
 
 

 

  
Abstract— The effect of autofrettage on thick-walled 

cylinders, operating under high internal pressure, has become a 
significant area of development, both in research and practice. 
In optimal design of thick-walled cylinders, there are two main 
objectives to be achieved: increasing its strength-weight ratio 
and extending its fatigue life. This can be achieved by 
generating a residual stress field in the cylinder wall prior to 
use. Both analytical and numerical techniques have been used 
for the investigation of the effects of residual stresses on the 
load-carrying capacity. The scope of the current paper includes 
application of ABAQUS finite element code to the direct 
problem of finding thick-walled cylinder autofrettage solutions. 
The results reveal three scenarios in the design of thick-walled 
cylinders. For maximum load carrying capacity, 
non-autofrettage is suitable when, in service, the whole wall 
thickness will be yielded. Full autofrettage is suitable when, 
during subsequent operation, yielding is limited at the inner 
surface. Optimum autofrettage of the cylinder is suitable if a 
minimum equivalent stress is to be achieved. The analytical 
solutions were compared to numerical results and a very good 
correlation in form and magnitude was obtained. 
 

Index Terms— Autofrettage, elastic-plastic junction line, 
finite element analysis, loads capacity, residual stress.  
 

I. INTRODUCTION 
Due to the ever-increasing industrial demand for 

axisymmetric pressurized cylindrical components which 
have had wide applications in chemical, nuclear, fluid 
transmitting plants, power plants and military equipment, the 
attention of designers has been concentrated on this 
particular branch of engineering. The increasing scarcity and 
higher cost of materials have led researchers not to confine 
themselves to the customary elastic regime but moved their 
attention to the elastic–plastic approach which offers more 
efficient use of materials [4]. Autofrettage is a common 
process of producing residual stresses in the wall of a 
thick-walled cylinder prior to use. An appropriate pressure, 
large enough to cause yielding within the wall, is applied to 
the inner surface of the cylinder and then removed. Upon 
release of this pressure, compressive residual stresses are 
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developed to a certain radial depth at the bore. These residual 
stresses serve to reduce the tensile stresses developed as a 
result of subsequent application of an operating pressure, 
thus increasing the load bearing capacity [1, 2]. Usually large 
scale yielding occurs in the autofrettaged thick-walled 
cylinder wall [3]. Theoretical and numerical methods used to 
determine limit loads involve some assumptions and 
parameters that affect the accuracy of the results. The 
purpose of this study is to investigate the effect of 
autofrettage parameters on the limit loads. The simplest and 
most general theoretical treatment of the partially-plastic 
cylinder has been the use of the Tresca yield criterion, with 
the assumption of an elastic perfectly-plastic material. Using 
the Tresca yield criteria together with an autofrettage level 
parameter, a precise solution for residual stress was 
developed. 

 

II. OPERATING PRESSURE LIMITATIONS 
For a cylinder subjected to an internal pressure, Pi , the 

radial stress, σr , and circumferential (hoop) stress, σθ , 
distributions are given by Lame’s formulation: 
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For a cylinder with end caps and free to change in length, 

the axial stress is given by [5]: 
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According to Tresca yield theory, yielding occurs when 

the equivalent stress is [5]: 
YrθTr σ)σ(σσ =−=               (5) 

 
Two important pressure limits, PY,i and PY,o , are 

considered to be of importance in the study of pressurized 
cylinders. PY,i corresponds to the internal pressure required at 
the onset of yielding of the inner surface of the cylinder, and 
PY,o is the internal pressure required to cause the whole wall 
to yield completely. The magnitudes of PY,i and PY,o , 
according to Tresca yield strength criterion, are [1, 6 and 7]: 

For PY,i  : 
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Eqn. (6) is the non-dimensionalized inner surface pressure 
limit of thick-walled cylinder using Tresca yield criterion. 

As for PY,o  : 
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Eqn. (7) corresponds to the outer surface pressure limit. The 
relationships between PTr,Y,i and PTr,Y,o with ro and ri are 
graphically shown in Fig. 1. 

                

 
 

Fig. 1: Pressure limits of thick-walled cylinder 
 

III. AUTOFRETTEGE PROCESS 
The autofrettage pressure, Pa , is a sufficiently high internal 

pressure applied before a cylinder is put into use. If the 
internal pressure is removed after part of the cylinder 
thickness has become plastic, a residual stress is set up in the 
wall. Assuming that during unloading the material follows 
Hooke’s Law; the residual stresses can be obtained from 
equations [8]: 
For the plastic region, ai rrr ≤≤  
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For the elastic region, ra ≤ r ≤ ro  
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where  

i

a

r
rm =                  (10) 

and ra is the autofrettage radius. By substituting r = ra, the 
residual stresses at junction radius,  ra , is obtained.  
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 The plot of the above residual stress distributions are 
shown in Fig. 2. On application of the operating pressure the 
total stress of the partially autofrettaged cylinder is the 
summation of the residual stress and the stress due to the 
operating pressure, i.e.: 
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Rz,zTz, σσσ +=                 (12.c) 

 

 
 

Fig. 2: Residual stress distributions, after autofrettage 
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The comparison of total stress distributions between 
autofrettaged and non-autofrettaged cylinders is shown in 
Fig. 3. In operation, autofrettage causes the high hoop stress 
at the inner surface to be reduced, and moves the location of 
the peak hoop stress from the inner surface to a location r = ra. 
The equivalent stresses at r = ra is a maximum value. 

 

 
 

Fig. 3: Total stress distributions of autofrettaged and 

non-autofrettaged cylinders 

 
The autofrettage process leads to a decrease in the 

maximum Tresca equivalent stress during the working stage. 
This means that the cylinder can now be subjected to an 
increase in the pressure capacity. A key problem in the 
analysis of autofrettage is to determine the optimum 
autofrettage pressure and the corresponding radius of the 
elastic–plastic boundary where the maximum equivalent 
stress in the cylinder becomes a minimum.  

 

IV. OPTIMUM AUTOFRETTAGE 
During autofrettage, the cylinder is yielded to the 

elastic-plastic junction line, called the autofrettage radius ra. 
Using Tresca yield theory the equivalent stress at r = ra is 
obtained, when the cylinder is subjected to internal operating 
pressure, after being treated by autofrettage: 
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Differentiating and equating the differential to zero, i.e. 
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Fig. 4: Total Tresca equivalent stress 

 
The internal pressure to cause yielding to a depth of r is: 
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From Eqn. (14) the optimum autofrettage radius is obtained: 

n
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Therefore the optimum autofrettage pressure is: 
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Using an arbitrary value of autofrettage pressure the total 

Tresca equivalent stress, using Eqns. 1-3 and Eqns. 8-12, can 
be found for all values of r. The equivalent stress is a 
maximum at all values of r=ra, but with P=Popt,a , the 
maximum equivalent stress has a minimum value but is still 
lower than that in non-autofrettaged condition, as shown in 
Fig. 4. The analytical results can be validated by numerical 
analysis, as shown in Fig. 5. 
 
 

 
 

Fig. 5: Optimum autofrettage pressure and radius, from FEM 

V. ALLOWABLE INTERNAL PRESSURE OF AUTOFRETTAGED 
CYLINDER 

Eqns. (6) and (7) are used to obtain the maximum internal 
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pressure to cause different stages of yielding in a cylinder 
which is not treated with autofrettage. For a cylinder treated 
with autofrettage, and using Tresca yield criterion, the 
internal pressure to cause the inner surface to yield again, can 
be obtained. Substituting Eqns. (1), (2) and (8) into Eqn. (12), 
when r = ri , the internal pressure to cause yielding at the inner 
surface is: 
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When r = ro , by substituting Eqns. (1), (2) and (9) into Eqn. 
(12), the internal pressure to cause the whole wall thickness 
to yield is,  
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The values of pressure in Eqns. (17) and (18) can be 

graphically represented in Figs. 6 and 7, respectively. These 
pressures are influenced by different optimum autofrettage 
levels which were obtained when an operating pressure was 
initially known. From Fig. 6, the internal pressure to cause 
yielding at the inner surface of a cylinder which is treated 
with optimum autofrettage pressure is greater than that for a 
non-treated cylinder. On the other hand, the internal pressure 
to cause full yielding in a cylinder which has been treated 
with optimum autofrettage is lower than that which is 
non-treated with autofrettage (Fig. 7). 

 

VI. FULL AUTOFRETTAGE 
A special case is when the cylinder is fully autofrettaged, 

i.e. ra= ro. Therefore m = k and the equivalent stress at any 
radius can be obtained: 
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Therefore the internal pressure to cause the internal 

surface and whole thickness to yield is, by substituting r = ri  
and r = ro into Eqns. (17) and (18) respectively. Table 1 and 
Fig. 8 show the influence of autofrettage level pressure on the 
allowable internal pressure of the cylinder, calculated 
according to Tresca yield criterion. Comparisons of the 
internal pressure are made between a cylinder which is not 
treated with autofrettage, treated with optimum autofrettage 
and full autofrettage.  
 

 
Fig. 6: Internal pressure to cause the inner surface to yield,  

with different levels of optimum autofrettage. 
 
 

VII. PRESSURE LIMITATION OF OPTIMUM AUTOFRETTAGE 
CYLINDER 

Rearranging Eqn. (16), the relation between the optimum 
autofrettage pressure and the operating pressure is: 
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Fig. 9 shows that, increasing the operating pressure results 

in an increase in the optimum autofrettage pressure. For high 
radius ratio (k>5), increasing the cylinder thickness does not 
affect the magnitude of the optimum autofrettage pressure 
significantly. For low radius ratio (k<3), decreasing the 
cylinder thickness leads to a dramatic decrease in optimum 
autofrettage pressure. 

 
 
Table 1: Allowable internal pressure of cylinder treated 

with different levels of autofrettage. 
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Fig. 7: Internal pressure to cause the whole thickness to 

yield, with different optimum autofrettage level. 
 
 
 

 
 

Fig. 8: Allowable internal pressure of none, full and 
optimum autofrettaged cylinder, using Tresca yield criteria 

 

 
Fig. 9: Optimum autofrettage for different values of 

operating pressure and radius ratio. 
 

VIII. FINITE ELEMENT ANALYSIS 
The autofrettage process may be simulated by finite 

element methods, making use of elastic-plastic analysis. 
Using the ABAQUS code, an FE model of a cylinder with an 
inside radius 100 mm and outside radius of 200 mm was 
generated, as shown in Fig. 10(a). Symmetry conditions were 
fully utilized to reduce computing time. The FE model 
contained 30 elements and 62 nodes, as shown in Fig. 10(b). 
The material used is steel which has the following properties: 

E = 203 GPa 
σY = 325 MPa 
ν = 0.33  
The material is assumed to be elastic-perfectly plastic, 

having Tresca plasticity response. 
 

 

 
 

Fig. 10: Dimensions of plain thick-walled cylinder 
axisymmetric model 
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An internal (autofrettage) pressure of 202 MPa was 
applied, and then removed. The residual stress distributions 
were then evaluated in the thick-walled cylinder. Using 
subsequent operating pressure of 160-220 MPa, FEM results 
show that the total equivalent stress becomes a minimum 
value of 237 MPa at an operating pressure of 200 MPa, as 
shown in Fig. 11.  

 
 
 

 
 

Fig. 11: Occurrence of a minimum of the maximum 
equivalent Tresca stress 

 
 

IX. CONCLUSION 
Two-dimensional FE simulations of the thick-walled 

cylinder were carried out to validate the analytical optimum 
autofrettage pressure and radius. The effects of autofrettage 
level parameters on the pressure capacity of cylinders were 
studied. From the results of this study, the following points 
may be concluded. 
• After autofrettage, the largest residual stress is the hoop 

stress which is compressive and occurs at the inner 
surface of the thick-walled cylinder. This is beneficial in 
reducing the largest tensile hoop stress in subsequent 
repressurization with an internal operating pressure. 

• The total equivalent stress values increases from the inner 
surface to the maximum value at the elastic-plastic 
autofrettage radius, and then decreases toward the outer 
surface.   

• The autofrettage process increases the allowable internal 
pressure and elastic strength of a cylinder. 

• The autofrettage process has a negligible effect on 
increasing the pressure capacity which can cause the 
whole cylinder wall to yield. 

• The optimum autofrettage pressure is unique for a given 
operating pressure. 

• There are three cases in the design of pressurized 
thick-walled cylinder: 
• Non-autofrettage is suitable if yielding is allowed 

throughout the cylinder wall thickness. 
• Full autofrettage is suitable if yielding is allowed at the 

inner surface only. 
• Optimum autofrettage case is suitable if the maximum 

equivalent stress is to be optimized. 
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NOMENCLATURE 
 

P pressure 
r radius  
k outer to inner radius ratio  
m autofrettage to inner radius ratio 
n operating pressure to yield stress ratio 
σ normal stress 
ν poisson’s ratio  
E elastic modulus 
i inner 
o outer 
a autofrettage 
r radial 
θ hoop 
z axial 
Y yield 
p plastic 
e elastic 
opt optimum 
opr operating 
Tr Tresca 
R residual 
T total 
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