
 
 

 

  
Abstract—This paper focuses on the monitoring techniques in 

multivariate processes when the underlying distribution of the 
quality characteristics differs from normality. Hotelling T2 
control chart is the most common used control chart for 
multivariate process, however, it is  based on the assumption of 
normality. Normality assumption is not always reasonable.  

Researchers gradually applied support vector machine 
(SVM) to monitor non-normal multivariate process. By using 
SVM, the selection of parameters in SVM will affect the 
classification accuracy of SVM. It is an important issue of 
choosing the SVM parameters.  

The purpose of this research is to apply SVM in statistical 
quality control. By simulating bivariate t and bivariate gamma 
distributions, we study the relationship between the 
distributions and parameters of SVM to obtain the best 
classification rate. After obtaining the proper parameters of 
SVM, we will applied SVM to construct a control chart to 
monitor non-normal process mean and study the performance 
of the new chart. 
 

Keywords—Support Vector Machine, Parameter design, 
Multivariate process control, Non-normal distribution  
 

I. INTRODUCTION 
  Multivariate processes are very important in modern 

industries for multiple quality characteristics. When 
monitoring the process means shifts, traditional control 
charts for multivariate processes are not applicable if the 
underlying distributions are not normal. Several attempts 
have been made in the literatures to extend traditional 
statistical process control (SPC) techniques to deal with 
non-normality.  

Researchers gradually applied support vector machine 
(SVM) to monitor non-normal multivariate process. By using 
SVM, the selection of parameters in SVM will affect the 
classification accuracy of SVM. It is an important issue of 
choosing the SVM parameters. Sun and Tsung (2003) 
developed a new multivariate control chart using the 
approach of support vector machine (SVM), named K-Chart, 
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without restriction of distribution assumptions. However, 
they did not investigate the performance of K-Chart and no 
comparisons were made between K-Chart and other 
multivariate control charts. 

The primary objective of this paper is to find out the best 
setting of parameters on SVM before establishing K-Chart. 
We simulate bivariate t and bivariate gamma distributions.  

Then we study the relationship between the distributions 
and parameters of SVM to obtain the best classification rate. 
After obtaining the proper parameters of SVM, we will apply 
SVM to construct K Chart to monitor non-normal process 
mean. A secondary objective is to investigate the properties 
and performances of K-Chart by different type of shifts in 
mean vector and different correlations between quality 
characteristics. 

The remainder of this paper is organized as follows. First, 
the fundamental of support vector machines is reviewed in 
section 2. The construction of K-Chart using support vector 
machine is introduced in section 3. The review of non-normal 
multivariate process is in section 4. Section 5 presents 
simulation study. Section 6 includes the results. Finally, the 
conclusions with some discussions are made in final section. 

 

II. SUPPORT VECTOR MACHINE 

A. Review of the support vector machine 
The support vector machine where initially proposed for 

classifications between two classes (Vapnik 1995). The 
purpose of SVM is to seek the optimal linear hyperplane to 
separate two classes of data. The basic assumption that data is 
linearly separable, and also deal with linear and non-linear 
information. In this paper, we would discuss about non-linear 
process data. A description of SVM algorithm is follows. Let 
( ) ( ){ } { } liyRxyxyx i

n
iii ,...2,1,1,1,,,,...,, 11 =−∈∈ be the 

training set with input vectors and labels. Here, l is the 
number of sample observations and n is the dimension of 
each observation. The algorithm is to seek the hyperpalne 

0=+⋅ bxw i  to separate the data from two classes with a 

maximal margin width 22 w , and the all points under the 
boundary is named support vector (For example, in figure 1). 
In order to optimal the hyperplane that SVM was to solve the 
optimization problem was following. 

Min 221)( wx =Φ  

s.t. libxwy i
T

i ,...,2,1,1)( =≥+  
It is difficult to solve regard equation, must to transform 

the optimization problem to be dual problem by Lagrange 
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Method. The value of α in the Lagrange method must be 
non-negative real coefficients. The solutions of the following 
programming problem, 

 

 
Figure 1. Separation of hyperpalne 
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In order to separate two class exactly, add a slack variable 
( ξ ) in the Lagrange equation to make  equation 

( ) 0 & 1 >−≥+ iii
T

i bxwy ξξ . An objective of slack variable 
is to increase the flexible buffer of boundary. 

 

B. Kernel function 
In general, it couldn’t find the linear separate hyperplane 

in all application data. In the non-linear data, it must 
transform the original data to higher dimension of linear 
separate is the best solution (in figure 2). The higher 
dimension is called “Feature Space”, it would improve that 
the date separated by linear classification.  

 

 
Figure 2. Non-linear mapping 

 
The common kernel functions are linear, polynomial, 

radial basis function; RBF and sigmoid. The descriptions of 
kernel function are following. 
(1) Linear Kernel Function: 

( ) j
T
iji xxxxK =,  

(2) Polynomial Kernel Function: 

( ) ( )dj
T
iji rxxxxK += γ,  

(3) Gaussian Radial Basis Kernel Function; RBF: 
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(4) Sigmoid Kernel Function: 
( ) ( )rxxxxK j

T
iji += γtanh,  

There has each parameters in different kernel function, it 
obtains different correct ratio with different parameters of 
kernel function. While the dual problem appends the kernel 
function that the dual problem would change is: 
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In this paper, we will discuss the RBF kernel function, the 
reason that is the RBF could separate data of non-linear and 
higher dimensions. To using RBF kernel function would only 
adjust  two parameters are C and γ . This is the first choice 
that user append the kernel function 

 

III. K-CHART 
K-chart was base on the support vector machine that 

developed to monitor the multivariate process. The control   
chart would search the support vector by support vector 
machine and obtain the kernel distance to establish control 
chart (Sun & Tsung 2003). The control limits of k-chart were 
decided by the boundary of support vector. Therefore, there 
is no assumption of distributions in k-chart. The illustration 
of two dimensions is following called Hypersphere (in figure 
3). 

 

 
Figure 3. Hypersphere of two dimensions 

Sun & Tsung (2003) 
 

When the process have a new sample point that to 
calculate the kernel distance. First is to calculate the distance 
between new point and central point, the equation is:  

( ) ( )OO −−= zzd T  
In above equation that z is a new sample point, O is the 
central point. If d is over than the radius(R) that shows the 
sample point is out-of-the-control. The central point will 
renew by the following equation. 
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Then, the kernel distance (denote: kd) will be obtain: 
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There is a few point iα  exceed zero, above the equation  will 
be:  
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S is the support vector in above equation. If the z is the 
support vector, the kernel distance ( kd) would be control 
limit. 

Let the all sample points of obtained kernel distance to 
draw the chart is the k-chart (in figure 4). 

 

 
Figure 4. K-chart 
Sun & Tsung (2003) 

 
Support vectors were selected of all sample point would 

use for solving the quadratic programming problem is 
following: 
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If the unusual point appeared, the support vector would 
involve the points, it had influence of established in k-chart.  

In order to eliminate the problem, suggesting enhanced the 
restriction were: 

10..
1

=≤≤ ∑
=

l

i
ii andBts αα  

B would control parameters of iα  is the positive. When B 
became smaller, the type I error will be bigger. Otherwise, B 
became bigger; the type II error will be bigger. This is also 
the important issues in choice of  B. 

 

IV. NON-NORMAL MULTIVARIATE PROCESS 
In this study, we will focus on non-normal multivariate 

process that simulation under the multivariate t distributions 
and multivariate gamma distributions. This section describes 
two types of distributions. 

A. Multivariate t distributions 
The bivariate t distribution was extended from unvariate t 

distribution (Kotz & Nadarajah 2004). Let X=( ix , jx ) from 

bivariate t distribution, denote X~ )(2 υt was degree of ν. 
The probability density function is following equation: 
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B. Multivariate gamma distributions 
There are many methods of simulation on gamma 

distribution. Base on the method proposed, we simulate 
bivariate gamma distributions by Sim (1993). Let Z=( 1Z , 2Z ) 
from bivariate gamma distribution denote 
Z~g( 1α , 2α , 1β , 2β ). The parameters of shape 
were 1α and 2α , the parameters of scale were 1β and 2β . 

If 11 XZ = were from unvariate gamma distribution then, 

the variable of 211
2

1
2 XXBZ +=

β
β .The 1B must be 

Beta ( )122111221 , SS ββαββ − , otherwise, 2X is from 
g ( )212212 ,βββα S− . About 12S was convariance of two 

dimensions and correlation coefficient (ρ ) and convariance 

( 12S ) were transformed from ( )
( ) ( )21

21,
ZVZV

ZZCov
=ρ . 

 

V. SIMULATION 

A. Simulation process  
In this study, we discuss setting parameters of combination 

of C and γ in SVM. We simulate data of non-normal 
multivariate process. It uses SVM to find the combination of 
parameters. Second, it analyzes the performance of K-Chart 
in monitoring non-normal multivariate process. The 
procedure for simulation process in this study is shown in 
Figure 5. 

Therefore, we use the LIBSVM program from the guide of 
SVM (Hsu 2003). It utilizes the LIBSVM be the program 
interface of this study. We transform the data according to the 
type of LIVSVM and to find the optimal combination of 
parameters under cross-validation. 
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Figure 5. The procedure for simulation 

 
 

B. Simulation 
In this study, we set the number of quality characteristic is 

two and four observations. From the idea of Stomumbos & 
Sullivan (2002), setting different degree is 6 and 1000 in t 
distribution. The training data are 100, 500, 1500, 3000 and 
the testing data including 34, 168, 500, 1000 respectively. In 
the simulation data, we would simulate different shift in 
traing and testing data. 

Otherwise, simulation method of gamma distribution is the 
same as the t distributions. In order to study the correlation of 
simulation data, we simulate 3 type of correlation 
( 012 =ρ ; 2.012 =ρ ; 5.012 =ρ ). 

 

C. Evaluation 
In this study, we monitor the non-normal multivariate 

process under the SVM tool. SVM is to classify two different 
categories, so the measurement is ratio of classification 
accuracy.  

 
 

VI. RESULTS 

A. Parameter selection 
The simulation result of parameter selection is shown from 

table 1 to table 4. When the sample size is 100 that detect the 
ratio of gamma distribution is smaller than the others. 
Otherwise, there is no rule on different correlation of 
parameter combinations. When the data size is 500 that 
display the ratio is higher than others in most situations on 
table 2. 

 

Table 1. Accuracy of optimal parameter by SVM (n=100) 

Type ρ (C, γ) Accuracy 
(%) 

0 (1.4~1.5, 1.1~2) 82.553 
0.2 (0.1~1, 0.1) 91.176 t2(6) 
0.5 (1.1~2, 1.4~1.6) 85.294 
0 (0.4~1, 0.1~0.2) 97.059 

0.2 (1.9~2, 0.5) 88.235 t2(1000) 
0.5 (0.3~1, 0.1) 91.176 
0 (0.1~0.9, 7~17) 70.588 

0.2 (0.1~0.9, 7~25) 85.294 g(4,4,1,1) 
0.5 (0.1~0.9, 10~30) 82.353 
0 (0.1~0.6, 2.3~2.5) 79.412 

0.2 (0.1~0.9, 1.3~2) 79.412 g(16,16,1,1) 
0.5 (0.1~1, 1.8~2) 76.471 
0 (0.1~1, 0.1) 85.294 

0.2 (0.1~1, 0.1) 76.471 g(1024,1024,1,1) 
0.5 (0.1~0.9, 0.1) 82.353 

 
Table 2. Accuracy of optimal parameter by SVM (n=500) 

Type ρ (C, γ) Accuracy (%) 
0 (1.1~2,0.1) 92.857 

0.2 (0.8,0.1) 91.667 t2(6) 
0.5 (0.3,0.2) 89.286 
0 (1,0.1) 95.238 

0.2 (0.4~0.5,0.1) 91.667 t2(1000) 
0.5 (1.7~2.5,0.7) 86.31 
0 (1.6~1.7,0.1) 93.452 

0.2 (1.1,0.1) 92.262 g(4,4,1,1) 
0.5 (1.1,0.1) 87.5 
0 (1.1,0.1) 91.071 

0.2 (1.5~2,0.1) 88.095 g(16,16,1,1) 
0.5 (1.9~2,0.1) 77.976 
0 (0.1~0.9,0.1) 76.19 

0.2 (0.1~0.9,0.1) 81.548 g(1024,1024,1,1) 
0.5 (0.1~0.9,0.1) 75 

 
In table 3 and 4, it shows that the ratio enhance gradually 

by data size. By the way, the accuracy ratio decreases by the 
correlation. In the simulation of parameter, it offers that 
combination of parameters (C, γ) on different type of 
distributions. 

 
Table 3. Accuracy of optimal parameter by SVM (n=1500) 

Type ρ (C, γ) Accuracy (%) 
0 (1.3~1.5,0.3) 92.2 

0.2 (1~1.2,0.1) 91 t2(6) 
0.5 (0.6~0.7,0.1) 89.4 
0 (0.1~1,0.6) 89.8 

0.2 (0.5~0.9,0.1) 90.4 t2(1000) 
0.5 (0.1,0.1) 86 
0 (1.2,0.2) 94.2 

0.2 (1.4~1.6,0.1) 91.6 g(4,4,1,1) 
0.5 (1.6~1.8,0.1) 89.2 
0 (1.5~1.6,0.1) 88 

0.2 (2,0.1) 88.6 g(16,16,1,1) 
0.5 (2,0.1) 87 
0 (0.1~0.9,0.1) 86.4 

0.2 (0.1~0.9,0.1) 80.4 g(1024,1024,1,1) 
0.5 (0.6~0.9,0.2) 75.6 

 

Bivariate t 
distribution 

Simulation data 

To evaluate the 
efficiency of K-Chart 

Using SVM to find the optimal
combination of (C, γ) 

Bivariate gamma
distribution
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Table 4. Accuracy of optimal parameter by SVM (n=3000) 
Type ρ (C, γ) Accuracy (%) 

0 (0.1,1~1.1) 94 
0.2 (0.1,0.7) 91.8 t2(6) 
0.5 (0.1,1) 90.1 
0 (0.6,0.4) 92 

0.2 (0.2,0.1~0.2) 88.9 t2(1000) 
0.5 (0.1,0.7~1) 87.7 
0 (0.1,0.5~0.6) 95.5 

0.2 (0.1,0.9) 94 g(4,4,1,1) 
0.5 (0.1,0.4~0.7) 90.5 
0 (0.1,0.3) 90 

0.2 (0.1,0.6~0.9) 87.1 g(16,16,1,1) 
0.5 (0.1,0.1) 84.7 
0 (0.2,0.1~0.9) 85.5 

0.2 (0.1,0.1~0.3) 80.7 g(1024,1024,1,1) 
0.5 (0.2,0.1~0.7) 78.2 

 

B. Performance of K-Chart 
In this section, we simulated the efficiency of K-Chart to 

monitor non-normal multivariate process. The simulation 
result displayed from table 5 to 11. In table 5 to 8 is about that 
monitor the bivariate t distribution and the other is about 
bivariate gamma distribution. 

 
Table 5. Accuracy of K-Chart (t2(6); ρ =0.2) 

Shift 
(μ1, μ2) 

In-Control 
% 

Out-of-Control 
% 

Number of 
 support vector 

(0.25,0.25) 97.04 2.96 9.00 
(0.5,0.5) 97.20 4.80 8.58 

(0.75,0.75) 97.28 7.32 8.50 
(1,1) 97.04 16.12 8.67 

(1.25,1.25) 97.40 23.36 8.00 
(1.5,1.5) 97.16 41.00 8.08 

(1.75,1.75) 97.16 64.52 8.17 
(2,2) 97.20 82.00 8.08 

(2.25,2.25) 97.40 92.52 8.17 
(2.5,2.5) 96.72 98.00 7.50 

(2.75,2.75) 96.96 99.04 8.33 
(3,3) 97.48 99.96 8.42 

 
Table 6. Accuracy of K-Chart (t2(6); ρ =0.8) 

Shift 
(μ1, μ2) 

In-Control 
% 

Out-of-Control 
% 

Number of 
 support vector 

(0.25,0.25) 97.60 2.64 7.83 
(0.5,0.5) 97.76 2.68 7.67 

(0.75,0.75) 97.24 5.92 7.08 
(1,1) 97.24 9.16 7.25 

(1.25,1.25) 97.44 19.12 7.67 
(1.5,1.5) 97.40 33.68 8.00 

(1.75,1.75) 98.12 49.20 7.25 
(2,2) 97.44 65.00 8.08 

(2.25,2.25) 97.24 84.76 8.00 
(2.5,2.5) 97.36 93.68 7.67 

(2.75,2.75) 97.84 97.40 7.33 
(3,3) 97.28 98.96 7.08 

 

In the simulation of t2(6) distribution exhibited that the 
accuracy enhanced by the process shift, especial in the large 
shift. When correlation of process was increase, the number 
of support vectors was also increase. If there is less quality 
characteristic, SVM would include the less supports to the 
process data.  

 
Table 7. Accuracy of K-Chart (t2(20); ρ =0.2) 

Shift 
(μ1, μ2) 

In-Control 
% 

Out-of-Control 
% 

Number of 
 support vector 

(0.25,0.25) 97.12 3.04 8.08 
(0.5,0.5) 96.92 6.28 8.08 

(0.75,0.75) 97.32 14.00 8.25 
(1,1) 96.88 28.44 8.17 

(1.25,1.25) 97.36 45.72 8.50 
(1.5,1.5) 97.60 67.48 8.50 

(1.75,1.75) 96.92 86.72 8.17 
(2,2) 97.64 94.96 8.17 

(2.25,2.25) 97.28 98.24 8.83 
(2.5,2.5) 97.80 99.76 7.83 

(2.75,2.75) 97.12 100.00 8.58 
(3,3) 97.40 100.00 8.00 

 
 

Table 8. Accuracy of K-Chart (t2(20); ρ =0.8) 

Shift 
(μ1, μ2) 

In-Control 
% 

Out-of-Control 
% 

Number of 
 support vector 

(0.25,0.25) 97.68 3.16 7.25 
(0.5,0.5) 97.72 5.68 7.58 

(0.75,0.75) 97.28 9.92 7.83 
(1,1) 98.12 21.56 7.50 

(1.25,1.25) 97.36 33.00 7.58 
(1.5,1.5) 97.56 54.00 8.00 

(1.75,1.75) 97.80 70.32 7.83 
(2,2) 98.12 83.96 7.50 

(2.25,2.25) 97.64 90.76 7.67 
(2.5,2.5) 96.96 98.00 7.42 

(2.75,2.75) 97.68 99.28 7.92 
(3,3) 97.80 99.92 7.58 

 
In the analysis of t2(20), the accuracy enhanced by the 

process shift (60%~100%). The SVM would include a few 
support vectors whenρ was increase. Whatever the type of 
multivariate t process, the K-Chart would monitor process 
well. 

Otherwise, the simulation of gamma distribution were 
including two type of degree and different correlation 
coefficient (ρ =0.2,0.8,) show in table 9 to table 12. 

There was lower accuracy of classification in small 
process shift (less than 2), especially in g2(4,4,1,1) form. If 
the process shift was more than 2, the accuracy enhances of 
g2(16,16,1,1) type. Otherwise, the number of support vector 
is less than 23 in gamma distribution. 
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Table 9. Accuracy of K-Chart (g2(4,4,1,1,ρ ); ρ =0.2) 

Shift 
(μ1, μ2) 

In-Control 
% 

Out-of-Control 
% 

Number of 
 support vector 

(0.25,0.25) 97.24 2.12 10.16 
(0.5,0.5) 96.48 3.84 9.64 

(0.75,0.75) 96.68 6.12 9.82 
(1,1) 96.52 11.76 9.78 

(1.25,1.25) 96.60 17.04 9.74 
(1.5,1.5) 96.68 30.24 10.24 

(1.75,1.75) 97.04 44.36 9.92 
(2,2) 97.04 67.76 10.02 

(2.25,2.25) 96.48 84.76 10.04 
(2.5,2.5) 97.24 93.52 9.98 

(2.75,2.75) 97.24 99.08 9.78 
(3,3) 97.04 99.92 9.70 

 
Table 10. Accuracy of K-Chart (g2(4,4,1,1,ρ ); ρ =0.8) 

Shift 
(μ1, μ2) 

In-Control 
% 

Out-of-Control 
% 

Number of 
 support vector 

(0.25,0.25) 96.88 2.56 9.64 
(0.5,0.5) 96.48 3.36 9.92 

(0.75,0.75) 96.64 6.36 9.54 
(1,1) 96.84 10.08 10.34 

(1.25,1.25) 96.92 16.40 9.86 
(1.5,1.5) 97.04 27.20 9.74 

(1.75,1.75) 96.64 42.32 9.98 
(2,2) 96.52 62.36 9.94 

(2.25,2.25) 97.80 76.96 9.76 
(2.5,2.5) 96.84 91.72 9.50 

(2.75,2.75) 96.16 97.76 9.62 
(3,3) 97.20 99.36 9.52 

 
Table 11. Accuracy of K-Chart (g2(16,16,1,1,ρ ); ρ =0.2) 

Shift 
(μ1, μ2) 

In-Control 
% 

Out-of-Control 
% 

Number of 
 support vector 

(0.25,0.25) 91.96 6.52 23.82 
(0.5,0.5) 92.60 11.52 22.70 

(0.75,0.75) 91.64 20.60 23.32 
(1,1) 92.40 35.96 22.76 

(1.25,1.25) 91.36 55.24 23.50 
(1.5,1.5) 92.48 74.92 23.16 

(1.75,1.75) 92.44 88.24 23.44 
(2,2) 91.44 96.88 23.72 

(2.25,2.25) 93.24 99.44 23.30 
(2.5,2.5) 92.68 99.96 22.60 

(2.75,2.75) 92.24 99.96 23.50 
(3,3) 92.44 100.00 23.48 

 

Table 12. Accuracy of K-Chart (g2(16,16,1,1,ρ ); ρ =0.8) 

Shift 
(μ1, μ2) 

In-Control 
% 

Out-of-Control 
% 

Number of 
 support vector 

(0.25,0.25) 92.48 6.32 23.56 
(0.5,0.5) 91.64 11.48 23.66 

(0.75,0.75) 93.24 18.56 23.66 
(1,1) 92.44 35.00 24.00 

(1.25,1.25) 92.00 52.68 23.94 
(1.5,1.5) 91.32 72.72 22.56 

(1.75,1.75) 92.16 89.16 23.26 
(2,2) 91.44 96.72 22.88 

(2.25,2.25) 92.28 99.48 23.08 
(2.5,2.5) 92.72 99.88 22.50 

(2.75,2.75) 92.52 100.00 23.54 
(3,3) 92.80 100.00 22.94 

VII. CONCLUSION 
In this paper, we presented a relationship between the 

non-normal multivariate distributions and parameters of 
SVM to obtain classification rate. After obtaining the proper 
parameters of SVM, we discuss the performance of control 
chart base on SVM. Based on an analysis of SVM parameters, 
the classification rate would increase by sample size. For 
various non-normal bivariate distributions, the combination 
of parameters (C,γ) will be stable by sample size. The 
interval of two parameters is between zero and one. The 
default parameter setting (C=0.5, γ =0.5) obtain the 
classification rate is fairly accurate under larger sample size. 
When the sample size is smaller (n=100), we obtain the best 
classification rate under more accurate parameter selection. 

After obtaining the proper parameters of SVM, we discuss 
the performance of the control chart based on SVM to 
monitor non-normal process. The K-Chart obtains the better 
classification rate under monitoring process mean to large 
shift (≧1.5σ). In the various correlation coefficients, the 
K-Chart obtains the different classification rate. It will obtain 
the best rate when the process with larger ρ. The K-Chart 
will be able to monitor process well whatever the different 
non-normal multivariate distributions are. 

In the future research the K-Chart will be applied in the 
time series process. We would discuss the performance of 
K-Chart in monitoring the time series model or extending to 
the multivariate time series. 
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