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A New Approach for Value Function
Approximation Based on Automatic State
Partition
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Abstract—Value function is usually used to deal
with the reinforcement learning problems. In large
or even continuous states, function approximation
must be used to represent value function. Much of
the current work carried out, however, has to design
the structure of function approximation in advanced
which cannot be adjusted during learning. In this pa-
per, we propose a novel function approximation called
Fuzzy CMAC (FCMAC) with automatic state parti-
tion (ASP-FCMAC) to automate the structure design
for FCMAC. Based on CMAC (also known as tile cod-
ing), ASP-FCMAC employs fuzzy membership func-
tion to avoid the setting of parameter in CMAC, and
makes use of Bellman error to partition the state au-
tomatically so as to generate the structure of FC-
MAC. Empirical results in both mountain car and
RoboCup Keepaway domains demonstrate that ASP-
FCMAC can automatically generate the structure of
FCMAC and agent using it can learn efficiently.

Keywords: reinforcement learning, fuzzy CMAC, au-
tomatic state partition

1 Introduction

In reinforcement learning (RL) problems, each agent
needs to learn an optimal policy to maximize the long
term reward. Most of RL algorithms seek such policy
using value function [1]. In complex tasks with large
or even continuous states, function approximation ap-
proaches must be used to represent value function. Much
of the work currently carried out uses linear function ap-
proximators such as CMAC, also known as tile coding, or
neural network [1, 2]. Owing to simple structures, they
have already been used widely in many issues [1, 3, 4, 5].

However, the structure of most function approximators
is specified before hand by human designer. The process
of designing a proper structure can be difficult and time
consuming [6]. In addition, poor structure design can
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result in agent’s poor learning performance. Recently,
many researchers have devoted to the topic of generating
the structure of function approximators automatically [6,
7,8, 9].

In this paper, we present a novel function approxima-
tion for RL, called Fuzzy CMAC (FCMAC) with au-
tomatic state partition (ASP-FCMAC) which automate
the structure design of FCMAC. FCMAC, which is based
on CMAC, employs fuzzy membership functions instead
of binary function used in CMAC to reduce the number
of learning weights so as to lower computation load and
avoid the setting of tiling number in CMAC [10, 11]. To
generate the structure of FCMAC automatically, ASP-
FCMAC analyzes Bellman error and learning weights to
partition the state during learning. At the very begin-
ning, the partition of state is very coarse and Bellman
error remains high. Later on, ASP-FCMAC can parti-
tion the state gradually and find good representation of
the state so as to reduce Bellman error and generate the
structure. Empirical results in two RL domains which are
mountain car and RoboCup Keepaway show that ASP-
FCMAC can generate the structure of FCMAC and learn
optimal policy efficiently.

2 Background
2.1 Markov Decision Process

Generally speaking, a RL problem can be represented as
a Markov Decision Process (MDP). A MDP can be rep-
resented as a tuple (S, A4, P, R) where S is a state, A is
an action set, function P : § x A — S defines the proba-
bility for agent to transfer from one state to another, and
R :S x A — R function defines the reward agent gets
after executing an action. The goal for each agent is to
maximize the following value function:

o0

Eﬂ[z YR (s¢,at)|s0 = 8] (1)

=0

VT(s) =

where s; and a; represent the state and action in step ¢
respectively, 7 is the discount factor. The Bellman er-
ror which displays the error between current reward and
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estimated reward can be represented as follows:
AV = max[R(s,a) + yR(P(s,a))] — V(s) (2)

In large or even continuous states, the value function
must be represented by approximated function. Linear
function approximation is one of the methods mostly
used. With it, (1) can be represented as follows:

V=6 (3)

where V is the approximated value of V, @ is a |S| x m
matrix, |S| is the size of state, m is the number of features
for each state, 6 is a vector with m dimensions and m <
|S| usually.

2.2 CMAC and Fuzzy CMAC

CMAC (also called tiling coding) is a widely used function
approximator [1, 2]. The state is covered by several layers
called tiling. Each tiling is consisted of some elements
called tiles and overlaps its adjacent tilings with some
offset. During learning, the function value is computed
as the summation from learning weights of active tiles.
The value function using CMAC can be represented as
follows:

Vo= Zg@i(s)wi
i=1

pi(s) = {

where w; is the learning weight of the i — th tile, ;(s) is
the feature indicating whether a tile is active or not, ny
is the storage of CMAC. The update rule for CMAC is
as follows:

1,if tile i is active
0, otherwise

(4)

w;i — w; + ap; AV (5)
where « is the learning rate.

Actually, the feature of CMAC is a binary function that
shows whether a tile is active or not. To attain general-
ization, CMAC needs to have a large amount of tilings
which will lead to high load of computation. In addition,
Sherstov et. al. demonstrate that there is no optimal
setting of tiling number. It should be adjusted dynami-
cally during learning [8]. Moreover, in different domains,
CMAC has to set the tiling number differently and man-
ually. J.Nie et al. use fuzzy membership function instead
of binary function for feature in CMAC [10] and name it
FCMAC, and Su et. al. discuss the learning ability of
both CMAC and FCMAC [11]. The fuzzy membership
function reflects the active degree of a certain feature
rather than just shows it active or not. Therefore, there
is no need to set the tiling number and FCMAC can avoid
the disadvantages mentioned above. Using FCMAC, the
function approximation can be represented as follows:

Vo= ) nis)w (6)
=1
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where 7;(s) is a fuzzy membership function, ng is the
storage of FCMAC. The update rule for FCMAC is:

w; — w; + 05777;AV (7)

3 Fuzzy CMAC with Automatic State
Partition (ASP-FCMAC)

FCMAC does not need to set the tiling number so that
it is used widely [12]. However, it still needs to partition
the state so that similar states can have similar values.
Its structure bases on how the state is partitioned which
influence the performance greatly [12]. Usually, the state
partition of FCMAC is done in advance and cannot be ad-
justed during learning. To solve this problem, we present
automatic state partition for FCMAC. This algorithm
starts without any partition on the state. Gradually, it
automatically partitions the state by analyzing the learn-
ing weights and Bellman error. To partition a state is to
generate a new learning weight. In other words, it gen-
erates the structure for FCMAC during learning. Auto-
matic state partition needs to solve two main problems:
one is the occasion for partition, and the other one is the
region to partition. Next, we will discuss the details.

3.1 The Occasion for Partition

The occasion for partition is the problem whether to ex-
ploit or explore, just like the one in evolutionary neural
network [9, 5]. Partitioning the state too frequently can-
not improve the effort of approximation but rather results
in poor performance. This is because each partition needs
time to adjust the learning weights, and if the state is par-
titioned inappropriately, this change cannot be reversed.
But partitioning the state too late will lead to slow learn-
ing rate since the update of learning weights bases on
coarse partitions. Therefore how to handle the tradeoff
between structural exploration and structural exploita-
tion is very important. In this paper, we use the Bell-
man error to make a decision when to partition the state.
Since Bellman error is the criterion to judge whether the
learning algorithm converges or not, it can reflect cur-
rent status of function approximation. When function V'
approaches the optimal one gradually, |AV (s)| declines.
Once |AV(s)| stops declining, the learning has been in
plateau. Therefore, we partition the state when Bellman
error stops declining so as to keep algorithm learning.
But in actual tests, the quantity of |AV (s)| is very noisy.
If partitioning the state according to |AV (s)]| of each step,
it will have so many meaningless partitions. Thus we use
an average method to judge whether Bellman error de-
clines. First, we set a sample size T" which stands for the
number of steps, and calculate the average Bellman error
in this sample:

Sy [AV(s)]
T

AV (s)] = (8)
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where |AV;(s)| is the error of each step. Next is the
condition judging whether to partition:

AV (s)] > [AV(5)ist] (9)

where |AV(8)4st| is the last average of |[AV(s)|. If
|AV (s)| is not less than the last one, then the learning
has entered plateau stage and it is necessary to partition
the state. Especially, when T is infinite, it does not par-
tition the state; when T is 1, it partitions the state at
each step. Therefore, the value of T influences how fre-
quently to partition the state. In our implementation, T'
is not a fixed value, but has a function relationship with
the number of partitions.

T=f(p) (10)

where p is the number of partitions and f is an increas-
ing function. The finer the partition of the state is, the
larger the value of T will be. The reason for that is the
approximation can be very quick at the beginning due
to few partitions, but latter it requires a relatively long
time to adjust the learning weights since more partitions
are made. At that time, it is necessary to keep current
partition structure rather than change it.

3.2 The Region to Partition

When an agent decides to partition the state, it needs
to choose which region to partition. Before presenting
our approach to choose the region, we need to state two
points clearly. Principally, it is unnecessary to partition
state along each dimension at one time. In our tests,
we partition state along each dimension at one time and
this approach works well. Therefore, for simplicity, all
dimensions will involve in each partition operation. An-
other point is that different partitions should have dif-
ferent length so as to reflect different degree of represen-
tation. Each time, we divide a certain region equally.
After many times, some regions have more partitions to
have a finer representation, while other regions have fewer
partitions to have a coarser representation. This can def-
initely reflect the importance of different regions. Next,
we present two types of methods to find which region to
partition.

1. Partition the region visited frequently

We use the following expression for partition.
p = maxv(p;) (11)

where p is the region we want to partition, v(p;) is the

account to visit region p;. If a region is visited frequently,

it, we believe, plays an important role in agent’s policy.

Therefore, it is desirable to refine the representation of
this region.

2. Partition the region with mazimal summation of learn-
ing weights.
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We use the following expression for partition.

p= miax(wi + wit1) (12)
where w; and w;41 denote the learning weights of re-
gion . We pick up the region with maximal summation
(w; + w;y1) to partition. In FCMAC, |AV (s)| can be
represented as follows:

|[AV (s)| = R(s,a) + mei —V{(s) (13)
i=1

Thus (w; +w;+1) is part of |[AV (s)|. Using (13) for choice
can cause agent to focus on the region where value func-
tion change rapidly. That is because the lager (w; +w;1)
is, the larger |[AV (s)|, which changes the learning weights
directly, will be. This is just like the value criterion used
by Whiteson [7]. Like evolutionary neural network, for
ASP-FCMAC, we adopt the idea of structure mutation
[9, 5]. Each time, when an agent decides to partition the
state, it will choose a region using either of the approaches
stated above or randomly choose a region. The possibil-
ity to choose randomly is €,,. After each partition, a new
learning weight is generated. Typically, it is initialized
as 0, so as to avoid affecting overall performance of FC-
MAC. We present the entire procedure of ASP-FCMAC

in next section.

3.3 ASP-FCMAC

Algorithm 1 presents the details of ASP-FCMAC. Func-
tion GetFeature Value returns the fuzzy value correspond-
ing to current state. Function ShouldPartition carries out
algorithm stated in 3.1. Function Partition makes use of
the method stated in 3.2 to divide the state so as to gen-
erate the structure of FCMAC. First in line 1, initial op-
eration is done including setting 0 for feature vector and
learning weights. The learning procedure is from line 2
to 12. In line 3 algorithm gains current state, in line 4
it calculates the Bellman error, and in line 5 it computes
the fuzzy value. Next in line 7, it updates the learning
weights according to (7). In line 9 we decide whether to
partition the state and do it in line 10.

Algorithm 1 ASP-FCMAC

1: Initialization;

2: fort=1,... do

3:  Input current state s¢;

4: AV =maz,[R(s,a) + YR(P(s,a))] — V(s);
5. n « GetFeatureValue(s;);

6: fori=1 to ny do

7 w; — w; + ap; AV

8: end for

9:  if ShouldPartition(|AV (s)|) then
10 Partition(s);

11:  end if

12: end for
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4 Results and Discussion

ASP-FCMAC is applied into two RL domains. One is
mountain car. Since its state has only two dimensions,
we can compare the policy of different learning algorithms
deeply. The other one is RoboCup Keepaway. It is a
complex multiagent system (MAS) with noise where the
effort of ASP-FCMAC can be further verified.

4.1 Results of Mountain Car

In the mountain car (MCAR) domain [1], a car initially
stays at the bottom of a ”U” shape mountain and starts
to climb up one side of the mountain. Since its engine
is not powerful enough, the car cannot climb up only
through driving forward. Instead, the car needs to drive
backward to another side and uses the energy generated
by going down. The main evaluation criterion is the num-
ber of steps needed for the car to climb up the mountain.
The less the number is, the better the policy is. Figure
1(a) depicts the scene of MCAR.

Four learning algorithms, including FCMAC, ASP-
FCMAC with partition on region visited most frequently
(ASP-FCMAC-Visit), ASP-FCMAC with partition on
region having maximal summation of learning weights
(ASP-FCMAC-Max), and CMAC, are tested. The pa-
rameters of RL in MCAR are a = 0.25,¢ = 0.01,\ =
1,7 = 0.9. For simplicity, triangular functions are used
here. The settings for ASP-FCMAC are § = 0.1,T =
10p, €;, = 0.01. For CMAC, the tiling number is set as
10; tile number in each tiling is set as 8 General speak-
ing, we have infinite choices how the state is partitioned
in CMAC. After several trials, we decide on these setting
since they perform well in Mountain Car. For FCMAC,
the state is divided into 8 partitions. For consistency
and comparison, we divide the state for FCMAC just as
CMAC did. Sarsa(\) is used to calculate value function
for all learning algorithms. Each learning algorithm is
run 5000 episodes and all of the curves plotted in Figure
2 and 3 are average of 8 different runs.

Figure 2 displays the number of steps needed for a suc-
cessful achievement. The x-axis is the episode num-
ber and the y-axis is the steps to goal. The results of
these four algorithms vary clearly. The steps of FC-
MAC and ASP-FCMAC-Visit are about 155, but the ones
of CMAC and ASP-FCMAC-Max are nearly 120. This
strongly proves that ASP-FCMAC definitely can generate
the structure and approximate value function with auto-
matic state partition. CMAC learns fastest among all the
four algorithms and has a flatten curve. FCMAC fluctu-
ates during learning. This is consistent to the conclusion
of Tokarchuck: although FCMAC stores fewer learning
weights than CMAC does, its generalization is worst than
CMAC [12]. Moreover, ASP-FCMAC-Max can get the
result just as CMAC has. Thus we believe the general-
ization ability can be raised by improving the partition of
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Goal

(a) Mountain Car [1]. (b)

3vs.2
progress.

Keepaway in

Figure 1: Test bed domains.

state, namely the structure of FCMAC. According to the
steps achieved, we believe ASP-FCMAC-Max represents
the state more efficient than ASP-FCMAC-Visit does.

To see whether the approach of automatic state parti-
tion has an impact on the convergence of FCMAC, we
plot average Bellman error of FCMAC, ASP-FCMAC-
Max, and ASP-FCMAC-Visit in Figure 3. We can see
that all of these algorithms converge at the end of learn-
ing. Therefore, automatic state partition does not in-
fluence the convergence of FCMAC. Besides, the error
of both FCMAC and ASP-FCMAC-Max declines faster
than ASP-FCMAC-Visit. This further verifies that ASP-
FCMAC-Max is superior to ASP-FCMAC-Visit since it
can reduce Bellman error quickly.
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Figure 2: Steps to goal.
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Figure 3: Average Bellman error.
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Figure 4: Policy space of different algorithms.

To investigate how the state is partitioned finally and
compare the policy space of different algorithms, we
plot the final policy for ASP-FCMAC-Max and ASP-
FCMAC-Visit in Figure 4. The x-axis is the position
and the y-axis is the velocity. The ticks in both x-axis
and y-axis represent the final partition structure. ASP-
FCMAC-Max has a fine representation near the center
of state, while ASP-FCMAC-Visit seems to divide the
state equally. It is reasonable for ASP-FCMAC to de-
vote finer representation in the area near the center of
state than other regions. That is because the car usually
has to select an action from forward, backward or stop in
the bottom of the mountain. Refining representation of
this area can help the car to get a better policy. But in
the areas adjacent to the top of both sides, there are less
choice for the car to take action and there is no need to
have a fine representation on these areas. Considering the
learning results of Figure 2, we can safely conclude that
it is smarter for ASP-FCMAC-Max to find the important
region in state than ASP-FCMAC-Visit does.

4.2 Results of Keepaway

Keepaway is a sub-problem of RoboCup Soccer Simula-
tion (RCSS) [3, 4]. Two teams are played in a fixed rect-
angular region. A team of keepers tries to keep the ball
away from the opposing team of takers as much as pos-
sible. Usually, there are = keepers and y takers (x > y).
The goal of keepaway is to make keeper to keep the ball
as long as possible. The main evaluation criterion is the
average episode duration. The longer it is, the better
policy agent has. Figure 1(b) shows 3vs.2 keepaway in
progress.
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(a) 3vs.2 Keepaway in 20x20 field

PO 30*30 4vs.3 Keepaway

Episode Duration (seconds)

T T T T
0 5 10 15 20 25 30

Training Time (hours)

(b) 4vs.3 Keepaway in 30x30 field

Figure 5: PO Keepaway.

The parameters of RL in keepaway are o = 0.125,¢ =
0.01,A = 1,v = 0.65. As it is stated in 4.1, we use tri-
angular function as fuzzy membership function. The set-
tings for ASP-FCMAC are 8 = 0.1,T = 10p, €, = 0.01.
Keeper uses Sarsa()\) to calculate value function, as well
as ASP-FCMAC-Max for function approximation. All
players including keeper and taker have 360 ° vision. Ex-
periments are carried out in partially observable (PO)
keepaway which is the standard version of keepaway.
Both sense information and action information in PO
keepaway have noises. All the learning curves are average
of 4 different runs.

Figure 5(a) plots the results of PO 3vs.2 Keepaway in
20x20 field. Average episode duration is 12.2s, standard
variation is 0.2s. That is consistent with the results using
CMAC [3] and hence verifies the effort of ASP-FCMAC
in large scale, noisy problem. To further study the learn-
ing ability of ASP-FCMAC, we perform PO 4vs.3 Keep-
away in 30x30 field. Since more players are added, ASP-
FCMAC needs to handle larger state (There are 13 state
variables in 3vs.2, 19 state variables in 4vs.3). Figure
5(b) shows the result. Average episode duration is 14.1s,
standard variation is 0.3s. That is also similar to the re-
sult using CMAC [3]. Therefore, we can safely conclude
that ASP-FCMAC performs the same as CMAC does in
PO Keepaway. But ASP-FCMAC is superior to CMAC
with less storage, generating structure automatically.

IMECS 2009



5 Conclusion and Future Work

This paper presents a novel approach for value function
approximation — ASP-FCMAC. We discuss two main
parts of it: the occasion for partition and the region to
partition deeply. ASP-FCMAC is applied into two RL
domains. In mountain car, we compare FCMAC, ASP-
FCMAC, and CMAC on different aspects including steps
to goal, Bellman error, and policy space. Empirical re-
sults demonstrate that the learning ability of FCMAC
can be improved by finding a better structure and ASP-
FCMAC can efficiently generate the structure for FC-
MAC. Besides we find that partitioning on the region
having maximal summation of learning weights is better
than on region visited frequently. In RoboCup Keep-
away, the results show that ASP-FCMAC can learn as
efficiently as CMAC in continuous state with noise. But
ASP-FCMAC is better than CMAC in regard to less stor-
age, generating structure automatically. Next, we will
focus on the algorithm finding a better occasion for par-
tition and extend ASP-FCMAC to different versions of
keepaway such as 5vs.4 keepaway.
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