
 
 

 

 Abstract—A Tukey’s control chart applies a principle of box 
plot to set control limits. In this paper, we apply a Tukey’s 
control chart to monitor gamma distribution and short run 
processes and evaluate its performance. Average run length 
(ARL) obtained by a computer simulation shows its 
performance. From the evaluation results, we found Tukey’s 
chart is suitable to monitor the short run process, but its 
detection shift ability will become un-sensitivity when the 
population is skew away the normal distribution. 
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I. INTRODUCTION 
Statistical methods are often used in process monitoring, 

where the technology of control chart is one of the major 
tools. When an assignable cause occurs, the process will have 
variation. The control chart can immediately signal the 
process variation to operators for finding out the cause of 
variation. In 1942, Dr. Shewhart developed first control chart 
for monitoring process mean.  

A use of control chart can divide setup and monitoring 
phases. Major tasks in setup phase are the observation 
collection and setting of the control limits, and this phase is 
also called phase I. Monitoring phases is also called phase II, 
and the control chart will be applied to monitor process in this 
phase. Shewhart individual control chart requires large 
numbers of observations to set the control limits in phase I 
[2], otherwise its performance in phase II will be increased. 
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When a control chart is applied to monitor the data of a 
job-shop, most job-shops are characterized by short 
production runs, and many of these shops produce parts on 
production runs of fewer 50 units. In this short run case, we 
can not collect large numbers of observations in phase I, and 
Shewhart individual chart can not be constructed for 
monitoring the short run process. 

Alemi [4] and Borckardt et al. [6] have presented the 
application of John Tukey’s control chart and directly called 
it Tukey’s control chart. The Tukey’s chart has several 
characteristics: applied few numbers of observations to set 
the control limits; only single observation per period; and not 
affected by the outlier data. Tukey’s control chart may be 
appropriate to monitor short run process. Statistical process 
control methods are often based on two assumptions: first, 
the sample observations are statistically independent; second, 
the process observations follow a normal distribution. 
Violation of the normality assumption can cause the 
increasing of the error probability when applying control 
charts in process monitoring. In the past studies, Kao and Ho 
[8] examined the performance of an R chart and found the R 
chart is robust to non-normality; Lin and Chou [10-13] had 
presented the performances of the adaptive control charts 
under non-normality, and Lin and Chou [10] found the VP 

X  chart detects small shifts in the process mean faster than 

the standard X  chart and its performances are not 
significantly different under normal or non-normal 
distributions. Borckardt et al. [6] had discussed the principle 
of Tukey’s control chart and shown the performance in 
monitoring autocorrelation data, but Borckardt et al. [6] had 
not shown the performance to monitor short run and 
non-normal process. 

Skew probability distributions always occur in the 
process monitoring of real industries, and a gamma 
distribution as a skew probability distribution is often 
selected to examine and compare the performances of control 
charts. In this study, we selected several gamma distributions 
to evaluate the performances of Tukey’s control chart in 
monitoring short run process. 
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A. Tukey’s control chart 
The Tukey’s control chart is an individual control chart 

like the Shewhart individual control chart, thus the period 
numbers on setting the Tukey’s control chart are total 
observation numbers. A calculation of Box plot is the basic 
principle for the Tukey’s control chart. Tukey’s control chart 
setup has several steps: 1. Sorting the data; 2. calculating the 
1st quartile which is denoted Q1 and 3rd quartile which is 
denoted Q3; and 3. calculating the control limits by using the 
following formulas: 
 

( )
( )Q1-Q3  -Q3 limit  controlUpper 

Q1-Q3  -Q1 limit  controlLower 
×=
×=

k
k

 (1) 

 
The parameter k determines the control limit coefficient and 
its default is 1.5[4, 6].  

Here we quote a healthcare example in Alemi [4] to 
illustrate the setup of Tukey’s control chart. There are 7 
observed periods, each period only has a single observed data 
point, and these data in sequence are 0, 25, 30, 30, 32, 35, and 
50. We sort these data as 0, 25, 30, 30, 32, 35, and 50, and 
then the Q1 and Q3 are 27.5 and 33.5, respectively. 
Q3-Q1=6. The lower control chart limit (LCL) is 18.5(=27.5 
- 1.5 × 6), and the upper control chart limit (UCL) is 42.5(= 
33.5 + 1.5 × 6). In the monitoring phase, the data in sequence 
is 45, 31, 20, 40, 60, 45, 60, 45, 32, 50, and 60. Figure 1 
presents the Tukey’s control chart in monitoring of 
healthcare data. 
 
 

 
 

Fig. 1 Tukey’s control chart for the healthcare example 
 
 
In Fig. 1, the two dotted lines are control limits based on 

phase I procedure, and there are several out-of-control points 
in phase II. It is possible that the patient’s health has changed, 
and further check-up is required. 

 

B. Average run length 
Average run length (ARL) is the most commonly used 

tool for evaluating the performance of control chart. μ0 and σ 
are defined as initial mean and standard deviation of the 
process, respectively. If the process mean stays initial mean, 
the process is an in-control state. When an assignable cause 
occurs, the process mean shifts to μ1, and δσμμ += 01 , 
where δ is called the shift size coefficient, and the process 

state is out-of-control. If the process state is in-control, the 
probability of an observation falling out the control limits can 
be expressed by the following formula: 

 
( )01 μμα =≤≤−= UCLxLCLP  (2) 

 
where the α is called the probability of type I error or false 
alarm rate. The in-control ARL denoted by ARL0 can be 
calculated by 1/α. 

Assuming a process mean shift has occurred, and then 
the probability of an observation falling in the control limits 
can be expressed by the following formula: 

 
( )δσμμμβ +==≤≤= 01UCLxLCLP  (3) 

 
where the β is called the probability of type II error, and the 
out-of-control ARL denoted by ARLδ can be calculated by 
1/(1-β). 

If the error probability or ARL of the control chart is not 
easy to calculate, a computer simulation approach can assist 
to obtain the error probabilities from ideas of some studies [2, 
3, 9]. 

 
 

III. SIMULATION AND DISCUSSION 
 

A. Gamma distribution 
In this section, we will investigate the performance of 

Tukey’s control chart in monitoring short run and gamma 
distribution processes. The gamma distribution, denoted by 
g(a,b), has the probability density function 

 

( ) ( )
( ) 0,  ,0    ,exp,

1

>>
Γ

−
=

−
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ab

bxxbaxf a
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 (4) 

 
where x is a random variable, the a and b are respectively the 
shape and scale parameters, and ( )•Γ  is a gamma function. 
The mean and variance of a gamma distribution are ab and 
ab2, respectively.  

In this paper, we refer to [1, 5, 7, 10], and choose a = 4, 
2, 1 and a fixed b = 1 for the gamma distribution. Figure 2 
shows the gamma distributions we have selected and their 
corresponding normal distributions that have the same mean 
and variance. When a increases, the gamma distribution gets 
closer to a normal distribution. Through the use of these three 
types of gamma distributions, we can understand the effect of 
skewness change on the performances of control charts. 

Lin and Chou [10] had used a simulation approach to 
calculate performances of adaptive control charts under 
non-normality. We adopt their approach and use a computer 
simulation to calculate the ARL of Tukey’s chart. A 
computer simulation procedure is as the following: 

(1) Generate n observations from a gamma distribution.  
(2) Calculate Q1, Q3, and IQR, and set the control limits 

with a given shift value.  
(3) Generate 50,000 observations from the same 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-7-5 IMECS 2009



 
 

 

probability distribution. 
(4) Record the number of observations that falls in the 

outside of the control limits, and then divide them by 50,000 
respectively to calculate the probability of the out-of-control 
regions. If the shift value is equal to 0, the probability of the 
out-of-control regions is false alarm rate otherwise is 1-β. 

(5) Calculate the run-length values. 
(6) Repeat steps (1) through (5) 300,000 times to obtain 

the simulated run-length values.  
(7) Average the 300,000 simulated run-length values to 

obtain ARL value. 
We set respectively numbers of observations in phase I 

be equal to 10, 20, 30 and 10000 to simulate ARL values of 
Tukey’s control charts. The ARL values of 10000 
observations will regard as theoretical value. 

 
 

(a) 

(b) 

(c) 
 

Fig. 2 The probability density function for various gamma and normal 
distributions: (a) g(4,1) and N(4,4); (b) g(2,1) and N(2,2); (c) g(1,1) and 

N(1,1) 
 
 

B. Evaluation and discussion 
To compare performance of Tukey’s chart in 

monitoring gamma distribution and short run processes, we 
need to set the same in-control ARL for each gamma 
distribution and number of observations. We adjust control 
limit coefficient k of Tukey’s charts to set the in-control ARL 
is approximate 370.4 for each gamma distribution and 

number of observations. Table I shows the ARL values of 
Tukey’s chart. 

In the table I, ARL values of 10000 observations can be 
regarded as the theoretical values, and all out-of-control ARL 
values are approximate the theoretical values. That is to say if 
only fewer numbers of observations can be obtained in phase 
I, the detecting shift ability of Tukey’s chart is not significant 
change in phase II. If the a decreases, the detecting shift 
ability in phase II will become slow. When only few numbers 
of observations can be obtained in phase I, and the population 
is far away the normal distribution, the control limit 
coefficient k of Tukey’s chart has to increase for the 
maintenance of the in-control ARL value. 

 
 

Table I. 
ARL values of Tukey’s chart for various numbers of observations and gamma 

distributions 

 
 δ 
 

Numbers of 
observations k 

0 1 2 3 
g(4,1) 10  2.840  372.39 85.68  22.59 6.12 

 20 2.710 373.20 83.66 21.01 5.96 
 30 2.670 374.04 82.31 20.51 5.93 
 10000 2.594 370.40 82.80 20.45 5.84
       

g(2,1) 10 3.300 372.00  119.22 34.89  10.98 
 20 3.210 371.82 107.42 32.21 10.40 
 30 3.180 369.52 106.10 31.72 10.13 
 10000 3.138 370.38 106.56 31.72 9.95
       

g(1,1) 10 4.500 371.92 146.26 54.06 19.73 
 20 4.320 373.95 143.94 53.46 20.33 
 30 4.200 372.72 137.11 51.12 18.51 
 10000 4.122 370.47 136.29 50.14 18.44
     

N(0,1) Theoretical 
value 1.724 370.40 43.88 6.32 2.00

 
 

IV. SUMMARY 
This paper presented the statistical performance when 

the Tukey’s chart is applied to monitor short run and a skew 
distribution process. From the evaluation results, we found 
Tukey’s chart is still suitable to monitor the short run 
processes. If the population is far away the normal 
distribution, the detection ability of Tukey’s chart will 
become un-sensitivity. We suggest that when the Tukey’s 
chart is applied to monitor short run and a skew distribution 
process, the control limit coefficient k must be increased for 
reduction of type I error probability. 
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