
Design of an Omni-directional Spherical Robot: 
Using Fuzzy Control 

Abstract-In this study, an omni-directional spherical mobile 
robot is implemented. The key feature of this robot is it can 
move directly in any direction with no constraint. In order to 
control such a spherical robot, a fuzzy controller is proposed. 
The major advantage of the proposed fuzzy controller is it can 
deal with the unknown nonlinearities and external 
disturbances. Finally, the experimental results demonstrate the 
good performance of the whole control system. 
 
Index Terms— Omni-directional spherical mobile robot, 
fuzzy control 

I. INTRODUCTION 
In the past years, mobile robot system control has 

received many attention and lots of significant 
developments have been proposed. The robot system is high 
nonlinearity that is usually unknown and time varying, and 
it also has many uncertainty terms in its dynamic, such as 
friction, payload variation, and disturbance. It is difficult to 
establish an exact mathematical model for the design of a 
model-based control system. To dealing with such an 
unknown nonlinearities and external disturbances, many 
control strategies have been proposed, including 
sliding-model control, adaptive control, and intelligent 
control.  

Recently, the balance control of one-wheeled and 
two-wheeled platforms have been developed in robotic 
locomotion. Its features include compact size, light and 
portable, lower power consumption and convenient and 
suitable for traversing narrow spaces. The two-wheeled 
robot [1] and one-wheeled robot [2] have been demonstrated 
already. Such a wheeled robot balances in the forward and 
backward directions by moving the wheels.  

There are many similar researches in the filed of wheeled 
mobile robot such as JOE [3], Segway [4], the Personal 
riding-type wheeled Mobile Platform (PMP) [5] and RMP 
[6]…etc. Segway is a transporter consists only of two 
wheels and a steering handle. The motion control of Segway  
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likes a wheeled inverted pendulum by moving the wheels in 
the forward and backward directions. RMP is developed 
based on Segway. In 2005, PMP-2 was proposed in Japan [7] 
and it has only two wheels and standing platform without 
steering handle on it. Such a vehicle has two advantages: a 
reduction in total weight through its simple structure and a 
space-saving design that does not use a steering unit. 
Although the wheeled mobile robot has many advantages, 
the wheeled robot cannot immediately turn in a given 
direction without re-direct the drive wheels. In order to 
overcome this drawback, an omni-directional vehicle (B.B. 
Rider) is proposed by Tokyo University in Japan [8]. The 
B.B. Rider moves by rolling a basketball and balancing on it. 
In [9], a similar research of an omni-directional spherical 
mobile robot system (Ballbot) is proposed at Carnegie 
Mellon University in America.  

Because the wheel-based robot has some constraint in 
mechanism, they can not move around well. In this paper, 
we design and implement of an omni-directional spherical 
mobile robot control system. The mobile mechanism of 
spherical robot is different from the wheel-based one. The 
major advantage of this spherical robot is that can move for 
omni-directional with no constraint. It is obviously such a 
robot system is high nonlinearity and is always unknown. It 
is difficult to establish an exact mathematical model for the 
design of a model-based control system. To dealing with 
such an unknown nonlinearities and external disturbances, 
the technique of fuzzy logic control is introduced. The fuzzy 
logic control is a complete difference approach that does not 
require a precise mathematical model of the system.  This 
control method is based on human experience to understand 
the behavior of the system.  Thus, control design is simple 
than traditional one.  Recent years, there have been many 
researches about the intelligent control for complex 
nonlinear system [10]-[19].   

In this paper, we will propose a fuzzy logic 
self-dynamic controller for an omni-directional spherical 
mobile robot system. The fuzzy rules in fuzzy controller can 
be adjusted by user experience. So for the omni-directional 
spherical mobile robot, it is easily implementation by using 
fuzzy control technique. This system is designed around 
personal computer, and comprises some hardware 
components. Experimental results show that the present 
fuzzy self-dynamic controller with simple and intuitively 
understandable structure can control the whole system very 
well. 

II. SPHERICAL ROBOT SYSTEM 

In this paper, the spherical mobile robot is composed 
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of a metal platform carrying a 24V dc motor coupled to a 
gearbox for each axis, an I/O board used to connect the 
robot and personal computer, two driver circuits for the 
motors, several necessary sensors and filter circuit to 
measure the robot’s states. The total weight of the robot is 
about 20Kg. 

The mobile robot structure is shown in Fig.2.1 and 
Fig.2.2. In Fig. 2.1, we can see the body is supported by a 
drive ball.  

 
Fig.2.1 Mobile mechanism 

 

 
Fig.2.2 Body structure of robot system 

 
Figure 2.3(a) is the hardware block diagram of the 

robot system. Control algorithms are executed in processor 
unit.  A personal computer is the control center of the robot 
for signal processing and control algorithms.  I/O board is 
the channel of the feedback signals from sensors and the 
command signals from computer.  Sensors and filter circuit 
is used to catch the signals from inclinometer, gyro and two 
incremental encoders. H-bridge circuits are included in the 
driver circuit.  The PWM (Pulse Width Modulation) 
signals from PWM generator are sent to driver circuit to 
deliver PWM power driving the motors. The hardware 
diagram and circuits shows in Fig.2.3(a) and Fig.2.3(b), 
respectively 

 
 
 
 
 
 
 
 
 
 

(a) 

    

 
(b) 

Fig.2.3 The hardware diagram and key plan of circuits 
 

III. MOTION CONTROL STRATEGY 
This section introduces the motion control of spherical 

robot system. In this paper, the motion control of the x-axis 
and y-axis are controlled separately [12,13]. The swing 
range of body is oo 90~90 +− .  

 
 Fig.3.1 The diagrams of leaning back, standstill and 

leaning forward. 
 

Here, we simply consider the whole system as an 
inverted pendulum on a ball (Fig. 3.1).  By moving the ball 
back and forth, the body of the spherical mobile robot will 
keep balance. Then, the stable principle of the robot will be 
simply described. There are three cases needed to consider 
in the two-wheeled robot control system.  First, if the body 
of the robot topples forward, move the wheels forward to 
balance the robot.  Second, if the body topples backward, 
move the wheels back to keep robot balance.  When the 
body of the robot is at the upright position, the robot is 
stable. 

IV. DESIGN OF FUZZY CONTROLLER 

In this section, the stabilization fuzzy controller of 
the spherical mobile robot is described.  Here, four state 
variables must be handled in order to cover the angular 
control and the position control.  These four state variables 
are the error of position, error of angle, change rate of 
position error, and change rate of angle error.  The output 
of this controller is the PWM (Pulse Width Modulation) 
command transmitted to DC motor.  If we give five fuzzy 
sets for each input variable then there are 625 fuzzy rules in 
this fuzzy controller.  It not only consumes a large amount 
of time to compute the fuzzy implication but also we are 
hard to derive a set of rules and membership functions for 
this big fuzzy rule base.  It is also difficult to implement by 
a single chip. 

In order to simplify the fuzzy control rule base, we 
separate the stabilization fuzzy controller into two 
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sub-controllers, one is for position control and the other is 
for angle control.  Then the four-input variable system 
becomes two two-input variable systems.  We call it as a 
double loop structure.  The control scheme is shown below. 
 
 

 
 
Fig.4.1 The control scheme of the stabilization controller 
 
Now, we will explain this control system as follow.  Let us 
consider this problem that we try to make the robot stand 
upright and set the position at set-point.  First, we should 
move the robot away form the set-point in order to get a 
virtual angle on the direction to the set-point.  Second, we 
must move the transporter to catch the virtual angle.  
Through such a moving process, we can make the robot 
stand upright and move it to the set-point gradually.  So, 
we first generate a virtual angle from the position controller.  
We employ two premises and one consequence and overall 
25 rules.  The structure is shown below. 

 
 

 

 

 

 

 

 

 
 

 
When receiving the virtual angle, the angle controller should 

move the transporter to catch up the virtual angle in finite 
iterative loops.  The angle controller has also 2 inputs and 
1 output. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Then, by simple fuzzy control theory, the desired result can 
obtain. 

V. EXPERIMENTAL RESULTS 

 In the section, we will implement the spherical 
mobile using the effective proposed control scheme by 
several experiment results.  
 
Balance control 

First, we will keep the spherical robot standing upright 
at the original position.  

Fig.5.1 shows the performance of spherical robot on 
the X-Y plane. Fig.5.2 shows the position trajectories of X 
and Y axes. Fig.5.3 shows the angle of body on the X-Y 
plane. The body angles of X and Y axes are shown in 
Fig.5.4. 
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Fig. 4.2 The position controller  
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Fig. 4.3 The angle controller 
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Table 2. The rule table of angle controller 
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Fig. 5.1 The performance of the robot on the X-Y plane. 

 

 
Fig.5.2 The position trajectories of X and Y axes. 

 

 
Fig. 5.3 Angle of the body on an X-Y plane. 

 

 
Fig.5.4 The angle trajectories of X and Y axes. 

 

Give an external disturbance 
In this case, the spherical robot is initially at the origin. 

Then, an external disturbance is added to the system. 
Fig.5.5 shows the performance of spherical robot on 

the X-Y plane. Fig.5.6 shows the position trajectories of X 
and Y axes. Fig.5.7 shows the angle of body on the X-Y 
plane. Figure 5.8 shows the body angles of X and Y axes. 

 
Fig. 5.5 The performance of the robot on an X-Y plane. 

 

 
Fig. 5.6 The position trajectories of X and Y axes. 

 

 
Fig. 5.7 Angle of the body on X-Y plane. 

 

Disturbance 
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Fig. 5.8 The angle trajectories of X and Y axes. 

 
Orientation 

In this case, we will move the spherical robot from 
origin to the goal position. We chose the goal position is 

)0,30(),( −=yx in this case.  
Fig.5.7 shows the performance of spherical robot on 

the X-Y plane. Fig. 5.8 shows the position trajectories of X 
and Y axes. Fig. 5.9 shows the angle of body on the X-Y 
plane. The body angles of X and Y axes are shown in Fig. 
5.10. 

 
Fig. 5.7 The performance of the robot on an X-Y plane. 

 

 
Fig. 5.8 The position trajectories of X and Y axes. 

 

 
Fig. 5.9  The angle of the body on X-Y plane. 

 

 
Fig. 5.10 The angle trajectories of X and Y axes. 

 

VI. CONCLUSION 

This study implemented successfully the omni- 
direction spherical mobile robot based on fuzzy control. The 
system is stabilized and controlled by a fuzzy controller at 
each axis. Finally, the experimental results show that the 
proposed control scheme can control the whole system well. 
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