

Abstract—This article presents a global optimization

algorithm of the interval type that requires only a limited

amount of memory and treats standard constraints. It is shown

to be able to find one globally optimal solution under certain

conditions. It has been tested with many examples with various

degrees of complexity and a large variety of dimensions ranging

from 1 to 100 in a basic personal computer. The numerical

experiments have indicated that the algorithm would have a

better chance to successfully find a good approximation of a

globally optimal solution than a recently proposed memoryless

version. Yet, it still finds such a solution much more quickly and

using much less memory space than a conventional interval

method. The effects of the memory size on reliability and overall

efficiency are investigated. A good compromised algorithm

would require only a very limited memory size.

Index Terms—Constraints, Global optimization, Interval

algorithm, Limited memory.

I. INTRODUCTION

 Many important operations research problems aim at

solving this problem

 minimize f(x),

 subject to h(x) = 0, g(x)≤ 0, x∈X. (P)

There are two commonly used global optimization

approaches: stochastic or deterministic. Stochastic algorithms

search the whole domain only in a probabilistic fashion so that

at most they can yield a good estimate of a globally optimal

solution in a probabilistic sense. Stochastic search methods

(such as the simulated annealing method and genetic

algorithms) have been more popular choices than

deterministic methods because of their simplicity of

implementation, relative quickness for reaching an

approximate solution, less memory demands, and a wider

range of applicable problems. Deterministic algorithms offer

attractive alternatives for solving problem (P). They are

generally based on the idea of branch and bound [11]. Among

them, interval methods offer both sound theoretical

foundation and reliable numerical solutions [14]. Despite

attractive features of the interval method, most published

reports on their applications seem to be generally limited to

optimization problems in low dimensions (say, much less than

100 according to our recent survey of literature). Obviously,

there are three major concerns in solving large dimensional

Manuscript received December 5, 2008.

 M. Sun is with Department of Mathematics, The University of

Alabama,Tuscaloosa, AL 35487 USA, currently visiting Applied Math

Dept of Hong Kong PolyU (present phone: 852-27665641; fax:

852-23629045; e-mail: msun@gp.as.ua.edu).

problems: large amount of memory space, slow speed of

convergence, and requirement of acceptable bounds of the

objective function over any interval subdomains. A

memoryless interval algorithm has been recently proposed,

aiming at easing the first two concerns [17]. Indeed, the

reported results have indicated that the memoryless interval

algorithm significantly improved memory requirement and

convergence speed, while retaining a good degree of

reliability. This article reports one new version of the interval

algorithm that shows improvement in reliability while

sacrificing little both in memory space usage and in overall

speed of convergence.

II. INTERVAL METHODS

 The standard branch and bound method was originally

introduceed in [5] and [10], and more recently presented in

[11]. Its main idea is the recursive refinement of partition of

the search domain and underestimation of f(x) over the

partitioned subdomains. Interval methods (see [14] for

earlier work) are in the general framework of branch and

bound along with interval arithmetic. The interval arithmetic

provides an effective means of underestimation of

programmable functions, and offers an additional benefit of

including roundoff errors. Following the initial works in late

1950s and early 1960s, research on interval methods became

a more heated topic from late 1970s to early 1990s (cf. [1],

[16], [8]) among many researchers in several fields. A solid

foundation had been laid by the end of 1980s. Subsequent

improvements were done since 1990s (e.g., [4], [3], [18],

[15], [20]).

 Let f* be the global minimum value of the objective

function f(x), and x* a global minimizer in X. As in the

interval analysis literature, we use boxes and intervals

interchangeably. A typical interval method uses 2 major

objects, a list L that holds all the subintervals of partitions that

remain to be processed, and an inclusion function F(Y) =

[Lb(F(Y)), Ub(F(Y))] that offers a lower bound and an upper

bound of f(x) over any box Y to be processed. The general

procedure would consist of these major steps.

Algorithm 1. (Standard interval algorithm for global

optimization)

 1). Initialization. Set the list L = φ. Set the working box

Y=X.

 2). Subdivision of Y. The algorithm splits up Y into

subboxes. Add the resulting subboxes to L.

 3). Deletion conditions: To increase efficiency of the

method, unwanted boxes V (where no global minimizer can

be located) need to be identified and then deleted.

An Efficient Limited Memory Interval

Algorithm for Global Optimization

Min Sun

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-7-5 IMECS 2009

 4). Selection of a new working box Y from L.

 5). Termination criterion. Obviously, any interval algorithm

stops if there are no more boxes to be processed. But

practically, it may stop earlier according to some other

termination criteria.

 Two well known early versions of interval methods

(Ichida-Fujii [12] and Hansen [8]) fall into this framework.

Ichida-Fujii’s algorithm selects a new working box based on

the smallest lower bound of inclusion function, while

Hansen’s algorithm selects a new working box based on the

oldest age or on the largest size. By now, there are a large

variety of implemented versions of the interval method (e.g.,

[3], [18]). There are also several accelerating devices

reported in the literature. Interval methods have been used for

solving many different kinds of mathematical problems

arising from various fields of applications. But a quick survey

of a large number of published reports on their applications

seems to indicate that they are generally limited to problems

in fairly low dimensions (say, much less than 100 in most

cases). Obviously, there are indeed two major concerns in

solving large dimensional problems: large amount of memory

space required to hold boxes for further processing, and slow

speed of convergence due to a large number of boxes to be

processed.

 Maintaining a memory structure is seen as a very common

strategy in many global optimization methods. Genetic

algorithms and its variations explicitly maintain a population

of candidate solutions. Tabu search [7] maintains a tabu list

that represents information about recently visited solutions.

A standard interval algorithm keeps track of a list of all the

subboxes that might contain some global solutions. In case

unisolated global solutions exist, this list can grow very

quickly without a finite bound. There is even a

memory-based version of simulated annealing [2]. Even some

local search methods also employ a memory structure. One

typical example is the BFGS quasi-Newton method where an

approximate inverse Hessian matrix has to be memorized

between two consecutive iterations of update.

 Memory structures are used in various algorithms for

different purposes. In the case of standard interval algorithm,

a list of boxes with unlimited length is used to ensure that no

global solutions will be lost. But whether all the global

solutions will be identified to any desired degree of accuracy

depends on specific implementation of the algorithm. For

example, only one global solution is guaranteed to be

estimated accurately by the standard Ichida-Fujii algorithm.

But the standard Hansen’s algorithm is capable of identifying

all the global solutions (possibly under expanses of a lot more

CPU times). It is commonly believed that any optimization

method that is capable of identifying one global solution or a

good estimate of one global solution within a reasonable time

frame would be of a good practical value. One memoryless

interval algorithm was recently designed, which only targets

one global solution in a way similar to Ichida-Fujii interval

algorithm. But for the other global solutions, it no longer

commits any computer memory and CPU time since they may

not be extracted accurately anyway. It trades the loss of other

global solutions with much improved memory requirement

and convergence speed. It completely abandons the list,

breaking away from the standard memory philosophy of the

interval method and the branch-and-bound method in general.

Algorithm 2. (Memoryless interval algorithm for

unconstrained global optimization)

 1). Initialization. Set the working box Y=X.

 2). Subdivision of Y. The algorithm splits up Y into

subboxes.

 3). Deletion conditions: Unwanted subboxes are

identified and deleted.

 4). Reset Y to the subbox V with the lowest Lb(F(V)).

 5). Check termination criterion.

 The 3 major steps can be implemented without using a list.

Theoretically, the memoryless algorithm is guaranteed to

capture one global solution under certain conditions.

Numerically, it has a good chance to capture one global

solution. It is an interval algorithm with the least amount of

memory requirement. Thus it is likely the fastest interval

algorithm. But several important issues remain to be

investigated. One of them is the improvement of reliability.

We address this issue by reintroducing the list. But unlike the

standard interval method, the list is no longer unlimited. We

add a small hard limit M on the length of list.

Algorithm 3. (Limited memory interval algorithm for

unconstrained global optimization)

Given f(x), X, M, and F(.).

Step 1. Initialization:

 Step 1a. Set a working interval Y=X. Set the list L = φ.

 Step 1b. Get F(Y).

 Save fbest = f(c), where c = Mid(Y).

 Step 1c. Set y = Lb(F(Y)).

Step 2. Update:

 Step 2a. Take any k in {i: Wid(Y) = Wid(Yi)}, where Y =

Y1x Y2… xYd.

 Step 2b. Bisect Y normal to the coordinate direction k,

obtaining intervals V1 and V2.

 Step 2c. Get F(V1) and F(V2).

 Step 2d. Set y1 = Lb(F(V1)), y2 = Lb(F(V2)).

 Step 2e. Deletion. Check deletion condition(s) to see if V1

and V2 can be deleted. For example,

 fbest < yi � Delete Vi, for i=1, 2.

 Step 2f. Place surviving box(es) into list L. If the total

number of boxes in L exceeds M, only the M boxes with the

best y-values are kept.

 Step 2g. Selection. Select a box from L that has the smallest

y-value as Y, and the corresponding y-value becomes y.

 Step 2h. Update fbest = min{fbest, f(c)}, where c = Mid(Y).

Step 3. If one of the prescribed termination criteria holds, then

stop with output:

 f*≅ y, f* ∈ F(Y), x*≅ Mid(Y).

Step 4. Go to Step 2.

Theoretically, the new algorithm is guaranteed to capture

one global solution under the same conditions used for the

convergence of the memoryless algorithm. Numerically, it has

a better chance to capture one global solution. A large amount

of supporting numerical evidence will be presented in the next

section. Some of our test examples contain additional

constraints. When constraints are present in (P), the algorithm

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-7-5 IMECS 2009

can be adjusted to handle them (see [17] or [18]).

III. NUMERICAL RESULTS

 In our implementation of interval algorithms 1-3, several

other acceleration devices are incorporated whenever

appropriate.

 Lp = a primary list of boxes that represents the remaining

region to be searched. This is used only in algorithm 1.

 Ls = a saved list of boxes that are not deleted but do not

need to be further processed (i.e. inactive) according to some

prescribed tolerances (εbox, εf) listed below. This is used

mainly in algorithm 1.

 εbox = a small box size threshold. Any active box V with

size Wid(V) less than εbox will be moved from Lp to Ls.

 εf = a small threshold of deviation of the objective function

values. Any active box with the fluctuation of the objective

function value less than εf will be stored into Ls as well.

 nfmax = the maximum number of function (f(.) or F(.)) calls

allowed. It is checked only once for every certain number of

iterations. This limit is relaxed when an algorithm continues

to improve its best solution.

 cpumax = the maximum CPU time allowed. It is also

checked once for every certain number of iterations.

 A bad initial solution is supplied to each algorithm for

every test example. It is used to initialize fbest. However,

when constraints are present, an infeasible initial solution is

intentionally selected which increases degree of difficult and

reduces success rate under the specified stopping conditions.

 To test performance of the new algorithm, we have used a

large number of examples with or without constraints. Most

of these examples have been widely used by other people for

testing their new optimization algorithms (e.g., [6], [9], [13],

[18] , [19]). Among those are: Rastrigin function, Goldstein-

Price function, piecewise function, Levy functions, Branin

function, Shubert function, our linear complementarity

problem, our discrete Halmilton-Jacobi-Bellman equation

problem, De Jong function, Colville function, Griewank

function, Rosenbrock function, Zakharov function, sphere

function, Schwefel functions, step function, and Ackley

function. Modified versions of some of those functions have

been included as well. Among those examples, 16 of them are

formulated with flexible dimensions. We vary those

dimensions as 4, 10, 40, and 100. Different dimensions

resulted in different test examples. The total number of

examples we have tested is over 100. Their dimensions vary

from 1 to 100. Many of those examples are often regarded as

difficult benchmark examples by other people. Obviously it is

not a good idea to explicitly state all those examples. Since

all the test examples are taken from published papers, the

currently best known objective function value of each

example is generally available. If it is not available, our own

best solution is adapted. Thus we have shifted each objective

function so that the currently best known objective function

value of any optimization problem becomes zero.

Constrained and unconstrained problems are separately

grouped so that we may get a better idea of effect of

constraints on the performance of the algorithms. Similarly,

problems are further divided into 4 groups in terms of the size

of dimension (1-6 for small dimensions, 9-13 for medium

dimensions, 40-100 for high dimensions). Limits on the

number of function calls and CPU time consumption are set to

different values for the different ranges of dimensions. The

same examples are also included in [17]. But test results are

not identical for the first 2 algorithms since different sets of

algorithm parameters have been used so that new numerical

results are generated instead of duplication of existing results.

 We have used two ranking scores (originally introduced in

[17]) to quantitatively measure the performance of each

algorithm. One of them is a composite ranking score to

quantitatively compare various results. A composite ranking

score Rq reflects the quality of the final solution in terms of the

objective function value as well as the maximum amount of

constraint violation. More precisely, we first calculate a

ranking score rf based on the final best objective function

value (called fbest).

Then we calculate a ranking score rc based on the maximum

amount of constraint violation of the final best solution Vc =

max{|hi(xbest)|, max{0, gj(xbest)}: i=1,…, m, j=1,…, p}.

The composite ranking score for solution quality is then

defined as

 Rq = max{rf, rc}.

The other score is the total number of objective function (f(.)

or F(.)) calls (nf or nF). Those two scores would reflect the

effectiveness of global optimization algorithm. For

constrained optimization problems, each algorithm would

require a certain number of calls of the constraint functions.

Those calls have been omitted when the number of function

calls is calculated. We observe that the original objective

function and its inclusion function would require significantly

different computational efforts. So they are separately

counted. Then additional numerical tests are performed to

estimate how many f-calls (say, NFf) would be equivalent to a

single F-call. This factor is used to determine a combined

number of objective function calls.

 Rnf = nf + NFf*nF.

The total number is a major effectiveness indicator. But CPU

time would also include various CPU time overheads required

by each algorithm. But due to page limitations, CPU results

are omitted.

 Numerical results of 6 different sets of examples are

presented below. A separate table is displayed for each set of

examples. We have implemented all the three interval

algorithms. Their main difference is the limit on the length of

list L. The limit is 1 for the memoryless interval algorithm

(MLIA). The standard interval algorithm (SIA) uses a fairly

large limit (say, 50,000) and it stops when that limit is

reached. The new limited memory interval algorithm

(LMIA(M)) is tested with limit values M=2, 3, 4, 5, 6, 7, 8, 9,

Objective Function Value: Ranking Score rf (f* = 0)

fbest <0.001 <0.01 <1.0 < 10 ≥ 10

rf 1 (best) 2 3 4 5

Constraint Violation Amount: Ranking Score rc (V*c = 0)

Vc <0.01 <0.1 <1.0 < 10 ≥ 10

rc 1 (best) 2 3 4 5

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-7-5 IMECS 2009

10, 20, 30, 40, and 50. These values are shown in the first row

of each table given later.

 The main body of each table contains two sets of data

separated by /: quality ranking scores Rq and percentage of Rnf

relative to the maximum value in each row. Several

percentage figures show 00, indicating the fact that those Rnf

values are of at least 2 orders of magnitudes smaller than their

respective maximum values. The first column shows the

example id. The second column contains |L|, the actual size of

list L under SIA. Each of the remaining columns contains Rq

over Rnf-percentage. The bottom two rows are averaged

values of Rq and Rnf-percentage. All of the test results have

been generated by an AMD Turion 64 X2 mobile technology

TL-58 /1.9GHz laptop computer with 2GB of RAM under 32

bit Windows Vista environment.

 Example set 1. This set contains 41 examples of small

dimensions ranging from 1 to 6 that do not contain any

constraints other than the bound constraints. Summary of the

test results is shown in Table 1. Clearly, MLIA is consistently

the fastest. Although LMIA(M) with small M values may take

a little bit more time to converge, they usually improve the

quality of final solution. SIA is most reliable. But it requires

more computational efforts most of times.

 Example set 2. This set contains 20 examples of small

dimensions between 1 and 6 with additional equality and\or

inequality constraints. Now the overall ranking Rq would

reflect the quality of final solution in terms of its objective

function value as well as the amount of constraint violation.

Summary of its test results is in Table 2. Generally speaking,

the performance of each algorithm is down a little compared

with its performance on unconstrained problems. This is

partially due to the fact that we used the worst case scenario in

the initialization step as pointed out in Section II.

 Example set 3. This set contains 15 unconstrained

examples of medium dimension 10. Summary of the test

results is in Table 3. The new algorithm is about 2 orders of

magnitudes faster than its standard version in terms of the

number of objective function calls, while it maintains a

compatible degree of quality. For these 15 examples,

performance of MLIA and LMIA(M) somehow exceed our

normal expectations.

 Example set 4. This set contains 5 constrained problems

with dimensions ranging from 9 to 13. Summary of its test

results is in Table 4. Again, the constraints very much

affected every algorithm’s performance. Constraints made

MLIA and LMIA(M) to exit more quickly. The tough

constraints made SIA worse than MLIA and LMIA(M) in

quality ranks. In fact, the data show that SIA did not

encounter any feasible solutions at all after processing so

many boxes. This issue is to be examined further elsewhere.

 Example set 5. This set contains 15 unconstrained problems

with dimensions all equal to 40. Summary of its test results is

in Table 5. Now MLIA becomes the best in all aspects of

rankings. We did not test enough constrained problems of

dimensions 40 or higher. So no results on constrained

problems of higher dimensions will be reported below.

 Example set 6. This set again contains 15 unconstrained

problems with dimensions all equal to 100. Summary of its

test results is in Table 6. In any event, MLIA is still a lone top

performer in terms of the number of function calls.

In conclusion, LMIA(M) for relatively small values of M

possess all the major observed advantages of the newly

developed MLIA over SIA. They improved the reliability of

MLIA with a little sacrifice of additional computational time

(the memory increase is pretty much negligible). It is a good

idea to use MLIA to quickly get trial solutions. In they are not

satisfactory, LMIA(M) with a very limited M value (say 4)

would be adopted to get improved results. In most cases, this

strategy would yield compatible final solutions with less CPU

time than SIA.

REFERENCES

 [1]. Alefeld, G., Herzberger, J.: Introduction to Interval Computations,

 Academic Press, New York, NY (1983)

 [2]. Ali, M.M., Torn, A., Viitanen, S.: A direct search variant of the simulated

 annealing algorithm for optimization involving continuous variables,

 Computers & Oper. Res. 29, 87-102(2002)

 [3]. Clausen, J., Zilinskas, A.: Subdivision, sampling, and initialization

 strategies for simplical branch and bound in global optimization,

 Computers & Math. Applications 44, 943-955(2002)

 [4]. Csallner, A.E.: Lipschitz continuity and the termination of interval

 methods for global optimization, Computers & Math. Applications

 42,1035 -1042(2001)

 [5]. Falk, J. E., Soland, R.M.: An algorithm for separable nonconvex

 programming problems, Management Science 15, 550-569(1969)

 [6]. Floudas, C.A., Pardalos, P.M.: A Collection of Test Problems for

 Constrained Global Optimization Algorithms, Springer-Verlag, Berlin

 Heidelberg (1990)

 [7]. Glover, F.: Tabu search — Part I, ORSA J. on Computing 1: 3,

 190-206(1989)

 [8]. Hansen, E.R.: Global Optimization Using Interval Analysis, Marcel

 Dekker, NY (1992)

 [9]. Hedar, A.R., Fukushima, M.: Derivative-free filter simulated annealing

 method for constrained continuous global optimization, J. of Global

 Optimization 35, 521-549(2006)

[10]. Horst, R.: An algorithm for nonconvex programming problems,

 Mathematical Programming 10, 312-321(1976)

[11]. Horst R., Tuy H.: Global Optimization, Deterministic Approaches,

 Springer-Verlag, Berlin (1990)

[12]. Ichida, K., Fujii, Y.: An interval arithmetic method for global

 optimization, Computing 23, 85-97(1979)

[13]. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution

 Programs, 3rd ed., Springer-Verlag, Berlin (1996)

[14]. Moore, R.E.: Interval Analysis, Prentice-Hall, Englewood Cliffs, NJ

 (1966)

[15]. Pedamallu, C. S., Ozdamar, L., Csendes, T., Vinko, T.: Efficient interval

 partitioning approach for global optimization, J. of Global Optimization

 42, 369-384(2008)

[16]. Ratscheck, H., Rokne, J.: New Computer Methods for Global

 Optimization, Wiley, New York, NY (1988)

[17]. Sun, M., A Fast memoryless interval algorithm for global

 optimization, submitted for publication (2008).

[18]. Sun, M., Johnson, A. W.: Interval branch and bound with local sampling

 for constrained global optimization, J. of Global Optimization 33,

 61-82(2005)

[19]. Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster, IEEE

 Trans. on Evolutionary Computation 3, 82-102(1999)

[20]. Zhang, X., Liu, S.: Interval algorithm for global numerical optimization,

 Engineering Optimization 40, 849 – 868(2008)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-7-5 IMECS 2009

 Table 1. Quality ranking scores Rq / percentage of Rnf: example set 1
ex |L| 50k 50 40 30 20 10 9 8 7 6 5 4 3 2 1

1 58 1/98 1/98 1/98 1/98 1/99 1/100 1/100 1/98 1/89 1/79 1/70 2/16 2/15 2/11 2/09

2 62 1/97 1/97 1/97 1/98 1/98 1/100 1/100 1/100 1/91 1/76 1/67 1/57 1/47 1/35 3/07

3 51 1/99 1/99 1/99 1/99 1/99 1/100 1/100 1/100 1/98 1/73 1/65 3/28 3/25 3/23 3/20

4 65 1/98 1/98 1/98 1/98 1/99 1/100 1/100 1/100 1/94 1/84 1/71 1/61 1/49 1/36 1/21

5 5 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100

6 1 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100

7 37 1/97 1/97 1/97 1/97 1/97 1/99 1/99 1/99 1/100 1/98 1/84 1/65 4/53 4/39 4/22

8 7 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/67 1/67

9 230 1/100 1/68 1/69 1/52 1/52 3/19 3/17 4/12 4/11 4/10 4/09 4/08 4/20 4/14 4/07

10 3110 5/100 5/11 5/09 5/07 5/05 5/03 5/03 5/02 5/02 5/02 5/01 5/01 5/01 5/01 5/00

11 7 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/67 1/67

12 6 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/67 1/67

13 5 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/93 1/87 1/61

14 967 1/100 1/88 1/73 1/57 1/27 1/13 1/12 1/11 1/09 1/09 1/08 1/11 4/04 4/03 5/01

15 937 1/100 1/36 1/36 1/29 3/20 3/12 3/17 3/07 3/06 3/15 3/13 3/09 3/03 3/06 3/03

16 1892 5/100 5/14 5/12 5/09 5/07 5/04 5/04 5/03 5/03 5/02 5/02 5/02 5/01 5/01 /01

17 7 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/78 1/78

18 7 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 3/83 5/78

19 18 1/97 1/97 1/97 1/97 1/97 1/97 1/97 1/97 1/97 1/97 1/98 1/98 1/100 1/81 1/44

20 24 1/99 1/99 1/99 1/99 1/99 1/99 1/99 1/98 1/98 1/98 1/99 1/99 1/100 1/72 1/32

21 85 1/08 2/100 2/62 2/61 2/60 2/11 3/28 3/13 3/02 3/01 3/01 3/01 3/01 3/01 3/00

22 3856 1/100 1/18 1/14 1/11 1/07 2/04 2/03 1/04 1/04 5/02 5/01 5/03 5/02 5/01 5/01

23 293 1/100 1/86 1/72 1/72 1/44 4/11 4/10 4/09 4/09 4/06 4/06 4/05 3/17 3/11 3/06

24 17 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 3/94 3/56

25 49 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 3/99 3/85 3/81 3/59 4/48 4/32 5/04

26 13 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/36 1/36

27 51 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/67 1/67 1/62 4/34

28 12 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/97 1/86 1/62

29 9 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/72 1/66

30 11 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/99 1/99

31 113 1/92 1/92 1/92 1/92 1/77 1/100 1/91 1/76 3/53 3/59 4/51 4/44 4/35 4/23 4/13

32 8 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/96 1/96

33 22k 2/100 3/11 2/10 3/07 4/07 4/04 4/03 5/03 5/03 5/02 5/02 5/02 5/01 5/01 5/00

34 73 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/99 1/97 1/96

35 20 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/96 1/69 1/66

36 16 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/99 1/99 1/91

37 20 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100

38 29 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/84 1/82

39 20 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/99 1/96

40 33 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/83

41 25k 2/100 2/11 2/09 2/07 2/05 2/02 2/02 2/02 2/02 2/02 2/01 2/01 2/01 2/01 2/00

av-q 1.24 1.29 1.27 1.29 1.37 1.51 1.54 1.56 1.66 1.76 1.78 1.85 2.00 2.10 2.32

av-n 1438 /100 /20 /16 /14 /11 /06 /07 /06 /05 /05 /04 /04 /03 /03 /02

 Table 2. Quality ranking scores Rq / percentage of Rnf: example set 2
ex |L| 50k 50 40 30 20 10 9 8 7 6 5 4 3 2 1

42 31 1/100 1/100 1/100 1/100 1/100 1/59 1/58 1/57 1/49 1/49 1/48 1/45 1/42 1/38 1/19

43 31 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/95 1/52 5/39

44 7 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/87 1/39

45 29 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/95 1/87 1/79 3/54 5/09

46 16 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/98 1/98 1/98 1/56

47 44 1/100 1/100 1/100 1/100 1/91 1/65 1/60 1/56 1/51 1/44 3/52 3/44 1/22 1/17 4/12

48 8892 1/100 1/09 1/08 1/06 1/04 1/03 1/02 1/02 1/02 1/02 1/02 1/01 1/01 1/01 1/00

49 7 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/88 1/58 1/44 1/38 1/37 1/36

50 752 1/100 1/43 1/33 1/28 1/21 1/12 1/11 2/11 2/10 2/08 3/06 3/05 5/05 5/04 3/02

51 58 1/100 1/100 1/100 1/98 1/93 1/42 1/41 1/40 1/38 1/37 1/32 1/27 1/22 1/17 1/11

52 21 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/98 2/77 2/70

53 22k 2/100 3/08 3/07 3/05 3/03 3/02 3/02 3/02 3/01 3/01 3/01 3/01 3/01 3/00 3/00

54 48 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/77 5/57

55 12k 3/100 3/08 2/06 3/05 3/03 5/01 4/02 5/01 5/01 5/00 5/01 5/01 5/01 5/00 5/00

56 261 1/100 1/100 1/100 1/83 1/68 3/75 3/69 3/64 3/57 3/51 3/49 3/39 4/27 4/21 4/07

57 642 1/48 4/100 4/77 4/57 5/38 5/14 5/14 5/12 5/14 5/13 5/04 5/02 5/01 5/01 5/00

58 4141 5/100 1/12 1/11 1/09 1/07 3/04 3/04 3/03 1/03 1/03 1/02 1/02 1/02 1/01 1/01

59 9544 1/100 1/24 1/20 1/17 1/12 1/05 1/04 1/06 3/06 3/05 3/04 3/04 3/02 3/01 3/01

60 13k 4/100 1/07 1/06 1/05 1/03 1/02 1/02 1/02 1/01 1/01 1/01 1/01 1/01 1/00 1/00

av-q 1.53 1.37 1.32 1.37 1.42 1.74 1.68 1.79 1.79 1.79 1.95 1.95 2.00 2.16 2.74

av-n 3776 /100 /16 /13 /11 /08 /04 /04 /04 /04 /03 /03 /02 /02 /01 /01

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-7-5 IMECS 2009

 Table 3. Quality ranking scores Rq / percentage of Rnf: example set 3
ex |L| 50k 50 40 30 20 10 9 8 7 6 5 4 3 2 1

61 187 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/86 1/86 1/86 1/86 1/71 1/57 4/36

62 37 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/85

63 27 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/90 1/87

64 44 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100

65 24k 5/100 5/26 5/28 5/20 5/14 5/07 5/06 5/05 5/05 5/04 5/03 5/03 5/02 5/02 5/01

66 20 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100

67 25k 5/100 5/48 5/39 5/30 5/20 5/10 5/09 5/08 5/07 5/06 5/05 5/04 5/03 5/02 5/01

68 31 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100

69 51 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/85 1/84

70 51 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/99 1/98 1/98 1/97 1/96

71 49 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/90 1/90

72 83 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/94 1/88

73 48 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/90 1/87

74 111 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100

75 23k 3/100 3/24 3/19 3/24 3/16 2/08 3/07 2/07 2/06 2/05 2/04 3/03 3/03 3/02 3/01

av-q 1.67 1.67 1.60 1.67 1.67 1.60 1.67 1.60 1.60 1.60 1.60 1.67 1.67 1.67 1.87

av-n 4874 /100 /31 /26 /26 /18 /10 /10 /09 /08 /07 /06 /05 /05 /04 /03

 Table 4. Quality ranking scores Rq / percentage of Rnf: example set 4
ex |L| 50k 50 40 30 20 10 9 8 7 6 5 4 3 2 1

76 12k 5/100 5/19 5/16 5/11 5/07 5/01 5/01 5/02 5/01 5/01 5/01 5/00 5/00 5/00 5/00

77 15k 4/100 1/22 1/17 1/14 1/09 1/05 1/04 1/04 1/04 1/03 1/03 1/02 1/02 1/01 1/01

78 13k 4/100 4/26 5/23 5/16 5/14 4/03 4/03 4/02 4/01 4/02 4/01 4/01 4/00 4/00 4/00

79 7942 5/100 1/29 1/22 1/18 1/12 5/01 4/09 5/00 5/00 5/00 5/00 5/00 5/00 5/00 5/00

80 12k 4/100 3/37 3/30 3/23 3/15 3/08 3/07 3/06 3/05 3/05 3/04 3/03 3/02 3/02 4/00

av-q 4.40 2.80 3.00 3.00 3.00 2.15 3.40 3.60 3.60 3.60 3.60 3.60 3.60 3.60 3.80

av-n 12k /100 /79 /57 /49 /40 /36 /44 /29 /27 /24 /21 /16 /12 /09 /04

 Table 5. Quality ranking scores Rq / percentage of Rnf: example set 5

ex |L| 50k 50 40 30 20 10 9 8 7 6 5 4 3 2 1

81 857 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/96 1/93 1/93 1/89 1/82 1/75 1/53 4/36

82 186 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100

83 146 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100

84 221 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/99 1/93

85 63k 5/100 5/67 5/51 5/37 5/13 5/12 5/12 5/11 5/10 5/08 5/06 5/05 5/04 5/03 5/01

86 80 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100

87 61k 5/100 1/85 1/68 1/51 1/34 1/17 1/15 1/14 1/12 1/10 1/09 1/07 1/05 1/03 1/02

88 137 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100

89 277 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100

90 120 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100

91 212 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100

92 63k 5/100 5/86 5/69 5/52 5/34 5/17 5/15 5/14 5/12 5/10 5/09 5/07 5/05 5/03 5/02

93 209 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100

94 540 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100

95 45k 4/100 3/92 3/69 3/56 3/37 3/18 3/18 3/15 3/15 3/12 3/10 3/08 3/06 3/04 3/02

av-q 2.00 1.93 1.93 1.93 1.93 1.93 1.93 1.93 1.93 1.93 1.93 1.93 1.93 1.93 2.13

av-n 16k /100 /87 /67 /53 /35 /20 /19 /17 /16 /14 /12 /10 /08 /06 /04

 Table 6. Quality ranking scores Rq / percentage of Rnf: example set 6
ex |L| 50k 50 40 30 20 10 9 8 7 6 5 4 3 2 1

96 2237 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/99 1/96 1/93 1/90 1/84 1/76 1/53 4/36

97 464 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100

98 388 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100

99 742 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100

100 55k 5/50 5/100 5/78 5/59 5/38 5/18 5/16 5/15 5/13 5/11 5/09 5/07 5/05 5/04 5/02

101 200 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100

102 52k 5/41 5/100 5/80 5/61 5/41 5/20 5/18 5/16 5/14 5/12 5/10 5/08 5/06 5/04 5/02

103 377 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100

104 709 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100

105 386 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100

106 654 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100

108 54k 5/40 5/100 5/80 5/60 5/40 5/20 5/18 5/16 5/14 5/12 5/10 5/08 5/06 5/04 5/02

109 579 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100

110 1585 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100

111 101 5/100 5/100 5/100 5/100 5/100 5/100 5/100 5/100 5/100 5/100 5/100 5/100 5/100 5/100 5/100

av-q 2.07 2.07 2.07 2.07 2.07 2.07 2.07 2.07 2.07 2.07 2.07 2.07 2.07 2.07 2.27

av-n 11k /48 /100 /80 /62 /43 /24 /22 /20 /18 /16 /15 /13 /11 /9 /7

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-7-5 IMECS 2009

