
 

 

 

  
Abstract— A multiobjective programming for transportation 

model with the consideration of both depot to customer and 

customer to customer relationships is proposed in this research. 

The objectives are to minimize the total transportation cost 

which is the baseline objective and to minimize the overall 

independence value. A Lexicographic Goal Programming (LGP) 

is applied to the proposed model. A minimization of the total 

transportation cost is set to the first goal and a minimization of 

the overall independence value is set to the second goal of the 

proposed model. This model can obtain the better result than a 

single objective transportation model with a minimization of the 

total transportation cost objective. That is because the depot to 

customer relationship is considered in the first priority to get the 

lowest cost and the vicinity of customers in the same depot is 

concerned in the second priority to group near by customers to 

be served in the same depot if the capacity of the depot is 

sufficient. Moreover, each customer can be served by only one 

depot. These advantages are more compatible to the reality than 

conventional transportation model. 

 

Index Terms—Customer to Customer relationship, 

Lexicographic Goal Programming, Multiobjective 

programming, Transportation Problem  
 

I. INTRODUCTION 

In general, distribution of product from depot to customer 

is called “Transportation Problem” (TP) which first 

developed by F. L. Hitchcock since 1941 [1], [2]. It usually 

aims to minimize the total transportation cost [3]-[7]. Other 

objectives that can be set are a minimization of the total 

delivery time, a maximization of the profit, etc [8]-[11]. From 

the investigation, the entire existing objectives in single 

objective transportation models are represented by 

quantitative information. This may cause the negligence of 

some crucial points which can not be described by 

quantitative data [12], [13]. 

In reality, considering only one objective is not sufficient 

because it may not lead to the practical optimal solution. Thus, 
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the Decision Makers (DMs) are rather to pay attention on 

several objectives at the same time. This is a characteristic of 

a multiobjective transportation model [1], [8], [14]-[16].    

The multiobjective transportation model is set to solve the 

transportation problem simultaneously associated with 

several objectives. Normally, existing multiobjective 

transportation models use a minimization of the total cost 

objective as one of their objectives. The other objectives may 

concern about quantity of goods delivered, underused 

capacity, energy consumption, total delivery time, etc [8], 

[14], [17], [18]. These objectives consider mainly on depot to 

customer relationship. 

An efficient method for the alternative warehouse network 

evaluation and supply chain design was proposed by J. 

Korpela et al. [13], [19], [20]. This method bases on Analytic 

Hierarchy Process (AHP) and Mixed Integer Programming 

(MIP) integration. The maximization objective of the total 

customer’s preference value based on the customer’s 

viewpoint is applied instead of a minimization objective of 

the total cost. This condition refers to customer to depot 

relationship consideration.  

However, the consideration of the relationship between 

customer and customer is also critical because in fact vehicle 

route for each depot does not move from depot to customer 

and returns back from customer to depot as in the 

transportation model, it moves from depot to customer and 

moves forward to the other customers. So, it needs also to 

consider customer to customer relationship. Moreover, the 

qualitative information about transportation problem should 

also be considered. We can evaluate these qualitative data by 

several methods such as the pairwise comparison, scale 

evaluation, and using linguistic variables [12], [21]-[23].       

In this research, we propose a multiobjective programming 

for transportation problem with the depot to customer and the 

customer to customer relationship considerations that 

contains both quantitative and qualitative data. 

The remainder of this paper is organized as follows. The 

conventional transportation problem and its mathematical 

model are discussed in Section II. Then, it is followed by the 

model formulation in Section III. Detail discussion of 

customer to customer relationship is contained in Section IV. 

Next, a numerical example is illustrated in Section V. Results 

and discussions are in Section VI. Finally, the conclusion of 

this research is provided in Section VII of this research.  
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II. TRANSPORTATION PROBLEM  

The Transportation Problem (TP) was first developed and 

proposed by F. L. Hitchcock since 1941. The classical 

transportation problem is referred to a special case of Linear 

Programming (LP) problem and its model is applied to 

determine an optimal solution of delivery available amount of 

satisfied demand in which the total transportation cost is 

minimized. The transportation problem network form can be 

shown as in Fig.1.  

The following notation is used.  

Index sets: 

 i index for depot, for all i=1,2,…,M. 

 j index for customer, for all j=1,2,…,N. 

 l index for customer, for all l=1,2,…,N. 

k index for objective, for all k=1,2,…,K. 

 t index for goal, for all t=1,2,…,T. 

Decision variables:  

ijx is 1 if customer j is served by depot i and 0, otherwise. 

ρt is the positive deviation or overachievement of goal t. 

ηt is the negative deviation or underachievement of goal t. 

Parameters: 

  ia is the capacity of depot i.  

  jb is the demand of each customer j. 

  ijc is the unit transportation cost delivered from depot i to 

customer j.  

  ijy is an amount of demand transported from depot i to 

customer j.  

  tτ  is the specified target for goal t. 

  ljR is the relationship value between customer l and j. 

  maxR is the maximum scale of the relationship value 

which is assigned to 9. 

  ′ljR is the independence value between customer l and j. 

lj max ljR R - R′ = . 

The baseline model for transportation problem can be 

shown as follows [2], [9], [10], [24]-[27], 

min ,
M N

ij ij
i j

f(y)= c y∑∑       (1) 

subject to  

     ,
N

ij i
j

y a≤∑     for all i.    (2) 

     ,∑
M

ij j
i

y = b     for all j.    (3) 

     ,∑ ∑
M N

i j
i j

a = b           (4) 

     0,≥ijy      for all i and j.  (5) 

Equation (1) is the objective function of the transportation 

model that is to minimize the total transportation cost. The 

total served demand of each depot must be less than or equal 

to the available supply as shown in (2). Equation (3) 

represents that the sum of received demand of each customer 

must be equal to its demand. Equation (4) shows that the sum 

of available supply of all depots must be equal to the sum of 

all demand. Equation (5) represents non-negativity constraint. 

Fig.1 The Transportation Problem Network 

 

The earlier presented model is a single objective 

transportation problem, which is extensively used. For the 

problem associated with more than one objective, the decision 

maker need to simultaneously take other objectives apart from 

the minimization objective of transportation cost .The other 

objectives for transportation problem may related to delivery 

time, quantity of goods delivered, unfulfilled demand, 

underused capacity, reliability of delivery, safety of delivery, 

etc. The multiobjective transportation model with k objectives 

can be represented as [8] 

min ,

min ,

1M N

1 ij ij
i j

M N
K

K ij ij
i j

f (y)= c y

f (y)= c y

∑∑

∑∑

M  

subject to  

     ,
N

ij i
j

y a≤∑     for all i.  

     ,
M

ij j
i

y = b∑     for all j. 

     ,∑ ∑
M N

i j
i j

a = b     

     0,ijy ≥      for all i and j. 

where 
k

ijc represent the coefficients related to ijy variable 

for objective k.  

There are many researchers adapting this model for their 

computational researches [1], [4], [14], [17], [18], [28]. 

However, in these existing transportation models the demand 

for a customer may be served by multiple depots, which is not 

reasonable and not satisfied by customers. Thus, the zero-one 

integer programming should be integrated into the 

transportation model for enforcing that each customer can 

solely receive all requested demand from only one depot if the 

capacity is sufficient. Moreover, both existing single and 

multiple objective models focus only on the depot to customer 

relationship consideration. This kind of relationship can be 

derived in a quantitative form. 

In the research work of J. Korpela et al. [13], [19], [20], the 

total customer’s preference value in a warehouse network and 

supply chain design objective is maximized, instead of a 

minimization objective of the total cost, using the integration 

of AHP and MIP. A preference value for each alternative 
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depot is obtained from each customer’s perspective. It is 

derived in quantitative and qualitative forms based on 

customer’s viewpoint and refers to customer to depot 

relationship consideration.  

In case of two or more customers that need to be served by 

the same depot e.g., customer A and B are subsidiary 

companies of the same headquarter, the existing models 

cannot support this situation. It is a result of lacking of 

customer to customer relationship consideration.  

For illustration, Fig.2 (a) depicts the location layout of the 

supposed system. In depot to customer relationship 

consideration of a transportation problem e.g., minimization 

of the total transportation cost, customers A and B certainly 

are closer to depot D1 than depot D2. Similarly, customers E, 

F, G, and H are closer to depot D2 than depot D1. It can 

properly assign the customers to be served by each depot as 

shown in Fig.2 (b). Customer C is possible to be assigned to 

depot D1 or depot D2. There is no significant difference 

between assigning customer C to depot D1 and depot D2 for 

cost aspect because they are assumed to have the same 

distance. But, we can clearly observe that customer C should 

be assigned to depot D1 because customer C is in the vicinity 

of customers A and B which are assigned to be served by 

depot D1. It means that customer to customer relationship 

consideration is also necessary for a transportation problem. 

Fig.2 (c) shows both considerations of depot to customer and 

customer to customer relationships for the transportation 

problem. These two relationships lead to the better and more 

appropriate solution. Hence, in this research, both 

determinations of depot to customer and customer to 

customer relationships are in concern.  

 

 
Fig.2 (a) The location layout of the supposed system 

 

 
Fig.2 (b) Depot to customer relationship consideration 

 

 
Fig.2 (c) Depot to customer and customer to customer 

relationship consideration 

Next, we will demonstrate the way to develop a model 

which supports customer to customer consideration but still 

cover the conventional approach which based on depot to 

customer relationship consideration.   

  

III. MODEL FORMULATION 

Most of existing research works of a transportation 

problem has considered depot to customer relationship. 

However, the relationship between customer and customer is 

also critical because in fact vehicle route for each depot does 

not move from depot to customer and returns back from 

customer to depot as in the transportation model, it moves 

from depot to customer and moves forward to the other 

customers. So, it needs also to consider customer to customer 

relationship to obtain the neighborhood customers. 

Then, two objectives are concerned. The first objective is 

to minimize the total transportation cost which is the 

baseline objective for all transportation models. It is the 

depot to customer relationship consideration using 

quantitative data. The second objective is to minimize the 

overall independence value between customer and customer, 

which means the consideration of customer to customer 

relationship. This problem is called multiobjective problem. 

To solve a multiobjective problem, there are several 

methods used in general e.g., Goal Programming (GP) [3], [8], 

[29]-[34], Fuzzy Linear Programming (FLP) [1], [15]-[18], 

[28], [35], [36], Compromise Programming (CP) [8], [32], etc. 

In this research, goal programming is chosen because of its 

simplicity, popularity and ease to understand.    

The goal programming comprises of two well-known 

methods i.e., Weighted Goal Programming (WGP) and 

Lexicographic Goal Programming (LGP). For WGP, the 

difficulty is how to assign appropriate weight to each goal. In 

the LGP method, the goals are satisfied according to a 

lexicographic order, the highest preemptive priority goal will 

be satisfied first. Then, the remaining priority will be 

optimized accordingly. Thus, the LGP has been chosen to 

formulate this problem. Moreover, in a transportation 

problem the demand for a customer should be served by only 

one depot if the capacity of one depot is sufficient but the 

conventional model does not considered this condition. So it 

is included in the constraint of the proposed method.   

A. Objective functions 

The First Objective Function: To minimize the total 

transportation cost  

min 
M N

1 ij ij j
i j

f (x)= c x b∑∑ .      (6) 

This first objective function is similar to a conventional 

transportation model that is to minimize the total 

transportation cost, which reflects the depot to customer 

relationship consideration. A zero-one integer programming 

is integrated into transportation model for enforcing that each 

customer can solely receive all demand from only one depot. 

  

The Second Objective Function: To minimize the overall 

independence value between customer and customer  

ljR is the relationship value of customer to customer. It 
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means the value that indicates the interrelationship between 

two customers. It may be derived from qualitative or 

quantitative values such as the distance, business relations and 

managerial convenience. Customer to customer relationship 

can be evaluated by using the pairwise comparison matrix. 

Afterwards, this matrix is converted to the independence 

value for each pair of customers. The detail of this approach is 

explained in the following section. Then, ′ljR  can be 

calculated from lj max ljR R - R′ = . 

The overall independence value of customer l with the 

other customers, j=1, 2,…, N in depot i can be represented by  
N

il ij lj
j

Q = x R′∑ ,   for all i and l.  (7) 

Then, the overall independence value for all customers 

with the other customers, j=1, 2,…, N in the same depot can 

be represented by 
M N

il ij
i j

Q x∑∑ ,     where l=j.           

So, the second objective function is 

min 
M N

2 il ij
i j

f (x)= Q x∑∑ .       (8) 

Equation (8) is developed on the basis of the adjacency 

score that commonly use for defining the relationship value 

between departments in a facility planning problem which 

was presented by J. A. Tompkins et al. (2003) [37], [38].  

B. Goal programming model 

According to two objectives above, two goal functions can 

be derived as follows: 

1 1f (x) =− +1 1ρ η τ ,                 (9) 

2 2 2 2f (x) =− +ρ η τ .            (10) 

Equation (9) is the goal function of the first objective and 

(10) is the goal function of the second objective [32]-[34]. 

The objective function of the lexicographic goal 

programming in order to minimize the deviation of the target 

transportation cost and the deviation of the target overall 

independence value can be shown as, 

( ) ( )lex  min= 1 2ρ η ρ η + + 1 2, ,       (11) 

subject to 
M N

ij ij j 1

i j

c x b =− +∑∑ 1 1ρ η τ ,        (12) 

M N

il ij 2 2 2

i j

Q x =− +∑∑ ρ η τ , where l=j.   (13) 

1∑
M

ij
i

x = ,         for all j.    (14)  

N

ij j i
j

x b a≤∑ ,       for all i .    (15) 

0ρ η ≥ij t tx , , ,       for all i, j, and t. (16) 

Constraints (12) and (13) are goal constraints. Constraint 

(14) is added to ensure that each customer must be served by 

only one depot. Constraint (15) ensures that the capacity of 

each depot is not exceeded, whereas (16) is a non-negative 

constraint.  

IV.  A CUSTOMER TO CUSTOMER RELATIONSHIP 

CONSIDERATION 

Such mentioned previously, a customer to customer 

relationship is necessary to be considered in the transportation 

model. The customer to customer relationship ( ljR ) between 

customer l and j is allocated based on 1-9 Saaty’s scale [22], 

[23] in the pairwise comparison matrix. Table I shows the 

modified 1-9 Saaty’s scale, used for assigning customer to 

customer relationship value.  

In general, 1-9 Saaty’s scale using in the Analytic 

Hierarchy Process (AHP) is used to define the comparative 

priority. It is an effective decision tool and applicable for both 

quantitative and qualitative data. The upper triangular matrix 

and the lower triangular matrix in AHP are reciprocal value 

that is lj
jl

1
R =

R
. But in this research, we emphasize on a 

relationship value not a priority value, so lj jlR = R is assigned. 

The elements in a diagonal of a matrix are relationship values 

of comparing itself, so it is denoted by the maximum scale of 

the relationship value ( maxR ). An example of relationship 

rating in a pairwise comparison matrix is given as Table II. 

In the next section, a numerical example will be illustrated. 

 

V. A NUMERICAL EXAMPLE  

In order to demonstrate the application of the proposed 

model, a simple problem with two depots and ten customers is 

given on the assumption that each customer must be served all 

demand by only one depot. Moreover, a depot’s capacity is 

sufficient to serve a customer. The list of the basic data for the 

particular example is shown in Table III. Fig.3 depicts the 

location map, which we can presume the anticipated solution 

by quantitative data (the distance between depot and 

customer) in depot to customer relationship consideration that 

customers C1, C2, C3, and C4 should be assigned by depot 

D1 and customer C7, C8, C9, and C10 should be assigned by 

depot D2, whereas customer C5 and C6 may be assigned by 

depot D1 or D2.  

 

Table I The modified 1-9 Saaty’s scale 

Scale ljR  

Low Relation 

Medium Low Relation 

Medium Relation 

Demonstrated Relation 

Extreme Relation 

Compromise Value 

1 

3 

5 

7 

9 

2,4,6,8 

 

Table II An example of relationship rating 

 C1 C2 C3 C4 C5 

C1 9 7 9 3 1 

C2 7 9 7 1 1 

C3 9 7 9 5 5 

C4 3 1 5 9 9 

C5 1 1 5 9 9 
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Fig.3 The location map of the particular example 

 

Table III Transportation cost per unit (in U.S. dollar) and 

customer demand 
Depot i 

ijc  (transportation cost per unit) Customer j 

D1 D2 

Demand 

jb (unit) 

C1 

C2 

C3 

C4 

C5 

C6 

C7 

C8 

C9 

C10 

Available supply 

ia (unit) 

10 

15 

12.5 

20 

15 

10 

30 

35 

30 

40 

 

3000 

35 

35 

30 

35 

15 

10 

14 

15 

10 

15 

 

3000 

500 

250 

300 

750 

280 

370 

450 

650 

1000 

250 

 

 

Table IV A pairwise comparison matrix of the customer to 

customer relationship value 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 

C1 9 8 7 7 5 5 3 2 2 1 

C2 8 9 8 7 7 5 3 3 2 1 

C3 7 8 9 8 7 5 2 1 1 1 

C4 7 7 8 9 9 7 3 1 1 1 

C5 5 7 7 9 9 9 3 1 1 1 

C6 5 5 5 7 9 9 3 1 1 1 

C7 3 3 2 3 3 3 9 7 5 8 

C8 2 3 1 1 1 1 7 9 9 7 

C9 2 2 1 1 1 1 5 9 9 7 

C10 1 1 1 1 1 1 8 7 7 9 

 

To apply the proposed model in this example, we firstly 

evaluate the relationship between customer and customer by 

rating scale as in Table IV. The mathematical expression for 

this problem can be shown as follows,         

( ) ( )lex  min= 1 2ρ η ρ η + + 1 2, , 

subject to 
2 10

65,200ij ij j

i j

c x b − + =∑∑ 1 1ρ η ,        

2 10

=84il ij 2
i j

Q x − +∑∑ 2ρ η ,  where l=j.       

2

1∑ ij
i

x = ,         for all j. 

10

,≤∑ ij j i
j

x b a        for all i . 

0ρ η ≥ij t tx , , ,       for all i, j, and t. 

In this example, we set the goal targets ( 1τ , 2τ ) by using 

aspiration level of each objective function. The possible 

results of the proposed model when the first priority is 

optimized are shown in Tables V (a)-V (d). There are four 

solutions. These solutions are identical with the single 

objective optimization problem that has a minimization of 

total transportation cost as an objective. Obtained results of 

the total transportation cost are the same, which is $65,200.   

After optimizing the second priority, the optimal solution is 

gained as shown in Table VI with the total transportation of 

$65,200 and the overall independence value of 84. This is the 

best solution from all possible solutions. It can be reached by 

using our proposed model. It is an assignment of each 

customer to each depot in order to satisfy the both goals. 

Table VII shows all of results for both goals at each stage. 

The positive deviations of both goals are zero resulting from 

minimization of LGP which means that both targets can be 

reached. 

 

VI. RESULTS AND DISCUSSIONS 

From illustration, there are four possible solutions from the 

single objective transportation problem with a minimization 

objective of the total transportation cost. These solutions have 

 

Table V (a) A possible solution of the first priority: case a 

Depot Customer 

D1 C1, C2, C3, C4 

D2 C5, C6, C7, C8, C9, C10 

 

Table V (b) A possible solution of the first priority: case b 

Depot Customer 

D1 C1, C2, C3, C4, C5 

D2 C6, C7, C8, C9, C10 

 

Table V (c) A possible solution of the first priority: case c 

Depot Customer 

D1 C1, C2, C3, C4, C6 

D2 C5, C7, C8, C9, C10 

 

Table V (d) A possible solution of the first priority: case d 

Depot Customer 

D1 C1, C2, C3, C4, C5, C6 

D2 C7, C8, C9, C10 

 

Table VI The solution after optimizing the second priority 

Depot Customer 

D1 C1, C2, C3, C4, C5, C6 

D2 C7, C8, C9, C10 

 

Table VII Results from LGP of the proposed model 

Goal 
 

1 2 

Target $ 65,200 84 

Objective value in the first priority 

$ 65,200 

$ 65,200 

$ 65,200 

$ 65,200 

160 (case a) 

116 (case b) 

128 (case c) 

84 (case d) 

Objective value after optimizing 

the second priority 
$ 65,200 84 

Positive deviation of each goal 0 0 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-7-5 IMECS 2009



 

 

 

the same as the results of the first priority of our proposed 

model. Some solutions may have high independence values 

(less relationship among customers which should be served by 

the same depot), which means that the customers for each 

depot may not locate in the same area. The single objective 

optimization contains only quantitative data. It can serve only 

depot to customer relationship consideration but omit 

customer to customer relationship consideration. Meanwhile, 

after performing the second priority optimization of our 

proposed model, the lowest cost and the lowest independence 

value alternative can be obtained. That means the lowest total 

transportation cost and the nearest vicinity of customers are 

determined. Moreover, each customer can be served by only 

one depot if the capacity of the depot is sufficient. The 

proposed model combines consideration of both depot to 

customer and customer to customer relationships. Both 

quantitative and qualitative data are included in the model. 

 

VII. CONCLUSION 

Owing to lack of qualitative or intangible consideration 

especially the customer to customer relationship in a 

conventional transportation problem, the multiobjective 

programming for transportation problem with the 

consideration of depot to customer and customer to customer 

relationships is developed. LGP is chosen to solve the 

multiobjective transportation problem with a minimization of 

the total transportation cost and the overall independence 

value. The proposed model can obtain the efficient reasonable 

solution that satisfied both considerations of depot to 

customer and customer to customer relationship that means 

the lowest total transportation cost and the nearest vicinity of 

customers are determined. Moreover, each customer can be 

served by only one depot if the capacity of the depot is 

sufficient. These advantages are more compatible to the 

reality than conventional transportation model. 

For further researches, the proposed model should be 

applied to the practical real world applications and it should 

be improved for the remaining assumptions. 
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