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Abstract—The Capacitated Multi-facility Weber
Problem is concerned with locating I capacitated fa-
cilities in the plane to satisfy the demand of J cus-
tomers with the minimum total transportation cost
of a single commodity. This is a non-convex opti-
mization problem and difficult to solve. In this work,
we focus on a multi-commodity extension and con-
sider the situation where K distinct commodities are
shipped to the customers subject to capacity and de-
mand constraints. Customer locations, demands and
capacities for each commodity are known a priori.
The transportation costs, which are proportional to
the distance between customers and facilities, depend
on the commodity type. We first present a mathemat-
ical programming formulation of the problem. Then
we propose an alternate location-allocation heuris-
tic and a discrete approximation method which are
used to statistically estimate confidence intervals on
the optimal objective values. Computational experi-
ments on randomly generated test instances are also
included.
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Transportation, Heuristics, Confidence intervals

1 Introduction

Given the locations of J customers and their demands,
the Multi-facility Weber Problem (MWP) is concerned
with locating I uncapacitated facilities in the plane and
allocating them to the customers in order to satisfy their
demand at minimum total cost. The objective function
of the MWP is neither convex nor concave [7], which
makes it hard to solve exactly. It becomes the so-called
(single-facility) Weber problem when the objective is to
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(email: ytoncan@gsu.edu.tr)
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determine optimal location of a single facility. In some
situations, facilities can have capacity constraints, which
gives rise to the Capacitated Multi-facility Weber Prob-
lem (CMWP). As can be observed, in an optimal solu-
tion of the uncapacitated problem each customer is served
from the nearest facility, which is not true for the more re-
stricted CMWP because of the capacity constraints. The
demand of a customer can be satisfied from different facil-
ities. In other words, the CMWP is a multi-source prob-
lem and belongs to a class of difficult problems. Sherali
and Nordai [18] have shown that it is NP-hard even if all
customers are located on a straight line. In this work we
consider the multi-commodity extension of the CMWP
where facilities and customers can send and receive more
than one commodity. This problem is concerned with
locating I capacitated facilities in the plane in order to
satisfy the demand of J customers for K commodities op-
timally and we call it the Multi-commodity Capacitated
Multi-facility Weber Problem (MCMWP) in the sequel.

The CMWP has received considerable research interest
starting from the seminal work by Cooper [7] for the
Euclidean distance CMWP (ECMWP). Sherali et al.’s
branch-and-bound algorithms based on a partitioning of
the allocation space for ECMWP and the lr-distance
CMWP (LCMWP) [17], using the Reformulation Lin-
earization Technique (RLT) [16] are examples for exact
solution procedures. They suffer from the inefficiency
with increasing problem size, which motivates research
for efficient and accurate heuristics. Cooper’s early alter-
nating location-transportation heuristic [7] and Aras et
al.’s discrete approximation strategy [1] are the earliest
and most recent examples. They are both inspired from
previous works on the (uncapacitated) MWP: Cooper’s
celebrated alternate location-allocation (ALA) heuristic
[6] and Hansen et al.’s p-Median heuristic [11]. The work
by Brandeau and Chiu [4] is somewhat different although
it is also on the MWP and inspired from Cooper’s ALA
heuristic. The authors have employed ALA to create a
random sample which is then used to statistically esti-
mate confidence intervals for the optimal objective value.

In this work, we follow this line of research: we first
propose two approximate solution procedures which can
be randomized through their initial conditions. One of
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them is the Multi-commodity and Capacitated version
of ALA (MCALA) and alternately solves location and
Multi-commodity Transportation Problems (TPs) after
being initialized at random facility locations. The other
one generalizes Aras et al.’s discrete approximation strat-
egy [1] proposed for the LCMWP; it is essentially based
on the solution of an approximating Mixed-Integer Linear
Programming (MILP) problem formulated using a large
candidate location set within the convex hull of the cus-
tomer locations. These approximate solution procedures
are then combined with statistical methods to estimate
confidence intervals for the optimal objective value of the
MCMWP.

The rest of this paper is organized as follows. We give
the formulation of the MCMWP and develop two ap-
proximate solution procedures, in the next section. This
is followed by Section 3 where we present the statisti-
cal procedures for estimating confidence intervals on the
optimal objective values of Combinatorial Optimization
Problems (COPs). In Section 4, we combine them with
the new heuristics to statistically estimate confidence in-
tervals on the optimal objective values of the MCMWP.
Finally, Section 5 concludes the paper.

2 The Multi-commodity Capacitated
Multi-facility Weber Problem

2.1 A Mathematical Programming Formu-
lation

A mathematical programming formulation of the
MCMWP can be stated as

MCMWP:

min z =
I∑

i=1

J∑

j=1

K∑

k=1

wijkcijkd(xi, aj) (1)

s.t.
J∑

j=1

wijk = sik, i = 1, . . . , I; k = 1, . . . , K (2)

I∑

i=1

wijk = qjk, j = 1, . . . , J ; k = 1, . . . ,K (3)

K∑

k=1

wijk ≤ uij , i = 1, . . . , I; j = 1, . . . , J (4)

wijk ≥ 0, i = 1, . . . , I; j = 1, . . . , J ;
k = 1, . . . , K. (5)

Here, J is the number of customers, I is the number
of facilities to be located and K denotes the number of
commodities. aj = (aj1,aj2)

T and qjk represent the co-
ordinates and its demand for commodity k of customer
j, respectively. The capacity of facility i for commodity
k is given by sik and xi = (xi1,xi2)

T denotes its unknown
coordinates. The allocations wijk are also unknown and

represent the amount of commodity k to be shipped from
facility i to customer j with the unit shipment cost per
unit distance being cijk. We assume that, according to
regulations, total amount of allocations on a road con-
necting facility i with customer j can not be larger than
the given upper bound uij . This is formulated with the
road capacity constraints (4). The other two sets are
the demand and resource constraints. This formulation
assumes that the problem is balanced, i.e., the total de-
mand is equal to the total capacity of the facilities for
each commodity.

It can be easily shown that an optimal solution of the
MCMWP always occurs at an extreme point of the poly-
hedron defined by (2)–(5), independent of the type of the
distance function d(xi, aj), which measures the distance
between facility i and customer j. Starting with the sem-
inal work by Cooper [7] different distance functions have
been used: the Euclidean, squared Euclidean, rectilinear,
and `r distances. In this paper we focus on the most
general case, the `r-distance MCMWP with 1 ≤ r ≤ 2.

2.2 Approximate Solution Methods

When the upper bounds uij are arbitrarily large and K =
1, namely there is only one commodity, the MCMWP re-
duces to the CMWP which is known to be very difficult to
solve exactly. Hence, the more general MCMWP should
be expected to be even more difficult. For that reason,
one way to deal with the MCMWP may be the use of
the heuristic algorithms. Hence, we propose two such
procedures in the following.

2.2.1 Multi-commodity Capacitated Alternate
Location Allocation (MCALA) Heuristic

Once a feasible transportation plan is given, the
MCMWP reduces to solving I Weber problems

min
xi

z =
J∑

j=1

c′ijkd(xi, aj), (6)

for each facility i = 1, . . . , I, each of which can be solved
by Weiszfeld’s algorithm [19] and its generalizations [5].

Here, c′ijk =
K∑

k=1

wijkcijk. Additionally, when the facility

locations are known, the MCMWP reduces to the solu-
tion of the Multi-commodity TP. Consequently, it is pos-
sible to tailor Cooper’s ALA heuristic [6] to produce a
good feasible solution for the MCMWP.

In their work on the dominance and convexity in loca-
tion theory, Hansen et al. [12] have shown that for the
lr-distance location problems with 1 ≤ r ≤ 2, optimal fa-
cility locations lie in the convex hull of customers. There-
fore, it becomes possible to randomize MCALA heuristic
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by randomly choosing initial facility locations within the
convex hull of customer locations.

2.2.2 Discrete Approximation (DA)

The set of optimal locations for the facilities lies in the
convex hull of the set of customer locations for the Rec-
tilinear CMWP (RCMWP), Squared Euclidean CMWP
(SECMWP), ECMWP and LCMWP with 1 ≤ r ≤ 2
[12]. Furthermore, the RCMWP has always an optimal
solution with facilities located at the intersection points
of vertical and horizontal lines drawn through the cus-
tomer locations [12]. In their earlier work, Aras et al.
[2] have used this property to devise an equivalent MILP
formulation of the RCMWP. Although this property is
not shared by the ECMWP, SECMWP, and LCMWP,
an approximate solution can still be obtained by solving
an approximating MILP formulation, which uses an arbi-
trary number of points in the convex hull of the customer
locations representing candidate facility locations [1]. A
similar approximating MILP formulation is obtained for
the MCMWP which we refer it as the AMCMWP.

The solution of the AMCMWP does not guarantee an op-
timal solution for the MCMWP unless we are extremely
lucky in identifying a set of discrete points in the con-
vex hull of customer locations including optimal facility
sites. When the number of candidate points goes to in-
finity, we would obtain an optimal solution of the original
MCMWP. However, there is a trade-off between the qual-
ity of the solution provided by the AMCMWP and the
required computational effort. It is possible to randomize
AMCMWP by randomly selecting the candidate points
in the convex hull of customer locations. Furthermore as
the final step of the discrete approximation procedure,
the MCALA is run as a subprocedure immediately after
solving the AMCMWP in order to improve the current
solution.

3 Estimating Statistical Bounds on Op-
timal Objective Values

Heuristics are systematic procedures that compute solu-
tions of optimization problems, which mostly depend on
the starting conditions. Hence, it becomes possible to
generate a random sample of objective values by running
a randomly initialized heuristic. Presumably, objective
values are independent of each other and distributed ac-
cording to the same probability distribution. Then, an
immediate question is how to take advantage of this ran-
dom sample of objective values to estimate the optimal
objective value z∗ of the problem.

3.1 Point and Interval Estimators

One possibility is to use Extreme Value Theory (EVT)
and benefit from Fisher and Tippett’s theorem [8]. Ac-
cording to this theorem, consider N independent sam-
ples, each of size m, obtained from the same continuous
distribution bounded from below (above) by a. Let Xi

denote the minimum (maximum) value of sample i, then
for m is large enough, Xi are Weibull distributed with
location parameter a. Recall that the probability den-
sity and probability distribution functions of the Weibull
distribution are respectively

f(z) =
( c

bc

)
(z − a)c−1

e
[−( z−a

b )c]
,

z ≥ a > 0, b > 0, c > 0 (7)

and

F (z) = 1− e
[−( z−a

b )c]
, (8)

where a, b and c denote the location, scale and shape
parameters, respectively.

Note that the location parameter of the Weibull distrib-
ution gives the minimum value of the distribution. The
Fisher and Tippett’s theorem is valid for any continu-
ous distribution from which the sampling is performed.
Hence, it is possible to treat an objective value obtained
by a randomly initialized run of the heuristic as the mini-
mum of a large random sample and claim that the distri-
bution of the objective values calculated by the heuristic
is approximately Weibull. Then, any point estimate of
the location parameter of the Weibull distribution esti-
mated using these heuristic objective values yields a point
estimate on the minimum objective value. Moreover, the
bounds of any interval estimate of the location parameter
give a lower and an upper bound for the optimal objective
value of the problem with certain confidence level.

Several researchers have employed this result to provide
point and interval estimators of z∗ for various difficult
COPs. Based on the early study of McRoberts [15], the
first systematic procedure of the point estimation using
EVT is proposed by Golden [9] for the famous Travel-
ing Salesman Problem (TSP). This procedure is later im-
proved by Golden and Alt [10] to compute confidence
intervals for the optimal value of large COPs. The au-
thors have defined zlb = min{zi : 1 ≤ i ≤ N}, where
zi is the minimum objective value in sample i, and have
shown that

Pr{zlb − b ≤ a ≤ zlb} = 1− e−N , (9)

which in fact means that [zlb − b, zlb] is a 100(1− e−N )%
confidence interval for the location parameter a, namely
z∗. Notice that the confidence level is almost 1 even for
small values of N. Los and Lardinois [14] have suggested
to use a subset of size N

′ ≤ N local optima with dis-
tinct values z1, z2, . . . , zN ′ to fit a Weibull distribution.
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The reason for this suggestion is that the Fisher and Tip-
pett’s theorem assumes the independence of N samples;
nevertheless having identical local optima in the set of N
samples is equivalent to repeating the same sample sev-
eral times. It should be noted that Golden and Alt [10]
considered a local optimal solution to be the extreme val-
ues of a sample when they apply a randomly initialized
heuristic and treated the intermediate heuristic step solu-
tions to constitute the corresponding sample. According
to Los and Lardinois [14] those samples can have different
sizes because the number of intermediate heuristic steps
can be different until the convergence of the heuristic.
Therefore, the authors have suggested to take N

′
sam-

ples each having m distinct local optima and developed
the formula

P (zlb − b

T
≤ a ≤ zlb) = 1− exp(−N

′

T c
), (10)

where T is any real number. The main advantage of this
formula over (9) is its explicit dependence on the con-
fidence level. In other words, 100(1 − α)% confidence
interval

[
zlb − b

T , zlb

]
for the location parameter a can be

achieved by letting T = (− N
′

ln α )
1
c . However, there is a spe-

cific problem with the Los and Lardinois formula (10): it
involves the shape parameter c, which can make the con-
fidence intervals wider or narrower than it should be due
to the direct dependence on c. As a remedy, one can con-
sider to take samples of equal size and apply Golden and
Alt’s procedure in order to avoid from direct dependence
of the confidence interval on the Weibull shape parame-
ter.

3.2 Procedures to Estimate Weibull Para-
meters

The estimation of the Weibull parameters is a critical is-
sue in the application of the EVT. Basically, three type
of estimators are used: Least Square Estimators (LSEs),
Simple Point Estimators (SPEs) and Maximum Likeli-
hood Estimators (MLEs).

3.2.1 The Least Squares Error Estimators

Golden [9] has pursued the Mc Roberts’ method [15] and
proposed a LSE for the location parameter a. By taking
logarithms of the Weibull distribution function (8) twice
Golden [9] has obtained

c ln(z − a)− c ln b = ln [− ln(1− F (z))] . (11)

Observe that when the location parameter a of the
Weibull distribution is fixed then (11) can be considered
as the equation of a regression line. Their values can
be estimated using the least square analysis. The esti-
mation procedure is repeated for different values of loca-
tion parameter a until the largest correlation coefficient
is obtained. A nonlinear regression version of the LSE is
proposed by Wilson et al. [20].

3.2.2 Simple Point Estimators

Let z1 ≤ z2 ≤ . . . ≤ zN be an ordered sample from a
Weibull distribution with unknown location parameter
a. The SPE or analytical estimator

â =
z1zN − z2

2

z1 + zN − 2z2
. (12)

is proposed by Zanakis [21] for the location parameter.
The scale parameter b is set to

b̂ = zd0.63Ne − â (13)

in almost all studies in the literature where â is an esti-
mate of the location parameter. The shape parameter c,
is the most important parameter which also affects the
estimation of other parameters and in case it is miscalcu-
lated the confidence intervals produced can be inefficient.
Zanakis [21] have proposed to estimate the shape para-
meter with

ĉ =
2.989

ln [(zk − â)/(zi − â2)]
(14)

where zi and zk are the observations with i = d0.16731Ne
k = d0.97366Ne, respectively. Zanakis [21] has indicated
that â, b̂ and ĉ produce the least mean squared errors for
the Weibull parameters. All these analytic estimators are
frequently used in the initialization of a MLE procedure.

3.2.3 The Maximum Likelihood Estimators

Let z1 ≤ z2 ≤ . . . ≤ zN be N independent observations
obtained from a Weibull distribution. The MLE method
aims to estimate the best values of the location parameter
a, the scale parameter b and the shape parameter c. In
other words, given the Weibull likelihood function

L(ϕ) =
N∏

i=1

c

bc
(zi − a)c−1 exp(−(

zi − a

b
)c) (15)

where ϕ = (z1, z2, ..., zN , a, b, c) is a vector consisting of
observations and parameters, the MLE method estimates
a, b and c, by maximizing L(ϕ) such that a ≤ z1, b ≥ 0
and c ≥ 0. This problem can be solved by using nonlinear
optimization techniques. Since the maximization of L(ϕ)
is equivalent to the maximization of the log-likelihood
ln(L(ϕ)), an approach is the solution of the equality sys-
tem obtained by setting the partial derivative ln(L(ϕ))
with respect to a, b and c, to zero as done by Golden [9].
The MLE procedure requires to find the maximum of a
non-convex function and it is not a trivial task. How-
ever, Zanakis [21] has stated that in general parameter
estimation by the MLE generate sample fits better than
the SPEs particularly when the shape parameter becomes
larger.
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4 Computational Experiments

In this section we present the computational experiments
with the MCALA and DA heuristics. They are imple-
mented in C++ and run on a Dell Server PE2900 with
two 3.16 GHz Quad Core Processors and 16 GB RAM
operating within Microsoft Windows Server 2003. Cplex
11.0 with default options is used as a subroutine to solve
the Multi-commodity TPs and the AMCMWPs which are
part of the MCALA and DA algorithms, respectively.

In the literature, there is no standard test library for
the MCMWP and hence we have generated our test in-
stances to carry out computational experiments. For this
purpose, 30 Euclidean distance MCMWP (EMCMWP)
instances of various sizes have been produced.

We have run each of the MCALA and DA heuristic 20000
times and obtained the benchmark global minimum as
the best of 40000 runs. The quality of confidence inter-
vals are evaluated with respect to these benchmark global
minimums. The initial facility locations for both heuris-
tics are randomly selected within the convex hull of the
customer locations. The MCALA heuristic requires the
initialization of I random facility locations while, the DA
algorithm requires 3× J random candidate facility loca-
tions.

We have performed two sampling schemes: the
McRoberts’ Approach (MRA) [15] and the Los and Lardi-
nois’ Approach (LLA) [14]. In the MRA, intermediate
solutions obtained during the run of our randomly ini-
tialized heuristics constitute the samples. As a successful
application of the MRA we refer to Golden and Alt [10].
Later on, Los and Lardinois [14] have claimed that the
sample generation method of MRA may harm the inde-
pendence of the sample and they have suggested to use
m × N distinct observations. Indeed, the requirement
that all observations should be distinct is not necessary
[20]. As a result, the LLA the samples can be constructed
of m observations which are not necessarily distinct.

Using both the MRA and LLA, we have generated sam-
ples from two parent populations each consisting of previ-
ously generated 20000 randomly initialized solutions with
the MCALA and DA heuristics. In our MRA implemen-
tation, we have considered samples of size N = 20, 30 and
40 each consisting of the intermediate feasible solutions
of randomly initialized heuristics (i.e. MCALA and DA).
In our LLA implementation, samples of size N = 20, 30
and 40 are taken, where each of them consists of m = 10
randomly initialized heuristic outputs.

In order to test the independence of the samples we have
employed the runs test [3] over the sample minimums
with 95% confidence level. On the instances which have
passed the independence test, the K-S test [3] with a 95%
confidence level has been applied to test the hypothesis

Table 1: Summary of the Performance of Statistical
Lower Bounding Approach

Interval No. Of
Heuristic Method Size Width Gap (%) Covering

(%) Intervals

20 29.3 2 30
MCALA MRA 30 28.8 3.2 30

40 34.8 6.2 30
Average 31 3.8

20 21.7 1.1 26
MCALA LLA 30 21.6 1.9 26

40 23.1 2.2 23
Average 22.1 1.7

20 21.5 1.6 27
DA MRA 30 22.2 1.3 25

40 24.6 2.3 24
Average 22.8 1.7

20 25.1 1.7 20*
DA LLA 30 27.7 1.1 18

40 27.2 0.8 18
Average 26.7 1.2

that the sample minimums are from a Weibull distribu-
tion. In case the sample minimums pass both of these
tests, a confidence interval can be determined.

We have obtained the MLEs of the Weibull parameters
by maximizing Weibull log-likelihood function ln(L(ϕ)).
For that purpose we have employed a modification of the
Nelder-Mead simplex search proposed by Lagarias et al.
[13]. The initial simplex is constructed by using estima-
tors â, b̂ and ĉ given with (12), (13) and (14), respectively.
To test the validity of the confidence intervals, we have
implemented the confidence interval procedure proposed
by Golden and Alt [10].

In Table 1, a comparison of both sampling approaches
and algorithms is summarized. The heuristics used are
shown in the first column. The second column stands for
the sampling method. The sizes of extreme value samples
are presented in the third column. The fourth column
denotes the mean confidence interval width which is cal-
culated by taking the average of 100× (zub−zlb)/zlb over
all intervals produced. Here, zlb and zub indicate the
lower and upper limits of the corresponding confidence
intervals. The fifth column presents the mean absolute
gaps between the lower limit of the confidence interval
and the benchmark global minimum. Similar to the in-
terval width, they are calculated by taking the average of
100× |z∗ − zlb| /z∗ over all intervals where z∗ is the cor-
responding benchmark global minimum. The average of
interval widths and absolute gaps are also presented for
each heuristic and sampling method pair. The sixth col-
umn indicates the number of instances which have passed
the K-S test and the benchmark global minimum lies
within the interval. In all but one case, the confidence in-
tervals have covered the benchmark minimum. This case
is indicated by an asterisk in Table 1.

Considering the results given in Table 1, we observe that
on the average, the mean confidence interval width and
the mean absolute gap obtained with DA algorithm are
smaller than the ones produced with the MCALA. On the
other hand, the MCALA yields larger number of confi-
dence intervals containing the benchmark minimum than
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the DA algorithm does. We should note that the con-
fidence interval approach applied to the MCMWP in-
stances produces lower bounds within 3.8% on the av-
erage. Hence, we can say that the confidence interval ap-
proach using EVT outputs acceptable lower bounds on
the objective function values of the MCMWP.

5 Conclusion

In this paper, we have addressed the MCMWP which is a
generalization of the CMWP. Two approximate solution
procedures (i.e. MCALA and DA) have been devised for
its solution and have been combined with statistical esti-
mation procedures. Initialized by random starting solu-
tions, the proposed approximate solution procedures are
run to produce random objective function values. The
Fisher and Tippett’s theorem has been applied to pro-
duce confidence intervals for the optimal solutions of the
randomly generated MCMWP test instances. The initial
computational experiments have shown that confidence
interval approach employing the EVT has performed well.
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