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Abstract—We analyze the transient and asymp-

totic behavior of a simple assembly-like queueing sys-

tem often found as a component within a larger net-

work. This system consists of two distinct types of

items/customers arriving at separate buffers, accord-

ing to independent Poisson processes, so as to be syn-

chronized into pairs at a synchronization node. Once

synchronized, a pair then queues up for service from

a single server on a first-pair-in-first-pair-out basis.

Service times of synchronized pairs are independently

and exponentially distributed. We obtain explicit ex-

pressions for the transient and limiting values of the

mean and variance of the cumulative number of syn-

chronized pairs. When the two arrival rates are dif-

ferent, the process of synchronized pairs is asymptoti-

cally a Poisson process, enabling the use of an M/M/1

approximation. When the two arrival rates are equal,

the synchronized process is not asymptotically a Pois-

son process, contradicting a result in [13]. However,

the queue length process of synchronized pairs is still

reasonably well approximated by an M/M/1 queue-

ing system for low to moderately high traffic inten-

sities. Most interestingly, by choosing equal arrival

rates, both a transient and a long run benefit are ob-

tained: the variance of the queue length process is

approximately 1

3
lower than that with unequal arrival

rates. Keywords: assembly-like queues, synchroniza-

tion, Poisson processes, transient analysis, asymptotic

approximations.

1 Introduction

Consider an assembly system in which items/customers
from two distinct infinite populations arrive at buffers
dedicated to their respective types for synchronization
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into pairs. The two types of items are referred to as
A-type and B-type and their dedicated, infinite capac-
ity buffers as the A-buffer and B-buffer. The instant
an item of each type is present in the buffers, they are
immediately synchronized into a pair and sent to an in-
finite capacity queue for service by a single server on a
first-pair-in-first-pair-out basis. Once a pair has finished
receiving service, the pair leaves the system. If another
pair is waiting, it then immediately enters service. If no
pair is waiting, the server remains idle until the next pair
is synchronized. The schematic diagram in Figure 1 il-
lustrates this queueing system.

Queue of Pairs Server
B−buffer

A−buffer

Figure 1: Synchronization and service of pairs.

Denote by At and Bt the cumulative number of A- and B-
type items that have entered the A- and B-buffers during
the time interval [0, t]. We assume A0 = B0 = 0. Let St

denote the cumulative number of pairs that have been
synchronized during [0, t]. Since we are assuming the
synchronization and queueing of pairs for service is in-
stantaneous, St is therefore determined by the minimum
number of arrivals of the two types, i.e.,

St = At ∧Bt := min(At, Bt). (1)

Another consequence of assuming instantaneous synchro-
nization and queueing of pairs is that at all times, there
is at least one buffer empty, possibly both but it is never
the case that both buffers have items waiting to be syn-
chronized. Although At and Bt are independent Pois-
son processes, St is not a Poisson process; this fact is
confirmed in Lemma 1. The idea behind our approxi-
mation of the queueing and servicing of pairs is that if
the arrival of synchronized pairs St to the service queue
is sufficiently similar to a Poisson process then, together
with the exponential service times, our system may be
sufficiently similar to an M/M/1 queueing model to ap-
proximate its behavior by that of an appropriately cho-
sen M/M/1 model. To justify this approximation and to
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determine which M/M/1 approximation would be appro-
priate, we study the behavior of the synchronized process
St.

2 The Synchronized Process St

Using the independence of the two Poisson arrival pro-
cesses At and Bt and their Poisson distributions, one
easily derives the distribution of St:

Lemma 1 Let At and Bt be independent Poisson pro-
cesses with rates a, b > 0, respectively. For any t > 0 and
any p ∈ N, the probability P(St = p) is given by

e−(a+b)t

{
(bt)p

p!

∞∑
m=p

(at)m

m!
+

(at)p

p!

∞∑
n=p+1

(bt)n

n!

}
(2)

It is clear that St does not have a Poisson distribution;
see Section 3. Using (2), one can obtain fairly explicit
expressions for the mean and variance of St:

Proposition 1 For any t > 0 and for any a, b > 0 the
mean of St is given by

E[St] = bt P(At ≥ Bt + 1) + at P(Bt ≥ At + 2) (3)

Expression (3) for the mean is quite intuitive: When At ≥
Bt + 1, there is nothing in the B-buffer but an excess in
the A-buffer, and hence whenever a B-type arrives in
the B-buffer, it is immediately paired with a waiting A-
type and sent to the service queue. Thus, the rate at
which synchronized pairs enter the queue for service is b,
the Poisson arrival rate of the type fewest in number. If
Bt ≥ At + 2, then the A-type is fewest in number and
the synchronizing rate is a. These two rates are then,
roughly speaking, weighted by the probabilities of these
two events occurring. If A lags more often than B then
the synchronization rate will be weighted more toward
a. On the other hand, if B lags more often than A,
the synchronization rate will be weighted more toward b.
Note the absence in (3) of the two events (At = Bt) and
(Bt = At + 1).

Proposition 2 In the symmetric case when a = b, the
mean of St given by (3) further reduces to

E[St] = at
[
1− e−2at

(
I0(2at) + I1(2at)

)]
(4)

where Im( · ) is the modified Bessel function of the first
kind of order m ∈ N.

The absence of (At = Bt) and (Bt = At +1) in (3) is also
seen in (4) as the subtraction of the two modified Bessel
functions I0(2at) and I1(2at). For finite t, we see that St

has an arrival rate that is slightly less than the common
rate a = b of the Poisson arrival processes.

One can also obtain a fairly explicit expression for the
variance:

Proposition 3 For any a, b > 0 and t > 0, the variance
of St is given by

V[St] = (bt)2P(At ≥ Bt + 2) + (at)2P(Bt ≥ At + 3)

+E[St]− (E[St])
2

(5)

Expression (5) for the variance is not quite as intuitive
as (3) is for the mean. The first three terms of (5) corre-
spond to E[S2

t ]. One can see in (5) a few missing events
which is reflected in the symmetric case (6) again by a
subtraction of modified Bessel functions.

Proposition 4 In the symmetric case when a = b, the
variance of St given by (5) further reduces to

V[St] = at− (at)e−2atI0(2at)

−(at)2e−4at
(
I0(2at) + I1(2at)

)2

(6)

Propositions 1 to 4 give the transient mean and variance.
To obtain the asymptotic behavior, we let t increase to
infinity. The key result needed in this direction is:

Theorem 1 For any M, N ∈ Z, we have

lim
t→∞

tNP(At ≤ Bt + M) = 0 (7)

when a > b. When a < b we have

lim
t→∞

tNP(Bt ≤ At + M) = 0 (8)

And, when a = b we obtain

lim
t→∞

P(Bt ≤ At + M) = lim
t→∞

P(At ≤ Bt + M) =
1

2
(9)

Limits (7) and (8) reflect the fact that the probabilities
converge to zero exponentially. In the symmetric case,
we obtain (9) but we no longer have exponential conver-
gence; the probabilities approach their limits like 1/

√
t.

Theorem 1 applied to St then yields:

Corollary 1 When a > b we have

lim
t→∞

P(St = Bt) = 1 (10)

When a < b we have

lim
t→∞

P(St = At) = 1 (11)

And, when a = b we obtain

lim
t→∞

P(St = At) = lim
t→∞

P(St = Bt) =
1

2
(12)
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When a > b, the sample paths of St are increasingly likely
to coincide with those of Bt as t increases to infinity.
Similarly, for a < b, St becomes more like At. Thus, in
the non-symmetric case of a �= b, St is asymptotically
the same as the Poisson arrival process having the slower
arrival rate. In the symmetric case of a = b, we see
that the paths of St become equally likely to coincide
with those of At and Bt, indicating that the symmetric
case is fundamentally different; it is some kind of mixture
of two independent Poisson processes with equal rates.
One might think intuitively that St then becomes Poisson
with the common rate a = b, which is the result claimed
in [13] proved using more abstract techniques. We use
much simpler techniques and show that this intuition is
incorrect, as highlighted by our main result:

Theorem 2 In the non-symmetric case of a �= b, we
have

lim
t→∞

E[St]

t
= lim

t→∞

V[St]

t
= a ∧ b (13)

In the symmetric case of a = b, we have

lim
t→∞

E[St]

t
= a and lim

t→∞

V[St]

t
= a

(
1− 1

π

)
(14)

In the non-symmetric case, the mean and variance rates
converge to that of the more slowly arriving Poisson pro-
cess. In the symmetric case, we see that the mean rate
converges to that of the Poisson arrival process but the
variance rate converges to a value less than one associ-
ated with a Poisson process: the average mean is a but
the average variance is a(1 − 1

π
) which is approximately

68% of a, a surprising result.

3 Some Intuition

To provide intuition behind our results, note that for
large t the sums in (2) are approximated by eat and ebt,
respectively. Thus we expect the large t behavior of the
probability density of St to be like

e−(a+b)t

{
(bt)p

p!
eat +

(at)p

p!
ebt

}
= e−bt (bt)

p

p!
+ e−at (at)p

p!

In the non-symmetric case when a > b > 0, e−at goes
to zero exponentially faster than e−bt and so we further
expect the density to behave like e−bt(bt)p/p! for large
t. A similar observation holds for b > a > 0. Corol-
lary 1 confirms this intuition: in the non-symmetric case,
St becomes Poisson with the smaller rate. And, as a
consequence, result (13) of Theorem 2 is fully consistent
with well known results for Poisson processes. More sim-
ply, when a > b, the number of A-type in the A-buffer
grows without bound while the number of B-type in the
B-buffer drops to zero. With an unbounded supply of
A-type items waiting, the only limitation on the synchro-
nization of pairs is the rate at which B-type arrive.

However, when a = b the same intuitive reasoning leads
to the approximation

e−(a+a)t

{
(at)p

p!
eat +

(at)p

p!
eat

}
= 2e−at (at)p

p!

which cannot be correct since it sums to a value greater
than 1. One might then argue intuitively that from
Corollary 1, St becomes the same as At and Bt, each
with probability 1

2 , so that the factor of 2 in the above
approximation somehow cancels in the mixing and St

becomes Poisson. From [2], pg. 98, we know that
when a = b we have lim supt→∞(At − Bt) = +∞ and
lim supt→∞(At−Bt) = −∞ which also seems to support
the idea of mixing. If this heuristic reasoning about mix-
ing was accurate, then we could explain the asymptotic
mean in (14) of Theorem 2 but we would remain unable
to explain the asymptotic variance in (14) of Theorem 2.
Such intuitive arguments easily mislead us. Corollary 1
and Theorem 2 show that we do have stable behavior in
the a = b case but not one that is obvious at an intuitive
level.

4 Numerical Results

First, we numerically confirm the theoretical results of
Theorem 2 by computing the mean and variance directly
from the probability distribution (2). The point of this
exercise is to obtain numerical results which do not de-
pend on any of the theoretically derived results. These re-
sults are presented in Figures 2,3,4 and 5 below. Figures
2 and 3 plot the numerically computed values of E[St]/t
and V[St]/t for a relatively short time period (t ∈ [0, 5]) to
reveal the transient behavior. Figures 4 and 5 plots these
same values over a longer time range (t ∈ [0, 200]) to re-
veal long run behavior. Figures 2 and 4 demonstrate that
the means converge to a = 1 in all cases of the parameter
b = 1, 2, 10, including the symmetric case. However, one
can see that when b = 2, 10 we have a rapid, exponential
convergence whereas with b = 1 we have a slower 1/

√
t

convergence. This same qualitative difference in conver-
gence behavior is seen in the variance graphs of Figures
3 and 5. The important difference with variance is that
in the non-symmetric cases it converge to a = 1 whereas
in the symmetric case the variance converges to a(1− 1

π
).

Next, we evaluate the accuracy of an M/M/1 approxima-
tion which uses the slowest rate for the Poisson arrival
process and the same service rate at which synchronized
pairs are served. We perform a Monte Carlo simulation of
St and estimate the mean number of pairs in the system,
the mean time a pair is in the system, the mean number
of pairs waiting in the system, and the mean time pairs
wait in the system. The Monte Carlo simulation is run
until 780,000 synchronized pairs have passed through the
system. Then, using well known analytical formulae for
M/M/1 queueing models, we compute the corresponding
M/M/1 performance measures which are to serve as our
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approximation. In all these simulations, we set the ser-
vice rate to μ = 1.0. When we set a = 0.9 and vary b from
0.1 to 0.8 in increments of 0.1, the range of percentage
differences between the Monte Carlo estimated perfor-
mance measures and the analytically computed M/M/1
performance measures is −1.0054% and +1.4882%. This
experiment demonstrates the approximation for a near b.
To check the approximation for large a we set a = 10 and
repeated the simulation. In this case all percentage dif-
ferences are in the smaller range −0.5354% to +0.5039%.
To check the approximation for a only a slightly larger
than b we set a = 1.5 and repeated the simulation. The
range of percentage differences is −0.6212% to +0.7674%.
Finally, we performed the simulation for a = b for all com-
mon values from 0.1 to 0.9 in increments of 0.1. The range
of percentage differences for a = b ≤ 0.8 is −0.5787% to
+0.8840%. However, when a = b = 0.9, the percentage
differences range from +2.8288% to +3.2973%, indicating
that under heavy traffic conditions, the symmetric case
is less well approximated by an M/M/1 model than it is
in all other cases.

b � 1

b � 2

b � 10

0 1 2 3 4 5
t

0.2

0.4

0.6

0.8

1.0

��St��t

Figure 2: Transient behavior of E[St]/t for a = 1 and
b = 1, 2, 10 and t ∈ [0, 5].
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Figure 3: Transient behavior of V[St]/t for a = 1 and
b = 1, 2, 10 and t ∈ [0, 5].
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Figure 4: Transient behavior of E[St]/t for a = 1 and
b = 1, 2, 10 and t ∈ [0, 200].
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Figure 5: Transient behavior of V[St]/t for a = 1 and
b = 1, 2, 10 and t ∈ [0, 200].

5 Conclusions and Future Work

Through very simple probability arguments, we derive
the transient and asymptotic behavior of the mean and
variance of the synchronized process St. We demonstrate
the correctness of our theoretical results with simple and
direct numerical computations. We also evaluate the ac-
curacy of using an M/M/1 model to approximate the
behavior of our queueing system. The first conclusion
we reach is that there is a discrepancy between our re-
sults and those in [13]. The second conclusion is that the
M/M/1 approximation is very good for all cases except
the symmetric case under conditions of heavy traffic. The
third conclusion is that by selecting the arrival processes
to have the same rate, we achieve a 32% reduction in
the variance of the queue length, even throughout a good
portion of the transient phase. However, this reduction
of variance comes at the cost of a slower convergence of
the mean, as clearly seen in Figure 4.

Future work consists of identifying precisely where the
discrepancy lies between our results and those in [13]. A
natural extension of this work is to consider more than
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two independent arrival processes. Also, we have as-
sumed an infinite synchronization rate in that pairs are
instantaneously matched and sent to the service queue.
It would be interesting to explore the effect of adding
a random synchronization time, which would result in a
modification of (1) giving St in terms of the arrival pro-
cesses. Finally, since the high traffic intensity case is not
very well approximated by an M/M/1 model, one could
try a G/M/1 model or perhaps a diffusion approxima-
tion with infinitesimal mean and variance given by a and
a(1− 1

π
), respectively.
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