has 
been conventionally used to analyze the characteristics of 
oval duct: 
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The equation of the oval cross-sectional profile of an 
oblate spheroid container shown in Fig. 3 is: 
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The perimeter of the oval cross-sectional profile can then 

be divided into n line segments. As shown in Fig. 3, the two 
end points for the ith line segment can be expressed as: 
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From the definition of the line segment, the perimeter of the 
oval profile [18] can be obtained by the following 
summation: 
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Due to the axial symmetry of the geometry of an oblate 
spheroid, the external surface area of a bare oblate spheroid 
container can be obtained by the following summation: 
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Similarly, accurate internal oblate spheroid surface area, AE1, 
can be obtained by replacing the values of a and b by (a-t1) 
and (b-t1), respectively in equations (3) to (6) and (8); 
meanwhile, accurate external insulation surface area, AE3, 
can be obtained by replacing the values of a and b by (a+t) 
and (b+t) in equations (3) to (6) and (8), respectively. 
The approximated perimeter and surface area would be 
highly accurate if the number n is very large. If a=b=1, 
equation (2) becomes a circle. In the case of n=106, the error 
generated from equation (7), compared with the exact 
perimeter of the circle, is about 10-5; and the error generated 
from equation (8), compared with the exact surface area of a 
sphere (a=b=1), is about 10-6. For the sake of obtaining 
reliable results, n=106 is also adopted in the present 
investigation to obtain the oblate spheroid surface area. Even 
with this huge number of segmentations, it only takes only 
about an insignificant 2 second CPU time in a PC to complete 
the numerical integration. Due to the extreme small errors 
generated by equations (7) and (8), the approximate values 
can be regarded as the exact perimeter and surface area. 
Since there is no appropriate surface area formula for an 
oblate spheroid container, the approximate oval perimeter 
from equation (1) can be extended, to obtain an approximate 
oblate spheroid surface area as: 

)(2 22 baS += π                                                           (9) 
By compared with the exact value, the error of oval perimeter 
generated by equation (1) can be expressed as: 
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Similarly, the error of oblate spheroid surface area generated 
by equation (9) can be expressed as: 
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The errors of equations (10) and (11) are shown in Fig. 4. It 

can be seen that the greater the long-short-axes ratio a/b is, 
the larger the values of EL and ES are. Between them, ES is 
much larger than EL. From Fig. 4, it is obvious that any 
calculation based on equation (9) is inaccurate; therefore, the 
oblate spheroid surface area shouldn’t be obtained by 
equation (9). 

B. The equivalent sphere based on accurate oblate 
spheroid surface area 
The heat transfer characteristics of an insulated oblate 

spheroid can be calculated by using the concept of equivalent 
sphere based on the same bare external surface area. The 
outer radius R2 of the equivalent bare sphere is: 
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R2 is also used for dimensionless thickness, t/R2 . Since the 
critical radius of an insulated sphere is 2Ks /h0 [15], the 
dimensionless insulated oblate spheroid container size can be 
expressed as 0.5R2h0/Ks. 

The internal and external surface-areas of equivalent bare 
sphere are: 

2
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and the external surface area of the equivalent insulated 
sphere is: 

2
23 )(4 tRAC += π                                                (15) 

III. THE HEAT TRANSFER RATE WITH ONE-DIMENSIONAL 
RPSWT MODE 

The thermal resistance of one-dimensional RPSWT model 
is: 

32 AAK
tR

s
th =                                                       (16) 

From Fig. 2, if a=b, an insulated oblate spheroid becomes 
an insulated sphere. Then the relations of t, A2, and A3 of an 
insulated sphere can be written as: 

t=R3-R2, A2=4π R2
2, and A3=4π R3

2                          (17) 
Therefore, the thermal resistance of a sphere can also be 

obtained by substituting equation (17) into equation (16) as 
follows: 
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 It can be seen from equation (18) that the thermal 
resistance of an insulated sphere is a special case of the 
RPSWT model because a sphere can be approached by 
increasing the number of faces of a polyhedron to infinity. 

A. Heat transfer rate based on accurate surface area and 
with RPSWT model 
The heat transfer rate of an insulated oblate spheroid 

container with RPSWT model and based on accurate surface 
area is: 
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And its error compared with three-dimensional numerical 

heat transfer rate, Qn , is: 
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B. Heat transfer rate of an equivalent insulated sphere 
based on accurate oblate spheroid surface area 
The heat transfer rate of an equivalent insulated sphere 

based on accurate oblate spheroid surface area is: 
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And its error compared with three-dimensional numerical 

heat transfer rate, Qn , is: 
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IV. ENERGY EQUATION AND BOUNDARY CONDITIONS 
The heat conduction governing equation for a three- 

dimensional insulated oblate spheroid is: 
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The boundary conditions are: 
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where N is the normal direction on any surface, and Ts 
represents the surface temperature of the insulation layer. 

 

V. NUMERICAL TWO-DIMENSIONAL HEAT TRANSFER 
RESULTS 

Equations (23) to (26) are solved by an in-house 
USTREAM code developed by the third named author to 
obtain the three-dimensional numerical heat transfer results. 
In order to check if the numerical results are reliable, an 
insulated sphere is analyzed to determine how many cells are 
needed to obtain a satisfactory result. It was found that a 
model of an insulated sphere, which consists of 26600 cells, 
gave a satisfactory solution of heat transfer rate within 
±0.01% compared with that from exact analytic solution. 
Therefore, in the case of analyzing an insulated oblate 
spheroid, the numerical solutions obtained by the model with 
same number of cells can be expected to be highly accurate. 

 

VI. RESULTS AND DISCUSSIONS 
The results of the oblate spheroid container with various 

long-short-axes ratios a/b of 1.5, 2, 3, 4 and 5 in practical 
situations of external convection heat transfer coefficients 
ho=8.3 Wm-2K-1, wall conductivity K1=77 Wm-1K-1, 
insulation layer conductivity KS=0.035 Wm-1K-1, internal 
fluid temperature Ti=100℃and external fluid temperature 
To=0℃ with various dimensionless container size 
(0.5R2ho/Ks) and internal heat convection coefficient hi are 
shown in Figs. 5~7 and Tables 1~3, respectively. The 
relations of heat transfer rate error, EW, calculated by 
one-dimensional RPSWT model with accurate surface area, 
and heat transfer rate error, EC , of an insulted equivalent 
sphere based on accurate external surface area of a bare 
oblate spheroid versus dimensionless insulated thickness, 
t/R2, in situation of dimensionless container size, 
0.5R2ho/KS=1.55~2.75, with hi=105 Wm-2K-1 are shown in 
Fig. 5 and Table 1, which lists the detail data. The relations of 
EW and EC  vs. t/R2  in cases of 0.5R2ho/KS=15.5~27.5 with 
hi=30 Wm-2K-1 are shown in Fig. 6 and Tables 2. The 
relations of EW and EC vs. t/R2 in cases of 
0.5R2ho/KS=94.8~155.0 with hi=105 Wm-2K-1 are shown in 
Fig. 7 and Table 3. 

It is found from Figs.5~7 and Tables 1~3 that in situations 
of a/b ≦3 and t/R2≦2, EW≦ 3 %; and in other rarer 
situations with a/b ≦5 and t/R2≦2, EW≦5.5 %, the results 
are almost independent with the convective coefficient of 
internal fluid hi and dimensionless container size if a model is 
based on accurate external surface area of a bare oblate 
spheroid. However, the heat transfer rate errors, EC are 

almost twice as large as those of EW. 
 

VII. CONCLUSION 
This study shows that approximate surface area formula is 

not suitable to be applied to an insulated oblate spheroid to 
obtain reliable heat-transfer results. In order to achieve a 
higher level of accuracy, an integration method, which 
returns very accurate surface area, introduced in this study 
needs to be used. Since using equivalent sphere based on the 
same external surface area of a bare oblate spheroid generates 
higher errors, reliable one-dimensional RPSWT model based 
on accurate surface area should be employed to calculate the 
heat transfer characteristic of an insulated oblate spheroid 
container. This only requires a PC incorporated with a small 
computer code in any language (such as LabVIEW in this 
study) without the need to use CFD software. As 
demonstrated in this study, reliable heat-transfer results can 
easily be obtained by this simple practice. It is very suitable 
to engineering application.  
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Fig.1  The parameters of an insulated oblate spheroid container 

 

 

Fig. 2 The oblate spheroid with various long-short-axes ratios a/b, 
transformed from a bare sphere with the same external surface 
area 

 

 

Fig. 3  The oval cross-sectional profile of an oblate spheroid and its 
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Fig. 4 The errors generated by approximate formulas of oval perimeter and 
oblate spheroid surface area versus long-short-axes ratio a/b 
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Fig.5  The relations of EW and EC  vs. t/R2  as well as various a/b in situation of 
dimensionless size 0.5R2ho/KS=1.55~2.75 with hi=105 Wm-2K-1 , 
t1=1mm, K1=77 Wm-1K-1, KS=0.035 Wm-1K-1, ho=8.3 Wm-2K-1, 
Ti=100℃and To=0℃ 
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Fig.6  The relations of EW and EC  vs. t/R2  as well as various a/b in situation of 
dimensionless size 0.5R2ho/KS=15.5~27.5 with hi=30 Wm-2K-1 , 
t1=2mm, K1=77 Wm-1K-1, KS=0.035 Wm-1K-1, ho=8.3 Wm-2K-1, 
Ti=100℃and To=0℃ 
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Fig.7  The relations of EW and EC  vs. t/R2  as well as various a/b in situation of 
dimensionless size 0.5R2ho/KS=94.8~155.0 with hi=105 Wm-2K-1 , 
t1=5mm, K1=77 Wm-1K-1, KS=0.035 Wm-1K-1, ho=8,3 Wm-2K-1, 
Ti=100℃and To=0℃ 

Table 

Table 1.  In situation of hi=105 Wm-2K-1 with t1=1 mm, K1=77 
Wm-1K-1, KS=0.035 Wm-1K-1, ho=8.3 Wm-2K-1, Ti=100℃and To=0℃, 
the relations of EW and EC  vs. t/R2  as well as various a/b 
(a) a/b=1.5; a=0.03m, b=0.02 m; R2=0.0232 m, 0.5R2hO/KS=2.75 

 
(b) a/b=2; a=0.02 m, b=0.01 m; R2=0.01307 m, 0.5R2hO/KS=1.55 

t/R2 t, mm QW, Wm-1 QC, Wm-1 Qn, Wm-1 EW, % EC, % 

0.0 0 1.782 1.782 1.778 0.0 0.0 

0.25 3.268 1.423 1.415 1.426 -0.2 -0.8 

0.5 6.537 1.215 1.206 1.216 -0.1 -0.8 

1.0 13.07 0.997 0.990 0.996 0.1 -0.6 

1.5 19.61 0.888 0.882 0.886 0.2 -0.4 

2.0 26.15 0.823 0.819 0.821 0.2 -0.3 

 
(c) a/b=3; a=0.03 m, b=0.01 m; R2=0.01567 m; 0.5R2hO/KS=1.858 

t/R2 t,mm QW,Wm-1 QC,Wm-1 Qn,Wm-1 EW,% EC,% 

0.0 0 2.564 2.564 2.558 0.0 0.0 

0.25 3.920 1.888 1.853 1.909 -1.1 -2.9 

0.5 7.840 1.556 1.523 1.574 -1.2 -3.3 

1.0 15.68 1.241 1.216 1.254 -1.1 -3.1 

1.5 23.52 1.092 1.072 1.104 -1 -2.8 

2.0 31.36 1.006 0.990 1.017 -1.1 -2.7 

 

(d) a/b=4; a=0.04 m, b=0.01 m; R2=0.0179 m; 0.5R2hO/KS=2.128 

t/R2 t,mm QW, Wm-1 QC, Wm-1 Qn, Wm-1 EW, % EC, % 

0 0 3.361 3.361 3.353 0 0 

0.25 4.488 2.329 2.254 2.373 -1.8 -5 

0.5 8.976 1.874 1.804 1.914 -2.1 -5.8 

1.0 17.95 1.466 1.413 1.500 -2.3 -5.8 

1.5 26.93 1.280 1.238 1.312 -2.4 -5.6 

2.0 35.90 1.174 1.140 1.204 -2.5 -5.3 

 
(e) a/b=5; a=0.05 m, b=0.01 m; R2=0.01998 m; 0.5R2hO/KS=2.368 

t/R2 t mm QW, Wm-1 QC, Wm-1 Qn, Wm-1 EW, % EC, % 

0 0 4.165 4.166 4.156 0.2 0.2 

0.25 4.996 2.749 2.623 2.819 -2.5 -6.9 

0.5 9.993 2.173 2.058 2.234 -3 -8.1 

1.0 19.99 1.676 1.590 1.737 -3.5 -8.5 

1.5 29.98 1.454 1.387 1.512 -3.8 -8.3 

2.0 39.97 1.329 1.274 1.385 -4 -8 

 
 
 
 
Table 2.  In situation of hi=30 Wm-2K-1 with t1=1 mm, K1=77 Wm-1K-1, 
KS=0.035 Wm-1K-1, ho=8.3 Wm-2K-1, Ti=100℃and To=0℃, the relations of 
EW and EC  vs. t/R2  as well as various a/b 
(a) a/b=1.5; a=0.3m, b=0.2 m; R2=0.232 m, 0.5R2hO/KS= 27.5 

t/R2 t,mm QW,Wm-1 QC,Wm-1 Qn,Wm-1 EW,% EC,% 

0 0 439.1 439.1 439.1 0.0 0.0 

0.25 58.02 47.15 47.10 48.33 -0.3 -0.6 

0.5 116.0 29.50 29.46 29.98 -1.6 -1.7 

1.0 232.1 20.06 20.03 20.28 -1.1 -1.3 

1.5 348.1 16.81 16.79 16.97 -0.9 -1.1 

2.0 464.1 15.17 15.15 15.30 -0.8 -1.0 

 
 
(b) a/b=2; a=0.2 m, b=0.1 m; R2=0.1307 m, 0.5R2hO/KS=15.5 

t/R2 t,mm QWt,Wm-1 QCt,Wm-1 Qn,Wm-1 EW,% EC,% 

0 0 139.1 139.2 139.2 0.0 0.0 

0.25 32.68 25.14 25.03 26.25 -0.9 -1.8 

0.5 65.37 16.21 16.12 16.69 -2.9 -3.5 

1.0 130.7 11.18 11.12 11.42 -2.1 -2.7 

1.5 196.1 9.411 9.362 9.582 -1.8 -2.3 

2.0 261.5 8.506 8.465 8.645 -1.8 -2.3 

 
 

t/R2 t,mm QW,Wm-1 QC,Wm-1 Qn,Wm-1 EW,% EC,% 

0 0 5.616 5.616 5.609 0.0 0.0 

0.25 5.802 3.231 3.227 3.228 0.1 0.0 

0.5 11.60 2.469 2.465 2.464 0.2 0.0 

1.0 23.21 1.874 1.871 1.869 0.2 0.1 

1.5 34.81 1.625 1.622 1.620 0.3 0.1 

2.0 46.41 1.488 1.486 1.4835 0.3 0.2 
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(c) a/b=3; a=0.3 m, b=0.1 m; R2=0.1568 m; 0.5R2hO/KS=18.6 

t/R2 t,mm  QW,Wm-1 QC,Wm-1 Qn,Wm-1 EW,% EC,%

0 0 200.2 200.3 200.3 0.0 0.0 

0.25 39.20 31.09 30.68 32.51 -1.3 -2.7 

0.5 78.40 19.89 19.55 20.60 -3.5 -5.1 

1.0 156.8 13.66 13.41 14.07 -2.9 -4.7 

1.5 235.2 11.47 11.27 11.78 -2.7 -4.3 

2.0 313.6 10.34 10.18 10.61 -2.6 -4.1 

 
 
 
 
 
 
(d) a/b=4; a=0.4 m, b=0.1 m; R2=0.1795 m; 0.5R2hO/KS=21.3 

t/R2 t,mm QW,Wm-1 QC,Wm-1 Qn,Wm-1 EW,% EC,%

0 0 262.5 262.6 262.5 0 0 

0.25 44.88 36.49 35.63 38.26 -1.1 -3.4 

0.5 89.76 23.25 22.54 24.26 -4.2 -7.1 

1.0 179.5 15.93 15.41 16.59 -4 -7.1 

1.5 269.3 13.34 12.94 13.89 -3.9 -6.8 

2.0 359.0 12.02 11.68 12.50 -3.9 -6.5 

 
 
(e) a/b=5; ; a=0.5 m, b=0.1 m; R2=0.1998 m; 0.5R2hO/KS= 23.7 

 
Table 3. The detail relations of EW and EC  vs. t/R2  as well as various a/b in 
situation of dimensionless size 0.5R2ho/KS=94.8~155.0 with hi=105 Wm-2K-1 , 
t1=5mm, K1=77 Wm-1K-1, KS=0.035 Wm-1K-1, ho=8.3 Wm-2K-1, Ti=100℃and 
To=0℃ 
 
(a) a/b=1.5; a=1.5m, b=1m; R2=1.16m, 0.5R2hO/KS= 137.6 

t/R2 t,m QW,Wm-1 QC,Wm-1 Qn,Wm-1 EW,% EC,% 

0 0 14039 14039 14038 0.0 0.0 

0.25 0.290 252.49 252.23 253.08 -0.2 -0.3 

0.5 0.580 152.56 152.36 152.97 -0.3 -0.4 

1.0 1.160 102.04 101.88 102.27 -0.2 -0.4 

1.5 1.740 85.095 84.972 85.276 -0.2 -0.4 

2.0 2.320 76.604 76.503 76.762 -0.2 -0.3 

 
 
 

(b) a/b=2; a=2 m, b=1 m; R2=1.307 m, 0.5R2hO/KS =155.0 

t/R2 t,m QW,Wm-1 QC,Wm-1 Qn,Wm-1 EW,% EC,%

0.0 0 17825 17825 17822 0.0 0.0 

0.25 0.326 285.70 284.57 287.17 -0.5 -0.9 

0.5 0.653 172.68 171.76 173.74 -0.6 -1.1 

1.0 1.307 115.48 114.82 116.14 -0.6 -1.1 

1.5 1.961 96.268 95.752 96.746 -0.5 -1.0 

2.0 2.614 86.627 86.205 87.048 -0.5 -1.0 

 
 
(c) a/b=3; a=2.1 m, b=0.7 m; R2=1.097 m; 0.5R2hO/KS= 130.2 

t/R2 t,m QW,Wm-1 QC,Wm-1 Qn,Wm-1 EW,% EC,% 

0.0 0 12563 12563 12560 0 0 

0.25 0.274 241.53 238.43 244.36 -1.2 -2.4 

0.5 0.548 146.58 144.08 148.83 -1.5 -3.2 

1.0 1.097 98.158 96.361 99.804 -1.7 -3.5 

1.5 1.646 81.77 80.373 83.127 -1.6 -3.3 

2.0 2.194 73.505 72.363 74.717 -1.6 -3.2 

 
(d) a/b=4; a=2 m, b=0.5 m; R2=0.898 m; 0.5R2hO/KS=106.4 

t/R2 tm QW,Wm-1 QC,Wm-1 Qn,Wm-1 EW,% EC,% 

0 0 8402.2 8402.3 8400.5 0.0 0.0 

0.25 0.224 199.06 194.47 202.66 -1.8 -4.0 

0.5 0.448 121.41 117.70 124.43 -2.4 -5.4 

1.0 0.897 81.439 78.771 83.850 -2.9 -6.1 

1.5 1.346. 67.790 65.715 69.887 -3.0 -6.0 

2.0 1.796 60.867 59.171 62.643 -2.8 -5.5 

 
(e) a/b=5; a=2 m, b=0.4 m; R2=0.799 m; 0.5R2hO/KS= 94.8 

t/R2 tm QW,Wm-1 QC,Wm-1 Qn,Wm-1 EW,% EC,% 

0 0 6664.7 6664.8 6663.3 0.0 0.0 

0.25 0.199 178.87 172.88 183.12 -2.3 -5.6 

0.5 0.399 109.57 104.74 113.28 -3.3 -7.5 

1.0 0.799 73.611 70.135 76.730 -4.1 -8.6 

1.5 1.199 61.226 58.518 64.025 -4.4 -8.6 

2.0 1.598 54.908 52.694 57.524 -4.5 -8.4 

 
 

t/R2 t,mm QW,Wm-1 QC,Wm-1 Qn,Wm-1 EW,% EC,%

0 0 325.4 325.6 325.4 0.0 0.0 

0.25 49.96 41.47 40.06 43.63 -2.1 -4.3 

0.5 99.93 26.38 25.22 27.73 -4.9 -9.1 

1.0 199.8 18.04 17.20 19.01 -5.1 -9.6 

1.5 299.8 15.09 14.43 15.92 -5.2 -9.4 

2.0 399.7 13.57 13.02 14.33 -5.3 -9.1 
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