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Abstract- This paper aims to calculate the thermal 
spreading resistance for a hyperellipse on a half 
space, with uniform heat flux.  The effect of shape 
and aspect ratio on a steady state   averaged 
temperature and the centroid temperature based 
thermal spreading resistance is studied.  The 
square root of source area and characteristic 
dimension are assumed as characteristic length 
scales to obtain the results.  A compact correlation 
of averaged temperature based spreading thermal 
resistance is developed for hyperellipitical source 
area.    

Keywords: aspect ratio, effect of shape, heat flux, 
thermal spreading resistance.  

Nomenclature 

zyx ,,   Cartesian coordinates, m 

( )vG ,ν  Function defined by eqn (14) 

u  Dimensionless coordinate, ( bx / ) 

v  Dimensionless coordinate, ( by / ) 

A   Contact area, 2m  

0A  Contact area in first quadrant 2m  

ba,   Characteristic dimensions, m   

T   Temperature, K  

sR   Spreading resistance, (K/W) 
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sR  Spreading resistance based upon 
average temperature, (K/W) 

0R  Spreading resistance based upon 
centroid temperature, (K/W) 

nm,   Geometric parameter 

q   Heat flux, (W/(m²)) 

Q   Total heat flow rate, W 

A   Square root of source area 

Superscripts and Subscripts   

n  Geometric parameter 

a  Length scale along x-axis 

A  Square root of source area 

Greek Symbols   

α  Aspect ratio ( ) 1/ ≤ab   

Γ  Gamma function 

λ  Thermal conductivity, ( )KmW /   

ηξ ,  Flux coordinates 

μ  Dimensionless coordinate b/ξ  

ν  Dimensionless coordinate b/η  

φψ ,     Spreading resistance parameters          
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1. Introduction 

Thermal contact resistance plays an important role 
to evaluate the overall thermal behavior of systems 
in a wide range of fields, from the 
microelectronics to the nuclear industry. One of 
the major components of the contact resistance is 
the spreading/constriction resistance. It occurs 
whenever heat flows from a source to the sink 
with different cross-sectional areas. There is also a 
similar term called as constriction resistance which 
quite often understood similar to the spreading 
resistance.  Constriction resistance occurs when 
heat flows from larger region to a narrow region 
and the spreading resistance occurs when heat 
flows from a small area to large area in contact 
[1].  Thermal spreading resistance theory finds 
widespread application in electronics cooling, both 
the board and at the end chip level and in heat sink 
applications. It also arises in thermal analysis of   
bolted joints and other mechanical connection 
resulting in discrete point of contact. Specifically 
one may encounter single or multiple thermal 
contacts of simple or arbitrary geometries on the 
surface of a half space. This paper concerns to 
study the thermal spreading resistance of an 
hyperellipitical contact. 

2. Literature Review 

Thermal spreading resistance is a problem 
commonly known in the thermal analysis of 
electronic packages.  The early work was started 
by Kennedy [2] who investigated thermal 
resistance problem and derived analytical 
solutions for axi-symmetric models with uniform 
heat flux source on a finite cylinder. The studies 
on the thermal spreading resistance have a vast 
history. Several analytical solutions have been 
developed in the literature in order to calculate 
thermal spreading/constriction resistance 
according to contact shape, boundary conditions 
and length scale. A theoretical analysis is 
presented for predicting thermal constriction 
resistances of coaxial cylindrical contacts [3], a 
complete solution of the transient circular [4] and 
a circular annular contact area subjected to various 
boundary conditions [5].  Several studies are 
performed on a steady state thermal constriction 
resistance of a singly connected, planar contact 
area [6], a circular contact area on a circular flux 

tube[7], doubly-connected source area [8], thermal 
constriction resistance between smooth-sphere and 
rough flats in contact [9], a general solution for the 
thermal constriction resistance due to flux applied 
over circular portion of a compound disk [10], a 
transient thermal response of two semi-infinite 
bodies through a small circular contact area[11], 
spreading resistance of an isoflux rectangular flux 
channel [12] and a strip contact spot on a layer of 
material source for the heat-flux specified 
boundary conditions on the contact zone[13]. 
Recently a number of new solutions and 
application of thermal spreading resistance theory 
have been addressed in [14-15]. A review of 
thermal spreading resistance in compound and 
orthotropic systems is presented in [16]. Some 
correlation equations and important aspects of 
thermal spreading resistance theory are 
summarized in [17].  The other contributed work 
is a comparison of planar, axis-symmetric and 3-D 
spreading resistance [18], calculation of spreading 
resistance in heat sinks [19], thermal spreading 
resistance of rectangular sources and plates with 
non-unity aspect ratio [20], the spreading 
resistance between two parallel contacts [21] and a 
numerical modeling to understand the effects of 
thermal spreading resistance on the total resistance 
from junction to ambient for square and 
rectangular entities [22]. 

 The first objective of this paper is to study the 
effect of shape and aspect ratio on a steady state 
thermal spreading resistances of a singly 
connected, planar contact area on an isotropic half 
space with uniform heat flux. For this purpose a 
thermal spreading resistance model is developed 
for an isoflux hyperellipse situated on a half-space. 
The elliptical geometry is chosen for the model 
because it provides more general geometrical 
configurations. They represent a finite-length plate 
when the aspect ratio ( ) 0/ →= abα  and a 
circular cylinder when the axis ratio 1→α . By 
increasing the aspect ratio α, we obtain narrower 
and narrower ellipses of contact, and at the 
limit ∞→α , we arrive at the case of contact of 
two cylinders with parallel axis.  The surface of 
contact now a narrower rectangle. Thus, they 
cover a wide range of shapes. The details of 
calculations, a comparison of averaged 
temperature and centroid temperature based 
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thermal spreading resistance using characteristic 
length scales as square root of source area and 
characteristic dimension of contact area are 
presented and discussed.  Also, there exist a 
solution in Ref.[6] to calculate spreading 
resistance associated with averaged temperature 
for an isoflux hyperellipse situated on a half space. 
The second objective of this paper is to develop 
easy-to-use compact relationship for the solution 
provided in Ref.[6]. The accuracy of the compact 
correlation is verified through available data in 
literature. 

3. Model Development 

The family of contact areas is defined by a 

hyperellipse ∞≤≤=⎟
⎠
⎞
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with ab ≤ , situated on a insulated half space 
0≥z  and subjected to a uniform heat flux q   

with thermal conductivityλ .  The hyperellipse 
result depends on two geometric parameters, n.α  
.  The perimeter n   allows for the study on the 
effect of shape and aspect ratio ( )ab /=α  helps 
to study effect of shape on the spreading 
resistance.  By varying these parameters one can 
control the forms of contact area, with 2=n  
and 1≤α , the spreading resistances for the circle 
and ellipse can be obtained.  For 2<n  and 2>n  
and 1≤α , spreading resistance can be obtained 
for hypoellipse (which develop pointy corners in x 
and y directions) and hyperellipse (which 
increasingly resembles rectangles) respectively.  
The effect of the geometric parameters n  upon the 
shape of the contact region in first quadrant is 
shown in Fig.1. 

 

 The thermal spreading resistance sR  is defined in 
[1] as the difference between the source 
temperature and thermal sink temperature divided 
heat transfer rate Q  : 
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where, )(nΓ is the Gama function.  The local 
temperature within the contact due to uniform -
flux q entering the contact at the point ( )ηξ .  is 
given by 
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Following Yovanovich [6], the constriction 
resistance, in the special case of uniform flux, 
defined as the average temperature of the contact 
area divided by the total heat flow rate, is given: 

( ) )5(0,,1
2 ∫∫=

A
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Substituting (4) into (5) we obtain the following 
expression for the constriction resistance: 
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To evaluate the integral, first we are introducing 
dimensionless variables, 
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Fig.1. The effect of geometric parameter n, upon 
contact region in first quadrant 
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and integral evaluation for the integral appearing 
in (6) can be written as 
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Further integral appearing in (8) can be simplified 
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Using Quadrature Rule of integration and dividing 
the intervals of integration of νandv into 

NM and  strips of equal width respectively, the 
integral in (10) can be written as 
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We have assumed that heat flux is uniform.  In this 
case maximum temperature rise within a singly-
connected contact area occurs at or near the 
centroid of the area.  Following Ref. [6], an 
alternative definition of the spreading resistance 
based on quotient of the centroidal temperature 
and the total heat flow rate is: 
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and ,0ρ  is the radius vector from the centroid to 
any point on the contact area contour making an 
angle θ  with x-axis, for a hyper ellipse: 
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The spreading resistance parameters 
sR£λψ = and 0£Rλφ =  for averaged and 

centroid temperature based thermal spreading 
resistance are introduced for convenience and £  
and is the arbitrary characteristic length scale, 
chosen as ,£ a=  characteristic dimension 

and A=£ , the square root of the source area.  
Hence expressions for dimensionless spreading 
resistance are: 
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4. Numerical Results and Conclusion 

Integrals appearing in (14), (15), (18) and (19) are 
evaluated by making use of Mathematica for 
different values of n .  The accuracy of the 
integration technique is checked by comparing the 
computed results for a circular contact area with 
classical results and results obtained by 
Yovanovich [6] as shown in Table 1.  

First, the results are obtained to see the effect of 
shape that depends on geometric parameter n and 
the effect of aspect ratio ( ) 1/ ≤= abα ), on 
thermal spreading resistances.  To see effect of 
shape of source area on spreading thermal 
resistance numerical values are calculated for 
geometric parameter n , ∞≤≤ n5.0 and aspect 
ratio ( ) 1/ == abα .  The selected values of the 
dimensionless constriction are shown in Table-2. 
It can be observed from the related graphs for 
shown in Fig.2 that there exists a constant relation 
between aA ψψ ,  and aA φφ , .  Averaged 
temperature based thermal spreading resistance 
using characteristic dimension A=£  increased 
when 25.0 ≤≤ n .  It decreases with very high 
rate for same values of perimeter n , when it is 
calculated using a=£ .  Also, the dependence of 
the dimensionless resistance upon the source area 
is reduced considerably when A  is selected as 
the characteristic dimensions of the system.  It's 
clear that with the increasing n effect of thermal 
spreading resistance is diminishing for Aψ and 

Aφ but it is very small in the case of Aφ .  Also 

for aφ and aψ the result is not only opposite but 
the difference is large for both cases.   
             Overall it's concluded that length scale 

A=£ is more appropriate than a=£ , and the 
thermal spreading resistance Aφ  (centroid 
temperature based), is more effective than 
( Aψ averaged temperature based). Second, the 
effect of aspect ratio on thermal spreading 
resistances is studied.  In this case numerical data 
is calculated taking 102.0 ≤≤α and 

25.0 ≤≤ n for averaged and centroid temperature 
based thermal spreading resistance, 

using aA and£ = .  The selected values of the 
dimensionless constriction are shown in Table-3 
and Table 4 and, related graphs are shown Fig.3-4. 
It is noticed that both Aψ and Aφ increase 
slightly as α  goes from 1to02.0  and for 

04.0<α  and 4.0<α , the change is greater 
whereas the pattern of variation is opposite as well 
as aφ and aψ are concerned.  Third, a compact 
correlation for estimating Aψ is developed as 
following: 

( ) )20(104.0,405.0,
3.0

, 1 ≤≤≤≤
+

= α
α

ααψ nCnA

 The value of the coefficient 1C ,  appearing in 
correlation equation are given in Table 5 and 
Table 6,  is produced using exact solution 
developed by Yovanovich [6] and derived  
compact relationship.  The depicted plots are 
presented to show the difference between these 
results for geometric parameter n , 405.0 ≤≤ n , 
and aspect ratio α , ( ) 1/2.0 ≤=≤ abα   in Figs. 
5-8.  

Table 1:The comparisons of results for 
circular contact 

1
2

=
=

α
n

 
Present Ref. [6] Classical 

Aψ  0.4792 0.4787 0.4789 

aψ  0.2703 0.2701 0.2702 

Aφ  0.5641 0.5642  

aφ  0.3183 0.3183  
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Table 2:Effect of shape  on  thermal 
spreading resistance 

n  
Aψ  aψ  Aφ  aφ  

0.5 0.5414 0.4421 0.6697 0.5468

1 0.3345 0.4730 0.3968 0.5611

2 0.2703 0.4792 0.3183 0.5642

4 0.2473 0.4762 0.2924 0.5631

8 0.2379 0.4706 0.2840 0.5619

10 0.2351 0.4669 0.2829 0.5617

20 0.2315 0.4621 0.2812 0.5613

40 0.2302 0.4601 0.2807 0.5612

 

 

 

 

 

 

Fig.2. Effect of parameter n on centroid and 
averaged based thermal spreading resistance 

Fig. 3. Effect of aspect ratio 12.0 ≤≤ α on 
thermal spreading resistance based on 

centroid temperature. 

Fig. 4. Effect of aspect ratio 12.0 ≤≤ α ,on 
thermal spreading resistance based on averaged 
temperature.  

Fig. 5. Difference between solution in 
Ref. [6] and proposed compact 

correlation for 5.0=n , 12.0 ≤≤ α .
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Table 3: Centroid  temperature based  
thermal spreading resistance, Aφ  

α 1=n 2=n  4=n  40=n
 

0.02 0.294 0.269 0.258 0.253 

0 04 0.356 0.331 0.319 0.313 

0.06 0.393 0.370 0.358 0.352 

0.08 0.419 0.398 0.386 0.380 

0.1 0.439 0.420 0.409 0.403 

0.2 0.496 0.484 0.476 0.471 

0.4 0.539 0.536 0.532 0.528 

0.6 0.554 0.555 0.553 0.551 

0.8 0.560 0.562 0.561 0.559 

1 0.561 0.564 0.563 0.561 

 

Table 4: Averaged  temperature based  
thermal spreading resistance, Aψ  

α 1=n 2=n 4=n  40=n

0.02 0.223 0.223 0.222 0.215 

0 04 0.275 0.275 0.273 0.264 

0.06 0.309 0.308 0.306 0.295 

0.08 0.333 0.332 0.329 0.317 

0.1 0.352 0.350 0.348 0.335 

0.2 0.409 0.406 0.403 0.388 

0.4 0.455 0.451 0.448 0.432 

0.6 0.470 0.469 0.467 0.450 

0.8 0.474 0.477 0.475 0.457 

1 0.473 0.479 0.478 0.461 

 

Fig. 6. Difference between solution in Ref. [6] 
and proposed compact correlation for 

1=n and 12.0 ≤≤ α . 

Fig. 7. Difference between solution in Ref. [6] 
and proposed compact correlation for 

2=n and 12.0 ≤≤ α . 

Fig. 8. Difference between solution in Ref. [6] 
and proposed compact correlation for 4=n and 

12.0 ≤≤ α . 
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Table 5: Coefficients for averaged 
temp. based spreading resistance 

n 0.45 
0.5 0.49 
1 0.49 
2 0.48 
4 0.48 
16 0.46 
∞ 0.47 

 

Table 6:A comparison of current  

study with Ref. [6] for 5.0=n  

Α Ref[6] Correl. %diff. 

0.2 0.39 0.40 -2.56 

0.4 0.42 0.42 0.87 

0.6 0.44 0.43 2.06 

0.8 0.44 0.43 2.19 

1 0.44 0.44 1.85 

2=n  

Α Ref[6] Correl. %diff. 

0.2 0.41 0.41 -2.26 

0.4 0.45 0.45 0.62 

0.6 0.47 0.47 1.59 

0.8 0.48 0.47 1.59 

1 0.48 0.47 1.13 

4=n  

Α Ref[6] Correl. %diff. 

0.2 0.41 0.42 -1.00 

0.4 0.45 0.45 1.63 

0.6 0.47 0.46 2.53 

0.8 0.48 0.46 2.50 

1 0.48 0.47 2.03 
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