
 

 

  
Abstract—Metaheuristics are sequential processes that 

perform exploration and exploitation in the solution space aiming 
to efficiently find near optimal solutions with natural intelligence 
as a source of inspiration. One of the most well-known 
metaheuristics is called Ant Colony Optimisation, ACO. This 
paper is conducted to give an aid in complicatedness of using 
ACO in terms of its parameters: number of iterations, ants and 
moves. Proper levels of these parameters are analysed on eight 
noisy continuous non-linear continuous response surfaces. 
Considering the solution space in a specified region, some 
surfaces contain global optimum and multiple local optimums 
and some are with a curved ridge. ACO parameters are 
determined through Modified Simplex, MSM and Steepest 
Ascent methods, SAM, including their hybridisation. SAM was 
introduced to enhance a performance of MSM via the 
statistically significant regression analysis and Taguchi’s signal 
to noise, S/N, ratio to recommend preferable levels of 
parameters. A series of computational experiments using each 
algorithm were conducted. Experimental results were analysed 
in terms of design points, best so far solutions, mean and 
standard deviation including S/N ratio. It was found that the 
results obtained from hybridisation were better than those using 
single algorithm itself. However, the average execution time of 
experimental run and number of design points using 
hybridisation were longer than those using a single method. 
Finally they stated a recommendation of proper level settings of 
ACO parameters for all eight functions that can be used as a 
guideline for future applications of ACO. This is to promote ease 
of use of ACO in real life problems. 

 
Index Terms—Ant Colony Optimisation, Modified Simplex, 

Taguchi’s Signal to Noise Ratio, Steepest Ascent and Response 
Surface Methodology. 
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I. INTRODUCTION 
Optimisation algorithms can be categorised as being either 
conventional or approximation optimisation algorithms [1]. 
Conventional optimisation algorithms are usually based upon 
mathematical procedures. However, the applications of these 
methods might need exponentially computational time in the 
worst cases. This becomes an impractical approach, especially 
for solving a very large size problem. 
Alternative approaches that can guide the search process to 
find near optimal solutions in acceptable computational time 
are therefore more practical and desirable. Metaheuristics 
iteratively conduct stochastic search processes inspired by 
natural intelligence. They can be categorised into three 
groups: physically-based inspiration such as Simulated 
Annealing [2]; socially-based inspiration for instance Taboo 
Search [3]; and biologically-based inspiration e.g. Ant Colony 
Optimisation [4], Artificial Immune System [5], Genetic 
Algorithm [6], Memetic Algorithm [7], Neural Network [8], 
Particle Swarm Optimisation [9], and Shuffled Frog Leaping 
[10]. These alternative approaches have been widely used to 
solve large-scale combinatorial optimisation problems [11]— 
[14]. 

Response Surface Methodology (RSM) is a bundle of 
mathematical and statistical techniques that are helpful for 
modeling and analysing problems. A response of our interest 
is influenced by several predictor variables. An objective is to 
optimise this response. For example, suppose that a process 
engineer wishes to find the levels of temperature (x1) and 
pressure (x2) that maximise the yield (y) of a process. The 
process yield is a function of levels of temperature and 
pressure; y = ƒ(x1, x2) + ε [15]. 

Where ε represents the level of noise (standard deviation) 
or error observed in the response y. If we denote the expected 
response by E(y) = ƒ (x1, x2) = η, then the surface represented 
by; η = ƒ (x1, x2). So, it is called a response surface. 

A response surface above describes how the yield of a 
process varies with changes in k independent variables. 
Estimation of such surfaces, and hence identification of near 
optimal settings for predictor variables is an important 
practical issue with interesting theoretical aspects. Many 
systematic methods for making an efficient empirical 
investigation of such surfaces have been proposed in the last 
fifty years. These are generally referred to as evolutionary 
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operation (EVOP). RSM is used to improve the current 
operating conditions until the conditions of optimal yield are 
satisfied. In most RSM problems, a form of the relationship 
between the response and the independent variables is 
unknown. Thus, the first step in RSM is to find a suitable 
approximation for the true functional relationship between y 
and the set of its independent variables. Usually, a low-order 
polynomial in some region of the independent variables is 
employed [15]. If the response is well modeled by a linear 
function of the independent variables, then the approximating 
function is the first-order model. 

Metaheuristics are more complicated due to constraints of 
the algorithm itself not of the question. These constraints or 
their parameters are needed to be initialised to optimise the 
outcome of the solution, or in other word, constraints directly 
affect the quality of the solution. So it is in turn inspiring an 
objective of this paper to examine the relation of constraints 
adjacent to the quality of solution of a chosen metaheuristic 
algorithm, Ant Colony Optimisation (ACO) in the context of 
Response Surface Methodology. A hybrid algorithm to 
determine the optimum of surfaces consists of two treatments; 
Modified Simplex Method (MSM) and Steepest Ascent 
Method (SAM). 

Inspection and analysis are used to determine a 
recommendation on the proper levels of parameter settings for 
eight non-linear continuous mathematical models within three 
main classes; unimodal, multimodal and curve ridge including 
a combination of multimodal and curve ridge functions. Eight 
non-linear continuous mathematical models are considered 
being complicated optimisation problems when applied to real 
industrial processes. 

This paper is organised as follows. Section II describes the 
selected metaheuristic; Ant Colony Optimisation (ACO) and 
its pseudo code. Sections III and IV are briefing about 
algorithms of Modified Simplex and Steepest Ascent, 
respectively. Sections V and VI are presenting Taguchi 
methodology and a hybrid algorithm of MSM and SAM, 
respectively. Section VII illustrates tested functions. Section 
VIII shows design and analysis of computational experiments 
for comparing the performance of the proposed methods. The 
conclusion is also summarised and it is followed by 
acknowledgment and references. 

 

II. ANT COLONY OPTIMISATION ALGORITHM (ACO) 
Ant algorithm was first proposed by Dorigo and his 

colleagues [4] as a multi-agent approach to optimisation 
problems, such as a travelling salesman problem (TSP) and a 
quadratic assignment problem (QAP). There is currently a lot 
of ongoing activity in the scientific community to extend or 
apply ant-based algorithms to many different discrete 
optimisation problems. Recent applications cover problems 
like a vehicle routing, a plant layout and so on. Ant algorithm 
is inspired by observations of real ant colonies. Ants are social 
insects and they live in colonies. Behaviour is direct more to 
the survival of the colony as a whole than to that of a single 
individual component of the colony. Social insects have 
captured the attention from many scientists because of a 

structure of their colonies, especially when compared with a 
relative simplicity of the colony’s individual. An important 
and interesting behaviour of ant colonies is their foraging 
behaviour and in particular how ants can find shortest paths 
between food sources and their nest [9], [16].  

While walking from food sources to the nest and vice versa, 
ants deposit on the ground a substance called pheromone, 
forming a pheromone trail. With ants ability to smell 
pheromone they tend to choose a path marked by strong 
pheromone concentrations with the higher probability. The 
pheromone trail allows the ants to find their way back to the 
food source and vice versa. It can be also used by other ants to 
find the location of the food sources found by their nest mates 
[10]. The pseudo code is used to briefly explain to all the 
procedures of ACO shown in Fig. 1. 

 
Procedure ACO Metaheuristic() 
While (termination criterion not satisfied) – (line 1) 

   Schedule activities 
      ants generation and starting point; 
      makes path or step for each ant 
      compare response function 
      if no improvement of response function then 
          communication with best ant response function 
          make path or step from local trap to best ant 
        else 
            if ant found the better response function then 
               go to line 5. 
            else 
                wait for best ant communication 
            end if 
       end if 
  end schedule activities 

end while 
end procedure  

 
Fig. 1 Pseudo Code of ACO Metaheuristic. 

 

III. THE SIMPLEX & MODIFIED SIMPLEX METHOD (MSM) 
The basic shape (design) is called the simplex [17]. The 

simplex design in a problem with k variables consists of k+1 
design points (vertices) but it is not necessary to have a 
property of equidistance. There are many extensions on the 
rigid simplex algorithm. One of the well-known is a modified 
simplex method (MSM) of Nelder and Mead [18].  

In the MSM an expansion or contraction of the reflection is 
allowed at each step. Although there are many possible 
stopping criterions for simplex algorithms, this study follows 
Nelder and Mead and includes the standard deviation of the 
estimated yields at the vertices of the simplex. Various 
stopping rules and one based on the sample range were also 
tried on the literatures, but they appeared to offer no 
advantage over the stopping rule based on the standard 
deviation of process yields. 

The simplex design is first applied at an arbitrary point 
within the safe region of operation. The response is measured 
for each of the design points. In a maximisation process with 
three variables or a tetrahedron simplex, the vertex 
corresponding to the lowest yield (W) is identified and 
reflected in the opposite hyper-face to obtain (R) via the 
centroid ( P ). The centroid obtained by other vertices in the 
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simplex consists of VH, VS, and VSH, or vertices of highest 
yield, second least yield and second highest yield, respectively 
[19], [20]. The new design point can be extended (E) in the 
direction of more favourable conditions, contracted (C- or C+) 
if a move is taken for least favourable conditions, and shrunk 
toward best vertex if a contracted vertex is still the least but 
not less than the rejected trial condition (Fig. 2). The next run 
is carried out with variables set at values corresponding to this 
new design point. This MSM terminates, and the finishing 
strategy is applied. An idea of MSM’s logical decision is 
shown in Fig. 3. 
 

 
 

Fig. 2 Different Simplex Moves from the Rejected Trial Condition 
(W). R = Reflection, E = Expansion, C+ = Positive Contraction and 

C- = Negative Contraction. 
 
Procedure of MSM () 
While (termination criterion not satisfied) – (line 1) 
    Schedule activities 
        Reflection of least yield W is processed 
        Compute R and f(R) 
        Compare response function 
        if f(R) is highest then 
           extension E will be processed  
        else 
              if R and f(R) continue to be the least then                     
                       reflect backward to prior point 
       recalculate W and f(W) 
 or 
                      contraction C or shrinking S will be processed 
                  recalculate f(C) or f(S) 
               else 
                     go to line 3. 
               end if 
          end if 
     end schedule activities 
end while 
end procedure 
 

Fig. 3 Pseudo Code of MSM. 
 

IV. STEEPEST ASCENT METHOD (SAM) 

The procedure of SAM is that a hyperplane is fitted to the 
results from the initial 2k factorial designs. The data from these 
design points are analysed. If there is an evidence of main 
effect(s), at some chosen level of statistical significance and 
no evidence of curvature, at the same level of significance, the 
direction of steepest ascent on the hyperplane is then 
determined by using principles of least squares and 
experimental designs. The next run is carried out at a point, 
which has some fixed distance in this direction, and further 
runs are carried out by continuing in this direction until no 
further increase in yield is noted. When the response first 
decreases and no improvement of two more verified yields, 
another 2k factorial design will be carried out, centered on the 

preceding design point. A new direction of steepest ascent is 
estimated from this latest experiment. Provided at least one of 
the coefficients of the hyperplane is statistically significantly 
different from zero, the search continues in this new direction 
(Fig. 4). Once the first order model is determined to be 
inadequate, the area of optimum is identified via a second 
order model or a finishing strategy. 
 
Procedure of SAM () 
While (termination criterion not satisfied) – (line 1) 
    Schedule activities (when Regression verification criteria not satisfy) 

Determine significant first order model from the factorial design points 
     Schedule activities 
        Move along the steepest ascent’s path with a step length (∆)  
    Compute response functions 
         if new response function is greater than the preceding then 
           move ahead with another ∆ 
         else 
              calculate two more response function to verify the descending trend 
    if  
     one of which response function turn out to be greater than  

preceding coordinate’s response function then 
    use the biggest response function to continually move along  

         the same path 
          else 
       use closest preceding point as a centre for new 23 design 
       end if 
             end if 
          end schedule activities 
     end schedule activities 
end while 
end procedure 
 

Fig. 4 Pseudo Code of SAM. 
 

V. TAGUCHI METHODOLOGY 
This method is created to propose understanding and 

alternative resolutions to manufacturing qualities. The 
fundamental concepts are a consequence of variations. The 
three main statistic contribution theories are loss function, off-
line and design of experiments. 

Consequence of qualities in this case is marked by Signal to 
Noise ratio (S/N), which will present sensitivity of response to 
noises or uncontrollable factors. This ratio is used to point out 
stability of the design system and quality of chosen design’s 
factors. A philosophy of off-line quality control, designing 
products and processes are insensitive to parameters outside 
the design engineer's control. Taguchi’s robust design of 
experiment with an advantage of S/N is encompassing both 
internal and external arrays within the improving assessment 
process [19].  

The S/N provide a standard index for data comparison, 
while having noises contributing the sets of n data. 
Consequently, the method will be more comprehensive to 
extend the process design to quality control. Signal to noise 
ratio consists of; 

S/N = /n])y1[(Log10
n

1i

2
i10 ∑

=

−   (Maximisation) 

S/N = /n]))(y[(Log10
n

1i

2
i10 ∑

=

−    (Minimisation) 
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VI. HYBRID OF MSM AND SAM 
Iterative strategies of MSM and SAM have S/N as a 

moving trigger rather an ordinary yield. Parameters are 8 unit3 
of the volume of the factorial design; 5 units of the step 
length; 10% of the significance level for tests of significance 
of slopes; Ants, Moves and Iterations. If conditions were 
satisfied by SAM, MSM will be then continued. The iterations 
replicate until the termination criteria is at the satisfaction 
state. Whilst continually checking stopping criteria in section 
VIII, following steps below would be carried out; 

Step 1a: Perform a 23 design at a random centre point go to 
Step 2, or, 
Step 1b: Perform a 23 design at a maximal S/N point from 
preceding design. 
Step 2: Fit a regression plane to S/N so that the fitted model 
has the form, ŷ  = β0 + β1Iterations+ β2Ants + β3Moves. 
Step 3: Test whether there is evidence that either β1, β2 or β3 is 
different from zero at the 10% level of significance.   
Step 4: If the result is significant, move one step along the 
path of steepest ascent (the fitted regression line). 
Step 5: Perform k+1 design points at the highest S/N vertex 
from the last SAM design plus one movement.  
Step 6: Fit a regression plane to the k+1 design points plus the 
centre coordinate.  
Step 7: Test for a significance level of the design vertices plus 
one centre coordinate.  
Step 8: If the result is significant, a reflection or an extension 
will be carrying out, while omitting the regression plane and 
applying ordinary MSM motions. 
Step 9: Return to Step 1b. 
 
Stopping Criteria for a Hybrid Algorithm; 

• Parameter default rule – when the coordinates escape 
from the first quadrant of ACO parameters or the 
upper or lower limit, or, 

• Dispersion rule – when the best four S/N’s meet the 
preset standard deviation (SD); 0.0005 for no noise 
operation, 0.005 for noise equal to one and 0.05 for 
noise equal to three, and, 

• Regression verification rule – when a significance 
level of the regression of SAM or MSM is more than 
0.1. 

 

VII. TESTED FUNCTIONS 
In this paper, eight non-linear continuous mathematical 

functions were used to test performance measures of the 
related methods whilst searching for proper ACO parameter 
settings. 

A. Parabolic Function 
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C.  Camelback Function  
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D.  Goldstein-Price Function 
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E. Styblinski Function 
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F. Rastrigin Function 
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G. Rosenbrock Function 
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H.  Shekel Function 
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VIII. EXPERIMENTAL DESIGN AND ANALYSIS 
In this work, a computer simulation program was developed 

using Matlab 2006v.7.3B, and EVOPtimiser v.1.1.0. A Laptop 
computer DV2000 HP Pavilion was used for computational 
experiments. The proposed method is designed to use S/N as 
improving trigger, rather than ordinary yield.  

If the range of factorial design points from SAM or simplex 
design points from MSM led to significant effect of β1, β2, or 
β3 (Table I). The design shape will move one step forward. 
The precedent is followed by analysing the current design 
shape plus one move and a maximal design point will be used 
as a vertex for the next design method. 

Countering the latter if P-value exceeds the preset value of 
significance level, there’s no effect of regression coefficients. 
Accordingly to noises, operating points from either simplex or 
factorial design may need to duplicate and measure yields to 
satisfy Regression verification rule. If Dispersion rule is not 
satisfied but Regression verification rule is met, a replication 
from the last three realisations will be chosen from the least 
significance level without a consideration of the preset value. 
The algorithm does proceed to the next design method and the 
only chosen one will be attributed to the prior-best-four 
calculation. 

It is also stated that ACO’s parameters have to only be 
positive integers. Consequently the process will confront with 
round-up error that would probably create a premature stop. 
On the early phase, MSM are more efficient for some 
surfaces. When levels of noises increase in the system, 
computational time taken is also longer due to complexities of 

ACO algorithm [22]. Some non-linear continuous functions 
have effects of keen peak, zig-zag and multi local optimum. 
These effects and the nature of the algorithm can terminate the 
final results uncertainly. However, the results did show the 
high level of the spread of yields. The performance of the 
MSM algorithm was then enhanced via SAM and Taguchi’s 
S/N. 

When there is no noise (Table II) the performance of pure 
MSM brought the same level of average yields. However, the 
hybrid algorithm seems to be better in terms of the number of 
design points. The performances of the hybrid continue to be 
more preferable when levels of noises increase in the system, 
(Tables III and IV). Number of design points is taken more 
when compared.   

From Table V, preferable levels of parameters found by the 
pure MSM and hybrid algorithms are determined and are set 
to be suggested levels for ACO’s parameters, to promote an 
ease of use in all classes of equations. Under a consideration 
of recommended levels of its parameters, those may bring the 
benefit to solve industrial processes via ACO when the nature 
of the problems can be categorised as unimodal, multimodal 
or curve ridge including the mixed nature of multimodal and 
curve ridge response surface.   
 An extension on super modified simplex method could be 
applied to enhance the performance of MSM [17] when 
computational processes exceed the upper or lower limit 
(Parameter default rule). For SAM, a polynomial of higher 
degree function may be used if there is an evidence of 
curvature in the system. Hybrid algorithm would be more 
efficient in terms of Best So Far (BSF) solutions if the preset 
SD was set at lower level than what had been presented. 
Number of motions by each method could be enlarged to 
speed up the process improvement. Moreover, it tends to 
increase chances of moving directly toward the optimal 
direction by a regression path of SAM. For MSM the 
enlargement would probably lead to an increase in capability 
of local searches. 
 

TABLE I 
Analysis of Variance (ANOVA) and Regression Coefficients and their 

Significance for Parabolic Function without Noise. 

Sources of Variation  Df SS MS F P-value 

Regression 3 0.93 0.31 11.03 0.021001 

Residual 4 0.11 0.03    
Total 7 1.05     

 

  Coefficients t Stat P-value 
Iterations, β1 0.118 1.992 0.117 
Ants, β2 0.085 1.427 0.227 
Moves, β3 0.309 5.205 0.006 
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TABLE II 
Experimental Results Obtained from Related Methods on each Tested Function without Noise. 

MSM Hybrid 

Average BSF  and Round-up Parameters Average BSF and Round-up Parameters Function 
Name 

Actual 
Yield Iterations Ants Moves Design 

Points 
Actual 
Yield Iterations Ants Moves Design 

Points 

Branin  5.922 7 12 10 49 5.922 9 14 8 25 
Camelback  28.252 8 14 14 55 26.286 10 7 11 156 
Goldstein-

Price  8.901 9 15 19 47 8.901 5 6 14 82 
Parabolic  12.000 6 7 6 31 12.000 6 7 7 39 
Rastrigin  100.000 7 8 13 33 100.000 7 4 13 66 

Rosenbrock  80.000 3 4 5 21 80.000 6 4 8 24 
Shekel  18.981 7 14 12 27 18.980 4 8 9 40 

Styblinski  353.332 6 5 9 40 353.332 5 10 7 24 

 
TABLE III 

Experimental Results Obtained from Related Methods on each Tested Function with Noise Standard Deviation of 1. 

MSM Hybrid 

Average BSF  and Round-up Parameters Average BSF and Round-up Parameters Function 
Name 

Actual 
Yield Iterations Ants Moves Design 

Points 
Actual 
Yield Iterations Ants Moves Design 

Points 

Branin  5.922 7 20 11 36 5.922 14 8 13 114 
Camelback  30.280 13 11 13 31 36.526 11 11 19 122 
Goldstein-

Price  8.901 10 14 9 35 8.901 11 11 16 105 
Parabolic  12.000 8 8 10 43 12.000 6 7 8 24 
Rastrigin  99.644 4 4 6 46 99.913 5 4 8 24 

Rosenbrock  80.000 13 16 12 26 80.000 6 6 7 24 
Shekel  18.981 10 11 23 28 18.979 6 6 8 50 

Styblinski  353.332 11 9 12 35 353.332 6 9 9 24 

 
TABLE IV 

Experimental Results Obtained from Related Methods on each Tested Function with Noise Standard Deviation of 3. 

MSM Hybrid 

Average BSF  and Round-up Parameters Average BSF and Round-up Parameters Function Name 
Actual 
Yield Iterations Ants Moves Design 

Points 
Actual 
Yield Iterations Ants Moves Design 

Points 

Branin  5.922 10 6 13 39 5.922 7 7 12 40 
Camelback  17.537 4 3 7 27 29.096 8 6 13 65 
Goldstein-

Price  8.901 7 15 11 29 8.868 4 5 7 24 
Parabolic  12.000 9 8 11 37 12.000 5 6 8 24 
Rastrigin  99.840 6 5 6 36 100.000 6 5 11 23 

Rosenbrock  80.000 6 4 8 30 79.879 3 2 3 24 
Shekel  18.981 5 8 10 25 18.981 9 8 9 25 

Styblinski  353.332 6 11 13 33 353.332 9 4 10 40 
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TABLE V 
Recommended Levels of Parameter Settings without Noise (N=0) and with Noise (N=x).  

Function 
Name 

Recommended Levels of 
Parameters MSM Hybrid 

N=0 (9,14,8)*   
Branin  N=x (11,8,13)   

N=0 (8,14,14)   Camelback  
N=x (9,9,16)   
N=0 (5,6,14)   

Goldstein-Price  
N=x (9,15,10)   

N=0 (6,7,7)   
Parabolic 

N=x (6,7,8)   

N=0 (7,4,13)   
Rastrigin   

N=x (6,5,10)   

N=0 (3,4,5)   
Rosenbrock  

N=x (10,10,10)   
N=0 (7,14,12)   Shekel  N=x (8,10,17)   
N=0 (5,10,7)   

Styblinski 
N=x (8,7,10)   

Note: (a,b,c)*: a = (Average) Iterations, b = (Average) Ants, c = (Average) Moves 
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