
 
 

 

  
Abstract—In this paper we present an application of robust 

optimization to inventory optimization under uncertainty. We 
represent uncertainty in a constraint based framework derived 
from basic economic principles. This approach offers the ability 
to use information theoretic concepts to quantify the amount of 
information used in the optimization. The results are shown to 
correspond to classical models such as EOQ in simple cases. Not 
only this, the presented model easily incorporates more realistic 
constraints, which are complicated and are not easily 
incorporated by the classical models. 
 

Keywords— Inventory optimization, Optimization under 
uncertainty, Robust programming 

I. INTRODUCTION 

A major challenge in supply chain inventory optimization is 
handling uncertainty, as not all the data required for making 
decisions are available with certainty at the time of making 
the decision This problem of design/analysis/optimization 
under uncertainty is central to decision support systems, and 
extensive research has been carried out in both Probabilistic 
(Stochastic) Optimization and Robust Optimization 
(constraints) frameworks. However, these techniques have 
not been widely adopted in practice, due to difficulties in 
conveniently estimating the data they require. Probability 
distributions of demand necessary for the stochastic 
optimization framework are generally not available. The 
constraint based approach of the Robust Optimization School 
has been limited in its ability to incorporate many criteria 
meaningful to supply chains. At best, the “price of 
robustness” of Bertsimas et al [4], [5] is able to incorporate 
symmetric variations around a nominal point. However, 
many real life supply chain constraints are not of this form. 
 
Our approach modifies the robust optimization approach and 
makes it more intuitive and meaningful in the context of 
supply chains, while coupling optimization with information 
theory [12]. We represent uncertainty in a constraint based 
framework naturally derived from basic economic principles 
[11]. The uncertainty sets (constraint sets) form a convex 
polytope,  built  from  simple  and  intuitive  linear  
constraints  (simple  sums  and  differences  of  supplies,  
demands  etc)  those  are  derivable  from  historical  time 
series data. With this specification, many kinds of future 
uncertainty can be specified.  This specification avoids 
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deterministic but ad-hoc gravity models and their variants, as 
well as ad-hoc probability distributions. The optimization 
problems are computationally tractable – LP’s or ILP’s. 
Answers are globally valid over the entire range of parameter 
variations, which can be correlated.  
 
In essence our work is the first which enables design of 
supply chains using exactly the information most designers 
are comfortable with, without introducing any new 
assumptions, either in deterministic demand or probability 
distribution functions. 
 
Not only this, our approach offers the unique ability to 
quantify the amount of information used in the optimization 
based on information theoretic concepts. Finally, our 
approach is able to qualitatively compare different sets of 
uncertainty scenarios, using the relational algebra of 
polytopes (this is outside the scope of this paper). 
 
Compared to our earlier work [11], [12], where we 
discussed static capacity planning, in this paper we discuss 
aspects of inventory optimization, and present algorithms for 
min-max policy optimization. We discuss and illustrate how 
close-to-optimal heuristic techniques can be designed, and 
compare their performance relative to worst case bounds. 
 
In the rest of this paper we discuss these areas. In sections III 
we describe the specification of uncertainty; in section IV we 
present algorithms for finding close to optimal solutions for 
the min-max optimizations and in section V we illustrate the 
ideas with a small but detailed example. 
 

II. RELATED WORK 

For inventory optimization, the classical technique is the 
EOQ model proposed by Harris [9] in 1913. In the 1950’s 
Arrow, Harris and Marschak [2], Dvoretzky, Kiefer and 
Wolfowitz, [8] and Whitin [13] began work on stochastic 
inventory control. In 1960, Clark and Scarf [7] proved the 
optimality of base stock policies using dynamic 
programming. , These results minimally make some 
assumptions about the stochastics of the demand. The 
distribution independent robust optimization approach is 
typified by the work of Bertsimas, Sim and Thiele [4], [5] 
where they have proposed uncertainty models using robust 
optimization that also allow the level of conservatism to be 
controlled for each constraint. However their work is limited 
to symmetric polyhedral uncertainty sets with 2N faces, and is 
not directly related to economically meaningful parameters. 
This symmetric nature does not distinguish between a 
positive and a negative deviation, which can be important in 
evaluating system dynamics (for example poles in the left 
versus right half plane). 
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III. REPRESENTATION OF UNCERTAINTY 

Compared to Bertsimas-Sim-Thiele, our work is more 
expressive, with the ability to describe uncertainty sets 
described by arbitrary convex polytopes, e.g. with an 
arbitrary number of faces and orientations.  
The polytopes are  built  from  simple  and  intuitive  linear  
constraints  (simple  sums  and  differences  of  supplies,  
demands  etc)  that  are  derivable  from  historical  time series 
data. With this specification, many kinds of future 
uncertainty can be specified.  Since  the constraints  are  
linear, most  optimization problems (with linear metrics)  can 
be modeled  as  linear, quadratic (in some cases)  or  integer  
linear  programs. This specification avoids deterministic 
models using ad-hoc gravity models and their variants, as 
well as stochastic optimization based on ad-hoc probability 
distributions. This approach gives bounds on the 
performance parameters that are globally valid. 
  
In the context of inventory optimization, the flexibility of our 
formulation allows us to describe absolute bounds on 
inventories, correlations between inventories and 
supplies/demands, correlations between inventories at 
different points, etc.  Some examples of these constraints are: 

 
i. Constraints on inventory: The total inventory at a 

node for a particular product at a particular time 
period may be limited, 

 
( )

 tk  and productsj nodes, i  

;  Invijk

∈∈∈∀
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where Invijk is the inventory at node i for product j in 
time period k. 
 
The total inventory for a particular product at a 
particular node over all the time periods may be within 
limits, 

( )
productsj and nodes i  

; Invijk
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The total inventory for all the products at a particular 
node over all the time periods may be within limits, 

 
( ) nodes i  ;  Invijk ∈∀≤≤ ∑∑ i

j k
i MaxMin  

The total inventory for all the products at all the nodes 
that may ever be stored may be bounded, 

 
( )   Invijk MaxMin

i j k

≤≤ ∑∑∑  

The total inventory for all the products at a particular 
node at a particular time period may be within bounds, 
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Etc. 
 

ii. Inventory tracking demand: The total inventory may 
be limited by total purchases. E.g., the total inventory 

for a particular product that can be stored over all the 
nodes, over all time periods may be no more than 50% 
of the total purchases and no less than 30 % of the 
total purchases. 

( ) ( ) products j  ;  5.0Invijk ∈∀≤∑∑ j
i k

d , and 

( ) ( ) products j  ;  3.0Invijk ∈∀≥∑∑ j
i k

d  

where dj is the demand for product j. 
 

iii. Inventory tracking supplies: The total inventory may 
be limited by the total supplies. E.g., the total 
inventory for a particular product that can be stored at 
a particular node over all time periods may be no more 
than 50% of the total supply to that node and no less 
than 30 % of the total supply to that node. 
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iv. Inventories tracking each other: We may want to 

ensure that inventories stored at two different 
factories are close to each other in amount. One 
reason why we may want this may be because if a 
factory fails, the other may be used to satisfy the 
demand that the failed factory was supposed to 
satisfy. 

 tk and products j   

; 

∈∈∀

≤−≤ MaxInvInvMin yjkxjk  

where x is the first factory and y is the second factory 
and the difference in their    inventories for a product 
in a particular time period is bounded. 
 

Similar to above, we can have constraints on demands, 
supplies, correlations among demands, supplies, inventories 
etc. In this way sums, differences, and weighted sums of 
demands, supplies, inventory variables, etc, indexed by 
commodity, time and location can all be intermixed to create 
various types of constraints on future behavior. We shall 
illustrate a detailed example in Section V. 
 

IV. OPTIMIZATION ALGORITHMS 

Our formulation results in tractable models. Firstly, the 
classical multi-commodity flow model [1] is a natural 
formulation for supply chain problems. Supply chains can be 
viewed as networks where there is flow conservation at the 
nodes. This flow conservation can be written as linear flow 
equations, under the influence of which any optimization in 
the supply chain can be solved using network optimization 
techniques. The fundamental inventory conservation 
equation is (the subscript t is the time index) 
 

tttt DemandSupplyInventoryInventory −+=+1  

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-7-5 IMECS 2009



 
 

 

Let ΦS be the flow vector from the suppliers, ΦD the 
(variable) demand, and ΦI the inventory. Define Φ as the 
flow vector [ΦS, ΦD, ΦI], indexed by node, commodity and 
time. Then the flow conservation equations can be written in 
the matrix form AΦ ≤ B, where A is the unimodular flow 
conservation matrix, and B the source/sink values. All linear 
metrics are of the form CTΦ. An optimal inventory policy is 
one which selects the flows to optimize the metric (minimize 
the cost /maximize the profit). Hence a generic supply chain 
optimization is of the form 

Min CTΦ                                             . 
AΦ ≤ B                           (Equation 1.1) 

However, a realistic supply chain is subject to non-convex 
constraints such as cost/price breakpoints, 0/1 facility 
location decisions etc and in this case the problem has to be 
modeled as an ILP with associated computational difficulties. 
Quadratic terms can also appear in both the constraints and 
the metric. 
 
When we introduce uncertainty, the right hand side B 
becomes a variable (and moves to the l.h.s), and additional 
constraints DT B ≤ E  for these variables are introduced, 
yielding the LP 

Min CTΦ 
[ ]BA 0

1
≤⎥

⎦

⎤
⎢
⎣

⎡Φ  

DT B ≤ E 
Here DT B ≤ E represents all the (linear) uncertainty 
constraints described in Section III. 
 
The optimal policy finds the correct ordering policy (Φ), 
which minimizes the cost in the worst case of the uncertain 
parameters. This is a min-max optimization, and is not an LP. 
Duality can be employed to convert the max to a min, but the 
presence of non-convexities precludes strong-duality from 
being achieved [6]. Heuristics have to be used in general. 
 
Our approach is statistical. First, the performance is bounded 
using the absolute minimum and absolute maximum possible 
costs, corresponding to the best policy under the best 
conditions and the worst policy under the worst conditions 
respectively (these can be found directly by max/min the 
ILP). 
 
The above bounds serve as input to a statistical policy 
sampling process (Fig. 1), which generates a number of 
different policies, each of which is optimal for a different 
randomly chosen demand. The one having the lowest 
worst-case cost is selected. Determining the worst-case cost 
for a chosen policy can be shown to be an LP (details 
omitted). The best policy for a given deterministic demand is 
given by solving the LP/ILP corresponding to Equation 1.1, 
for increasingly longer time horizons, and the steady state 
solution picked. For the example in Section IV, for a single 
time step our LP’s had 84 variables (21 integer), and 131 
constraints, and the average computation time was just 60 
milliseconds. 
 
While the convergence of this process to the Min-max 
solution is still an open problem, note that our contribution is 
the complete framework, and the tightest bound is not 
necessarily required in an uncertain setting. 

Fig. 1: The steps of the sampling approach  
 
Details are in Section V. 

V. ILLUSTRATIVE EXAMPLE 
In this Section, we illustrate the richness and tractability of 
our formulation to handle sophisticated constrained 
inventory optimizations, typical of realistic applications, 
which are only approximated using classical methods.  The 
classical EOQ methods do not in general incorporate 
uncertainty, but can be extended to doing so. However, the 
correlations between different parts of the supply chain are 
not modellable using this framework. Our methods can very 
easily handle both, are intuitive, and are also computationally 
tractable – a unique feature compared to alternative 
approaches (stochastic programming, traditional robust 
optimization) 
 
Our methods reduce to EOQ basestock type solutions [9], in 
simple unconstrained cases. With constraints, we find that the 
optimal policy is not EOQ in general, and EOQ may not even 
be feasible. We are unaware of any other work offering these 
facilities. All of our results were produced on an Intel 
Celeron 1.60 GHz processor, with a 512 MB RAM. 
 
We consider an example from the automotive sector. 
Consider a store that deals in cars, tyres, petrol and drivers. 
There are three kinds of cars and two kinds of tyres, thus 
there are seven different products that the store provides. 
This example, while small, is sufficiently illustrative of the 
capabilities of our approach. To relate our methods to 
classical EOQ, all the products have a fixed ordering cost and 
a linear holding cost given in Table 1. 
  

TABLE 1 
ORDERING AND HOLDING COSTS OF THE PRODUCTS 

Product Ordering Cost in Rs. 
(per order) 

Holding Cost in Rs. 
(per unit) 

Car Type I 1000 50 
Car Type II 1000 80 
Car Type III 1000 10 
Tyre Type I 250 0.5 
Tyre Type II 500 (intl shipment) 0.5 

Petrol 600 1 
Drivers 750 300 

 
Car type I is a comfort class car which has a monthly demand 
that is on the high side of the scale and there is an average 
holding cost per car due to the warehouse space occupied. 
Car type II is a luxury car with much lower demands than the 
type I car and a holding cost that is larger due to higher 
protection that it requires and bigger size. Demands are low 

Begin 
 
for i = 1 to maxIteration 
{ 

parameterSample = getParameterSample(i, constraint Set)
bestPolicy = getBestPolicy(i, parameterSample) 
findCostBounds(i, betPolicy) 

} 
chooseBestSolution() 
 
End 
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due to high costs, high maintenance and poor mileage. Car 
type III is an economy class car, with high demand and 
considerably lower holding costs due to its small size. 
Demands are high because of excellent performance, low 
maintenance, low costs. Tyre type I is a local made tyre, with 
high demand due to its low prices. Tyre type II is an imported 
brand, thus the higher ordering cost, and has lower demand 
due to its higher prices. Both brands have same holding cost, 
as they occupy same amount of warehouse space. Petrol is 
ordered from a supplier in another city and stored in an 
underground storage tank. The store also provides services of 
professional drivers.  
 
(a) Exactly Known Demands, no uncertainty 
If the demands for all these products are known exactly then 
the optimal order quantities and order frequencies can be 
calculated using the EOQ model [9] as follows: 

h
CDQ 2* =  and 

C
Dhf
2

* =  

where C is the fixed ordering cost per order, h is the per unit 
holding cost and D is the demand rate. 
 
 We see that the solution given by constrained optimization 
matches exactly with this solution as given in Table 2. 
 

TABLE 2 
EOQ AND CONSTRAINED OPTIMIZATION SOLUTION FOR KNOWN  

DEMANDS 

 
Car type I, car type II, and drivers must be ordered in every 
month; car type III, tyre type I and petrol every alternate 
month; and tyre type II every fourth month. 
 
 (b) Bounded Uncorrelated Uncertainty 
Unfortunately, we cannot know the future demands 
accurately. If we represent this uncertainty as bounds on the 
individual demands, we can still get min and max bounds 
from the EOQ model. When the demands are bounded as 
given by Table 3, the EOQ bounds and bounds from the 
constrained optimization solution are also almost the same as 
shown in Table 4. The only difference is in the ordering of 
“tyre type I” and “drivers” as the EOQ solution specifies an 
optimal order quantity of 248.99 tyres/order and 2.24 
drivers/order which is clearly not realizable, so the 
constrained optimization rounds this to 248 tyres/order and 2 
drivers/order.  
 
For this kind of uncertainty, we need to order car type I, car 
type II, and drivers at least every alternate month and at most 
every month; tyre type I, tyre type II and petrol at least every 

fourth month and at most every alternate month; and car type 
II at least never and at most every month. 

 
TABLE 3 

UPPER AND LOWER BOUND ON DEMANDS 
Product Min Demand Max Demand 

Car Type I 10 40 
Car Type II 0 25 
Car Type III 50 200 
Tyre Type I 62 250 
Tyre Type II 125 500 

Petrol 75 300 
Drivers 1 5 

 
TABLE 4 

EOQ AND CONSTRAINED OPTIMIZATION SOLUTION FOR 
BOUNDED DEMANDS 

EOQ solution Constrained Optimization 

Order 
Frequency Order Quantity Order 

Frequency Order Quantity Product 

Min Max Min Max Min Max Min Max 
Car Type 

I 0.5 1 20 40 0.5 1 20 40 

Car Type 
II 0 1 0 25 0 1 0 25 

Car Type 
III 0.5 1 100 200 0.5 1 100 200 

Tyre 
Type I 0.25 0.5 248.9

9 500 0.25 0.5 248 500 

Tyre 
Type II 0.25 0.5 500 1000 0.25 0.5 500 1000 

Petrol 0.25 0.5 300 600 0.25 0.5 300 600 

Drivers 0.45 1 2.24 5 0.5 1 2 5 

 
 (c) Beyond EOQ: Correlated Uncertainty in Demand 
So far, the constrained optimization model has incorporated 
the simple mechanics of the EOQ model perfectly. Now we 
will show how the model can be used to incorporate more 
complicated behavior, which EOQ cannot represent. 
Compared to general constrained optimization approaches 
(e.g. SAP APO) used in supply chain optimizers, we shall see 
that our approach is based on very intuitive information, 
which are conveniently available to planners. 
 
Considering that the three types of cars are substitutive and 
the two types of tyres are also substitutive, this can be 
represented by the following equations: 
 

200 ≤ dem_tyre_1 + dem_tyre_2 ≤ 700 
65 ≤ dem_car_1 + dem_car_2 + dem_car_3 ≤ 250 

 
The first inequality means that if the demand for one type of 
tyre increases, the demand for the other type of tyre should go 
down and vice versa. This constraint takes into account the 
fact that the demands for the two brands of tyres are 
correlated and coexist. The lower bound here is greater than 
the sum of lower bounds on demands of individual types and 
the upper bound is smaller than the sum of upper bounds on 
individual demands, thus creating the substitutive effect. 
 
Similarly the second inequality means that the demand for all 
types of cars cannot increase or decrease simultaneously. 
Here also we have substitutive effect as the lower bound on 
the sum is greater that sum of lower bounds on demands of 
individual types and the upper bound on the sum is smaller 
than the sum of upper bounds on individual demands. 

EOQ Solution Constrained Optimization 
Solution Product 

Demand 
per  

month Order 
Freq 

Order 
Quant Cost Order 

Freq 
Order 
Quant Cost 

Car Type 
I 40 1 40 2000 1 40 2000 

Car Type 
II 25 1 25 2000 1 25 2000 

Car Type 
III 50 0.5 100 1000 0.5 100 1000 

Tyre 
Type I 250 0.5 500 250 0.5 500 250 

Tyre 
Type II 125 0.25 500 250 0.25 500 250 

Petrol 300 0.5 600 600 0.5 600 600 

Drivers 5 1 5 1500 1 5 1500 

Total     7600   7600 
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Complementary effect between different products can also be 
easily expressed as bounds on differences, for example, 
consider the following inequality:  
 
5 ≤ (dem_car_1 + dem_car_2 + dem_car_3) – dem_petrol ≤ 20 

 
This constraint represents the assumption that the demand of 
petrol tracks the demand of cars. If there is an increase in the 
demand for cars, the demand for petrol will simultaneously 
rise and vice versa.  
 
Let us suppose that people who buy luxury cars (car type II) 
are more likely to hire drivers too and the drivers provided by 
the store are almost always for luxury car owners. Then the 
demand for drivers must track the demand for luxury cars and 
this is represented by the following constraint: 
 

5 ≤ dem_car_2 – dem_drivers ≤ 20 
 
The results for optimization in the best case for different 
scenario sets are shown in Table 5. The solution in each of 
these cases is very different from the EOQ solution and 
demonstrates the capability of our formulation to easily 
incorporate complicated co-relations amongst different 
parameters. 

TABLE 5 
BEST CASE SOLUTIONS FOR DIFFERENT SCENARIO SETS 

 
Comparing the solution in Table 5, when both substitutive 
and complementary constraints are valid with the EOQ 
solution of Table 4, we see that the EOQ solution is not even 
valid for this case. The lower bound on the cost by the EOQ 
solution is Rs. 3348.248, whereas in the 
substitutive-complementary constrained case the lower 
bound on the cost is Rs. 4482.5. With just substitutive 
constraints car type II need not be ordered at all, but when 
complementary constraints are considered it must be ordered 
at least every alternate month. 
 
(d) Correlated Inventory Constraints 
Let us now consider that our inventory holding capacities are 
constrained. Let us suppose that the store in the example has a 
warehouse where it stores cars and tyres. Taking the scenario 
set when all the constraints are acting the total inventory of 
cars will begin with 120 cars and the inventory of tyres with 
700 tyres. Now since we have limited storing capacity, let us 
suppose that we cannot store more than 160 tyres at any given 
time and no more than 68 cars. These limitations can be 
represented by the following constraints: 

 
Inv_tyre_1 + Inv_tyre_2 ≤ 120 

Inv_car_1 + Inv_car_2 + Inv_car_3 ≤ 68 
 
Since we cannot store more inventories now, we will have to 
reduce our order quantities. In order to fulfill the demand, 
now we will have to place more frequent orders than before. 
This is exactly what the solution from our formulation gives 
us and is given in Table 6. 
 

TABLE 6 
BEST CASE SOLUTION WHEN INVENTORIES ARE CONSTRAINED 

Product Order Frequency Order Quantity 
Car Type I 0.5 20 
Car Type II 0.25 24 
Car Type III 1 64 
Tyre Type I 0.5 124 
Tyre Type II 1 138 

Petrol 0.25 300 
Drivers 0.5 2 

 
The total cost for this policy is Rs. 5195.5, Rs. 713 greater 
than when there are no inventory constraints. 
 
(e) Computational Procedure 
As stated in Section IV, the min-max inventory policy (best 
decisions for the worst case demands, inventories) for the 
case when only bounds and substitutive are acting is found by 
taking 1500 inventory policy samples shown by the scatter 
plot in Fig. 2. The lower bound on cost (Min-Min solution) is 
Rs. 3412.5, and the upper bound is Rs. 9100.  From this 
scatter plot, the Min-Max solution has a cost not exceeding 
Rs. 5775, which is about 70% higher than the (unrealistic) 
min-min bound. The important point to note is that these are 
global bounds, and are valid over the entire (infinite) range 
of parameter (demand, supply, …) variations, including 
inventory constraints. Most alternative approaches either 
take deterministic demands or a few scenarios 
(low/average/high). The stochastic programming framework 
typically makes uncorrelated assumptions about probability 
distributions. The traditional robust programming approach 
does not have the rich correlated behavior we can handle. 
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Fig. 2: Scatter plot of min/max cost bounds through demand 
sampling 
 
While we have described a simple example, we have 
successfully run examples with up to 500 products, multiple 
locations, and tens of timesteps. With improvements in our 
computational methods, we expect to be able to handle 
industrial scale problems. Table 7 summarizes statistics for 
some of the examples that we have run and have obtained 

With Substitutive 
Constraints 

With 
Complementary 

Constraints 

With both 
Substitutive and 
Complementary 

constraints Products 

Order 
Freq 

Order 
Quant 

Order 
Freq 

Order 
Quant 

Order 
Freq 

Order 
Quant 

Car Type I 0.5 20 0.5 20 0.5 20 

Car Type 
II 0 0 0.5 12 0.5 12 

Car Type 
III 0.5 110 0.5 128 0.5 128 

Tyre Type 
I 0.25 274 0.25 248 0.25 261 

Tyre Type 
II 0.25 526 0.25 552 0.25 539 

Petrol 0.25 300 0.25 300 0.25 300 

Drivers 0.5 2 0.5 2 0.5 2 
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optimal solution, the largest having 78000 variables (18000 
integer) and 126000 constraints. 
 

TABLE 7 
DETAILS OF DIFFERENT PROBLEMS SOLVED USING THE NEW 

FORMULATION 
Locations Products Time steps 

1 1 100 
1 1 200 
1 25 24 

15 7 12 
60 2 12 
16 10 6 
1 500 12 

100 1 12 
 
Our formulation offers additional capabilities. Using 
techniques described in [12], we can estimate the amount of 
information in each one of the scenarios, by estimating the 
volume of the polyhedron [10] enclosed by the constraints 
composing the scenario. Table 8 summarizes the bounds on 
output cost and the amount of information encompassed by 
the constraints in each of the scenario sets. We can see that as 
we add more and more constraints, we are adding very less 
information to the system, as the information content is 
increased by less than 1 bit of information, but there is 
considerable change in the bounds. The absolute amount of 
information (around 55 bits) is based on a normalization 
volume – this reflects the apriori knowledge in the absence of 
any constraint information. 

 
TABLE 8 

RELATIVE INFORMATION CONTENT OF DIFFERENT SCENARIO 
SETS 

Scenario sets Absolute 
Minimum Cost 

Absolute 
Maximum Cost 

Information 
Content  

(Number of bits) 

Bounds only 3349.5 9187.5 55.96  

Bounds and 
Substitutive 
constraints 

3412.5 9100 56.10 

Bounds and 
Complementary 

constraints 
4469.5 8972.5 56.42 

Bounds, Substitutive 
and Complementary 

constraints 
4482.5 8910 56.52 

 
As we add more and more constraints, the uncertainty in the 
input data reduces. It is expected that the uncertainty in the 
output should also reduce simultaneously. Indeed this is true. 
When the substitutive and complementary effects are not 
considered, then the total minimum investment required is 
Rs. 3349.5. In this particular example, the substitutive effects 
do not affect the cost very much, but as soon as we consider 
the complementary effects between different products, the 
lower bound on cost shoots up to Rs. 4469.5, while the upper 
bound goes down from Rs. 9187.5 to Rs. 8972.5. When we 
consider both the substitutive and complementary effects, the 
lower bound further increases while the upper bound reduces 
to Rs. 8910.  
 
As we increase the information about the input data, reducing 
the number of possibilities, the possible range of the output 
data also reduces. The graph in Fig. 3 shows how the range of 
output varies with the information content for all the different 
scenarios. 
 

We can also analyze the relationship between scenarios using 
the relational algebra of polytopes. This is outside the scope 
of this paper. 
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Fig. 3: Information content vs range of output uncertainty 

VI. CONCLUSION 
Our approach offers a convenient and intuitive specification 
to handle uncertainty in supply chains.  Most other 
formulations handling uncertainty make ad-hoc assumptions 
about demand variations, independence between different 
goods, etc. Our approach does away with these in a simple 
and elegant fashion, using intuitive information meaningful 
in economic terms, while retaining computational 
tractability. It has shown considerable promise by being able 
to solve problems with realistic costs with many breakpoints 
and simultaneous complicated constraints. It has successfully 
analyzed semi-industrial scale problems. We believe that our 
work extends the state-of-art in a theoretically and practically 
useful direction. 
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