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Dynamic Model for Portfolio Optimization

Cristinca Fulga

Abstract —In this paper we consider a multiperiod
model where the investor chooses a portfolio at the
beginning of each period facing uncertainty associ-
ated with the prices of the assets in portfolio at future
dates. The model is considered over a finite horizon,
with transaction costs, a risk averse utility function
and the uncertainty being modeled using the scenario
approach. We propose a solving procedure that uti-
lizes stochastic programming combined with decom-
position and approximating techniques. The effec-
tiveness of the proposed approach is proved by the
experimental results.

Keywords: dynamic portfolio optimization; progressive
hedging algorithm; approximate dynamic programming;
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1 Introduction

Over the last years, we witness a highly increased interest
of private and institutional investors for techniques and
tools aimed at a more efficient forecast of the dynamics
of securities prices and to a rational management of in-
vestment capital. The growing interest for the optimal
portfolio problem is demonstrated by the publication of
numerous papers on this subject. Following this trend,
our paper focuses on a dynamic portfolio model in which
the investor has to decide the composition of risky assets
at predetermined dates. To deal with the two main fea-
tures of the multistage decision making problem, uncer-
tainty and dynamics, we rely on stochastic programming
techniques. A long period of time, almost all compu-
tational work in stochastic programming was based on
the L-shaped decomposition method as described in Van
Slyke and Wets [19]. For a detailed discussion of the
techniques that help to manage uncertainty in solving
problems with stochastic programming, see Birge and
Louveaux [2]. When a probabilistic description of the
unknown elements is not available, a common approach
in practice is to rely on scenario analysis. An important
contribution in algorithmic research is the method of sce-
nario aggregation and the Progressive Hedging Algorithm
introduced by Rockafellar and Wets [16]. Contributions
from Mulvey and Vladimirou [11], Helgason and Wallace
[6], Berland and Haugen [1] show the potential of the
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method. Decomposition of a stochastic program across
scenarios partitions the problem into manageable sub-
problems, allowing the use of parallel processors. This
becomes essential for large-scale problems. The present
work combines the scenario decomposition approach and
the techniques of Approximate Dynamic Programming.
We also take into consideration the transaction costs for
the amount of asset traded; we note that there is an ex-
tensive literature treating the portfolio optimization in
the presence of transaction costs, see for example Pa-
tel and Subrahmanyam [12], Konno and Yamamoto [9],
Konno, Akishino and Yamamoto [10], Kellerer, Mansini
and Speranza [8], Fulga and Pop [4], [5] and Choi, Jang
and Koo [3].

The rest of the paper is organized as follows: in Section 2,
we give the mathematical formulation of the portfolio op-
timization problem. In Section 3 we propose a method for
solving the portfolio optimization problem based on the
Progressive Hedging Algorithm (PHA) combined with
techniques of the Approximate Dynamic Programming
(ADP). Computational results can be found in Section 4.

2 The portfolio model formulation

We consider the problem of a decision maker who is
concerned with the management of a dynamic portfolio
model over a finite horizon. The problem has a dynamic
structure that involves portfolio rebalancing decisions in
response to new information on market future prices (re-
turns) of the risky assets in his portfolio. Rebalancing
decisions are manifested in a sequence of successive re-
visions of holdings through sales and purchases of as-
sets. We assume that the assets are sufficiently liquid
that market impacts can be neglected. We choose the
utility function approach to capture the decision maker’s
risk bearing preferences.

The decision maker starts (at ¢ = 0) with an initial port-
folio in assets x1,9, ..., ¥n,0 and in cash 410 and has full
knowledge of the current asset prices po = (p1,0, ...7pn’0)/.
Thus, at ¢t = 0, individual asset holdings, as well as the
entire portfolio, can be accurately valued. We denote the
initial investment zo = (21,0, .. Tn,0s Tnt1,0)’ € R
The decision maker rebalances each period his portfo-
lio to achieve best return on his initial investment over
time. The planning horizon is divided into periods ¢ €
{0,...,T — 1} corresponding to the times at which port-
folio rebalancing decisions can be made. The represen-
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tation of uncertainty in input parameters of the portfo-
lio optimization model is a critical step in the modelling
process. The key random inputs in our portfolio manage-
ment problem are the assets prices {p} at future dates
within the planning horizon. Plausible evolutions of the
random parameter during the planning horizon are spec-
ified in terms of a scenario tree. The tree has a depth
equal to the number of periods (decision stages). The
root node corresponds to the initial state at the present
time (¢ = 0). All input data associated with the root
node are known with certainty. The tree branches out
from the root depict progressive outcomes in the values
of the random variable at subsequent periods. For ex-
ample, the branches emanating from the root reflect the
possible outcomes during the first period ¢ = 1. Each sce-
nario distinguishes a sequence of realizations of the ran-
dom variable during the planning horizon. Thus, there is
an one-to-one correspondence with a leaf (terminal node)
of the tree. We denote by S the discrete set of scenarios
generated by the collection of all realizations of the un-
certain quantities, with cardinality |S|. The probability
(weight) of scenario s € S is m,, m5 > 0, Vs = 1,]S| and
S|

Zws =1.
s=1

The action taken on asset i at time ¢ is denoted by
u;¢ and represents the amount of the i'" asset, pur-
chased/sold at time t € {0,...,7 — 1}. At each time pe-
riod ¢ the investor can either hold the asset ¢ (u; ¢ = 0),
buy more (u;; > 0), or sell off part of asset ¢ (u;; < 0).
The transition from the state at time ¢, denoted by
Ty = (xu,...,xn7t,x,,b+17t)/, to the state at time ¢ + 1,
Z¢y1, 1s governed by the decision u; = (uu,...,un,t)/
therefore, ;41 depends on x; and u;. We assume that
no short selling and no borrowing are allowed therefore,
Ty = (1,45 ey Tty Tnt1,e) ' > 0forallt € {0,...,T}. Buy-
ing and selling causes transaction costs which we assume
to be proportional to the amount of asset traded. We
denote by 100cP the transaction costs expressed as a per-
centage associated with buying one unit of asset ¢ and
with 100c® the transaction costs expressed as a percent-
age associated with selling one unit of asset ¢ € {1,...,n}.
Therefore, buying one unit of asset ¢ requires 1+ c? units
of cash and selling one unit of asset ¢ results in 1 — ¢*
units of cash. Through buying and selling, the investor
can restructure his portfolio in each time period ¢t. The
assets in the portfolio are then kept constant till the next
time period. We denote by W; = (W1 ¢, ..., Wy, Wn—s-l,t)l
the wealth vector at time ¢ € {0,...,T}, where W4,
1 € {1,...,n}, represents the wealth associated with the
asset ¢ calculated using the prices p;; > 0 at time t.
For the symmetry of the notation, sometimes we will
use Wpy41+ for designating x,1, but we keep in mind
that the two notations represent the same amount of
cash disposable in the portfolio at time t. We assume
that this liquidity component of the portfolio has a risk-
free and constant over the time periods return r. We
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note that in our problem, it is possible to break down
the effect of decisions and information on the variables
of the problem. For the wealth vector, recall that W;,
represents the wealth associated with the asset ¢ calcu-
lated using the number of assets x;; of type ¢ in the
portfolio at that particular moment and the prices p; ;
at t, Wit = piatis, i € {1,...,n}. We will call W, the
predecision wealth vector or simply, the wealth vector.
Let W, = (W{ft, s Wit #+17t)/ be the post decision
wealth vector which captures the effect of the decision
(Wi,t, ..y Un¢)’ on the wealth vector W,. For the com-
ponents of the post decision wealth vector at time ¢ we
have:

Wiy =it (i +uig), i € {1,...,n}, (1a)

n
Wi = Tngre + § DitUit
i1

(=)o (uig) + (1= c) o (—uiy)), (1b)

1, ifa>0

where 7 (a) = { 0, otherwise.

The components of the predecision wealth vector at time
t+ 1 are

Wit41 = Dit+1Ti 641, (2)
where Tit+1 = Tip + Ui, © € {1, ,n} R
Whti,441 = (1 + 7") W#Jrl,t' (3)
n+1
Let W, = ZWW be the total (predecision) wealth at
i=1
' n+1
time ¢t and W} = ZW;ft be the total postdecision
i=1

wealth at time ¢. One of the assumptions of the model
is that there is no exogenous intervention on the amount
of money involved in transactions during the time period
[0,T] therefore, the total (predecision) wealth must co-
incide with the total postdecision wealth at each time t.
In fact, at each beginning of a time period [¢,t+ 1], a
redistribution of the wealth take place, hence we have

W, = W

Remark 1 In the formulation of the problem, all the
variables whose values depend on the realization of a sce-
nario will be indezxed by s.

Remark 2 A policy is a function assigning to each sce-
nario s a sequence of decisions us = (Us,0, ..., Us,T—1) /7
where ug; = (ulys’t,...,unﬁsyt)l, t €{0,..,T —1}. Sev-
eral scenarios may reveal identical values for the un-
certain quantities up to a certain period. In order to
avoid dependence of hindsight, we impose the condition
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of monanticipativity: scenarios that share common in-
formation history up to a specific period must yield the
same decisions up to that period. Following the approach
in Helgason and Wallace [6], let s' be the equivalence
class of all scenarios having a common information his-
tory up to t. A policy is called implementable if for all
t € {0,...,T — 1} the t'" decision is common to all sce-
narios in the same class st i.e. Ugt = Uy ¢, whenever
st = s't. This means that, to be implementable, a deci-
sion made at time t can only depend on the history of the
process known at that time and not on its future. This
non-anticipativity constraints represent the links between
the scenarios, deriving from the information structure of
the problem.

The investor’s objective is to maximize the expected util-
ity of the wealth generated by allocating it between the
n risky assets and the riskless one, the liquidity compo-
nent, over the investment horizon [0,7]. The liquidity
component yields a riskless return r, the source of the
uncertainty being the prices of the risky assets. The de-
terministic equivalent program which hedges against the
outcomes specified by the set S of postulated scenarios is

(4)
(5)

Tist+l = Tisp + Uise, © = 1,m,

Tn+4l,s,t+1 = (1 + T) [xn+175,t+

n
+ Zpi,s,tui,s,t (=4 cP)o(uise) +
i=1

+(1—c®)o(—uise))] (6)

Ts,0 = To, (7)

w5t >0, t=0,T, (8)

W =Wg, (9)

Ut = Uy y, if 8" = 8" 5,8 €8. (10)

forallt=0,T-1, s=1,]|5|.

where U : R — R is the decision maker’s risk-averse util-
ity function. Constraint (5) represents the asset inventory
constraints and (6) are the cash balance equations. The
constraint (9) means that the decisions at time ¢ induce a
redistribution of the wealth, without any exogenous inter-
vention on the amount of money involved in transactions.
As well, (8) means that no short selling and no borrowing
are allowed.

We notice that if the nonanticipativity constraint (10)
is removed, problem (4)-(9) decomposes into individual
scenario problems but the solutions are not necessarily
implementable. Rockafellar and Wets [16] have devel-
oped the so-called Progressive Hedging Algorithm (PHA)
which allows to obtain an implementable optimal solu-
tion.

ISBN: 978-988-17012-7-5

3 The Progressive Hedging Algorithm

Its fundamental idea is to add the constraints that tie
together the different scenarios to the objective function
via Lagrangian multipliers. The Lagrangian as well as the
constraints are separable with respect to scenarios hence
the optimization problem decomposes into smaller prob-
lems, with respect to scenarios. Penalties for deviating
from implementability are added. Therefore, the prob-
lem decomposes into solving (approximately) iteratively
for each scenario s € S the subproblem:

T

>0 (Wa) = (A7) "=

t=0 5
3 s — )

(uS,Ov "'7us,T71) e 0.

max
Ug 1,t=0,T—1

(P)

where Q is the set of feasible but not necessarily imple-
mentable solutions, v is the current iteration index, the
vector ﬂg;l stands for an estimate of u,; from which we
do not want to stray too far, A;’;l € R" is a price vector
and v > 0 a penalty parameter.

By solving the subproblems (PY) the algorithm produces
a well hedged solution to the underlying problem which
performs well under all scenarios, relative to some weight-
ing of scenarios. The solving of the time-discrete opti-
mization problem (P?) could be done using the Dynamic
Programming (DP). Suppose that, under the scenario
s € S and at the moment ¢ € {0,...,7 — 1} the wealth
in hand is Wy ;. Let usy = (U1,5.45 ..., Uns,t)’ be our de-
cision at time ¢. The transition function (2) — (3) tell
us that if we take the decision u,; we are going to reach
the wealth W ;11. Suppose also that we had a function
Vs,i41 (Ws,41) that told us the value of being in state
W +41 by giving us the value of the path from this state
onward. Then, we could evaluate each possible decision
ug; and choose the decision that has the largest one-
period contribution plus the value of reaching the wealth
Wy 141, denoted by Vi 11 (Wy441) . Therefore, for each
t € {0,...,T — 1} we consider the problem:

max [U (Wst) — (AZ;l)luS,t—

Us,t

(PL)

1112
Ugp — UZ’t ! H2 + Vi1 (Ws,t+1):|
Us,t c Qt

—37

where the set of feasible solution €2; is defined by the
constraints (5), (6), (9) and x5 41 > 0, Tpt1,5,041 > 0.

Instead of DP, we propose an algorithm based on the Ap-
proximate Dynamic Programming techniques. Stepping
forward in time, we have not computed the value function
so, we have to turn to an approximation in order to make
decisions. A simple and effective approximation is to use
separable, piecewise linear approximations for the value
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function V. The accuracy of the approximation depends
on the iterative process of slopes update.

The algorithm

Step 1. Initialization

1. Initialize Nmax, v, A2, and @9 ¥ for all stages t and

all scenarios s (one can take AS ;=0and @), =0).
2. Set v =1.
3. Set s =1.

Step 2. Solving (PY)

1. Solve the problem (P;t) forallt =0,7 — 1. Let uy,
be the optimal solution of (Ps’ft) ,t=0,T—1.

2. If s < |S|, increment s. Go to Step 2.1.
Step 3. Updating

For t = 0,7 and all scenarios s € {1, ...,
implementable solutions

|S|} compute the

where 7/, = ZW:S , and update the implementability mul-
Ts
sest
tipliers

A= AZ;l + (u:t - a:t) .
Step 4. Checking stopping conditions

1. If, for all t =0,T — 1,

1
2
<e,

~p Ay 1 2
Hus,t ” + Z s,t)

sest
then, STOP.

2. Increment v; if v < Npax go to Step 1.3. Otherwise
STOP.

4 Computational results

The proposed algorithm was implemented in a custom
program. The utility function and the quadratic term
were approximated by piecewise-linear functions and for
the optimization step the Revised Simplex Algorithm was
used. The convergence of the algorithm that we use to
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solve the problem (PS” t) relies on Theorem 1 from Powell,
Ruszczynski and Topaloglu [14].

To illustrate the behavior of the proposed method, we
considered the optimization of a portfolio of assets trans-
actioned at the Bucharest Stock Exchange. The portfolio
is composed of fifteen assets, the most attractive in the
last period of time, and the initial investment is divided
equally among the assets. We simulated the evolution of
the portfolio over 10 periods of time, one period repre-
senting one month, and a scenario tree with nine branches
was built starting from the historical data (prices of the
assets).

As the evolution of the portfolio depends on each investor,
on his attitude towards risk, different utility functions
were considered in the simulation:

W,
U (W, = In 0.01
(W) (Wt -+ )
w, \~*
- —01
Us (W) 0 (th) ,
w, \ °
= —]_ .
oy = —oo(J5)

One iteration of the wealth is made of ten time steps;
the value functions are updated at each moment of time
- ten times for each iteration. The value functions are
updated using different sequences of stepsizes {a,}, <
{al'}, < 1,... which depend on the iteration number. The
effect of using different stepsizes rules it is apparent in
the final solution and it is reflected in the Sharpe Ratio,
see Table 1.

1.[?0.0%
160.0%
150.0% 4
140.0% -
130.0% - B == util 2
120.0% 4 i il 3

110.0%

Wealth (5 Initial Investment)

100.0%

Number of lterations

Figure 1: Comparative dynamics of the portfolio wealth

The wealth is represented across iterations as it can be
seen in Figure 1. The evolution of the portfolio for two
different investors is presented as percentage of the ini-
tial investment, in relation with the iterations and time
horizon T. One investor is more risk-averse, (the evolu-
tion of the wealth in his case is given by the lower curve,
comparative with the upper curve which describes the
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dynamics of the wealth of the second investor), and the
corresponding wealth is lower. The shape of the curve for
the evolution of the wealth converges rapidly, as it can be
seen in the figure, which means that the value functions
stabilize rapidly.

In Figure 2 the evolution of the final wealth, at time
t =T, is shown in relation with the scenarios. There are
nine scenarios, and for each scenario the total wealth is
shown for the last four iterations. For example, the green
bars represent the level reached by the final wealth at the
iteration N — 1, where the N*" iteration is the last one,
when the algorithm stops and the optimum is attained.

M [ter N-3
W [ter N-2
W Iter N-1
W iter N

Final Wealth (% of Initial Investment)

Scenario Number

Figure 2: Final wealth variation vs. scenarios

The classical performance measures by Treynor [17],
Sharpe [15], Jensen [7], as well as Treynor and Black [18§]
are central for any kind of performance evaluation. In this
paper, we refer to Sharpe ratio which tells us whether a
portfolio’s returns are due to good decisions or a result
of excess risk. The Sharpe Ratio is calculated by the for-
mula § = @, see Sharpe [15]. The numerator of
the ratio is the expected return that the portfolio is ex-
pected to provide above the risk free rate. The risk free
rate was taken 10%, the actual rate of government bonds.
The denominator is the standard deviation of the port-
folio. This measurement is very useful because although
one portfolio has higher returns than others, it is a good
investment only if those higher returns do not come with
too much additional risk.

The Sharpe ratio was calculated for each scenario and
the values obtained are represented in Table 1. To out-
line the dependence of the solution on the stepsizes, we

: / _ _ 8
represented the Sharpe ratio for two cases, for a;, = 255
1

n2/3

" __
and o =

SR\Scenario | 1 2 3 4 5 6 7 8 9
SR for af, 1.11) 1.16] 0.95 1.07| 1.22| 0.97| 0.78| 1.16| 0.82
SR for ] 1.08] 0.96] 1.14] 1.04] 1.06] 0.76] 0.84] 0.85] 1.02

Table 1: Sharpe Ratio variations across scenarios
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5 Conclusions

In this paper we developed a technique for solving the
multiperiod portfolio optimization problem. This new
technique relies on the Progressive Hedging Algorithm
to manage the nonanticipativity constraints and to de-
compose the problem across scenarios, combined with an
algorithm for solving the problems (PS” t) based on Ap-
proximate Dynamic Programming techniques, well suited
for large-scale problem solving, which offer an optimal
solution by taking advantage of time decomposition and
fully exploiting the properties of the portfolio model for-
mulation.

References

[1] Berland, N.J., Haugen, K.K., "Mixing stochastic
programming and Scenario Aggregation”, Ann Oper
Res, V64, pp. 1-19, 1996.

[2] Birge, J.R., Louveaux, F., Introduction to stochastic
programming, Springer, Berlin, 1997.

[3] Choi, U.J., Jang, B.G., Koo, H.K., ”An algorithm
for optimal portfolio selection problem with transac-
tion costs and random lifetimes”, Appl Math Com-
put, V191, pp. 239-252, 2007.

[4] Fulga, C., Pop, B., "Portfolio Selection with Trans-
action Costs”, Bull Math Soc Sci Math Roumanie,
V50, N4, pp. 317-330, 2007.

[5] Fulga, C., Pop, B., ”Single Period Portfolio Op-
timization with Fuzzy Transaction Costs”, Proc
of EURO Conference Continuous Optimization and
Knowledge-Based Technologies, Neringa, Lithuania,
pp. 125-131, 2008.

[6] Helgason T., Wallace, W., ” Approximate scenario
Solutions in the Progressive Hedging Algorithm”,
Ann Oper Res, V31, pp. 425-444, 1991.

[7] Jensen, M.C., “The Performance of Mutual Funds
in the Period 1956-1964”, J Financ, pp. 389-416,
1968.

[8] Kellerer, H., Mansini, R., Speranza, M.G., ”Select-
ing Portfolios with Fixed Costs and Minimum Trans-
action Lots”, Ann Oper Res, V99, pp. 287-304,
2000.

[9] Konno, H., Yamamoto, R., ”Global Optimization
Versus Integer Programming in Portfolio Optimiza-
tion under Nonconvex Transaction Costs”, J Global
Optimiz, V32, pp. 207-219, 2005.

Konno, H., Akishino, K., Yamamoto, R., ”Opti-
mization of a Long-Short Portfolio under Nonconvex
Transaction Cost”, Comput Optimiz Appl, V32, pp.
115-132, 2005.

IMECS 2009



Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II
IMECS 2009, March 18 - 20, 2009, Hong Kong

[11] Mulvey, J.M., Vladimirou, H., ” Applying the pro-
gressive hedging algorithm to stochastic generalized
networks”, Ann Oper Res, V31, pp. 399-424, 1991.

[12] Patel, N.R., Subrahmanyam, M.G., ”A Simple Al-
gorithm for Optimal Portfolio Selection with Fixed
Transaction Costs”, Manage Sci, V28, pp. 303-314,
1982.

[13] Powell, W.B., Approxzimate Dynamic Program-
ming: Solving the Curses of Dimensionality, Wiley-
Interscience, 2007.

[14] Powell, W.B., Ruszczynski, A., Topaloglu, H.,
"Learning Algorithms for Separable Approxima-
tions of Discrete Stochastic Optimization Prob-
lems”, Math Oper Res, V29, pp. 814-836, 2004.

[15] Sharpe, W.F., ” The Sharpe Ratio”, J Portfolio Man-
age, V21, N1, pp. 49-58, 1994.

[16] Rockafellar, R.T., Wets, R.J.B., ”Scenario and pol-
icy aggregation in optimization under uncertainty”,
Math Oper Res, V16, N1, pp. 1-29, 1991.

[17] Treynor, J.L., “How to Rate Management of In-
vestment Funds”, Harvard Business Review, Jan-
uary/February, pp. 63-75, 1965.

[18] Treymor, J.L., Black, F., “How to Use Security Anal-
ysis to Improve Portfolio Selection”, J Bus, pp. 66—
86, 1973.

[19] Van Slyke, R., Wets, R.J.B., ?L-shaped linear pro-
grams with applications to optimal control and
stochastic programming”, STAM J Appl Math, V17,
pp. 638-663, 1969.

ISBN: 978-988-17012-7-5 IMECS 2009



