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Abstract—In this paper we propose a numerical
scheme based on finite differences for the numeri-
cal solution of nonlinear multi-point boundary value
problems over adjacent domains. In each subdomain
the solution is governed by different equation. The
solutions are required to be smooth across the inter-
faces. The approach is based on using finite differ-
ence approximation of the derivatives at the inter-
face nodes. A modified multidimentional Newton’s
method is proposed for solving the nonlinear system
of equations. The accuracy of the proposed scheme
is validated by examples whose exact solutions are
known. The method is then applied to solve for the
velocity profile of fluid flow through multilayer porous
media.

Keywords: Multi-dimensional Newton’s method,

Porous media, Multilayer flows, interface region

1 Introduction

Many physical phenomenons are modeled by differential
equations, ordinary or partial, linear or nonlinear. The
solutions, exact or numerical, of such differential equa-
tions offer valuable insights into these phenomenons. Ex-
act solutions of these differential equations, especially of
the nonlinear ones, are in most of the time not easily ob-
tainable. For this reason, a numerical approach is often
adopted to approximate the solution. Although many
physical problems are modeled by a single or a system
of differential equations over a finite domain, there are
also applications where the system is modeled by differ-
ent differential equations over subdomains of the overall
domain, and require the solution to satisfy certain con-
ditions across the subdomains boundaries, in addition to
conditions at the overall domain boundaries. This is what
constitutes a multi-point boundary value problem.

In the context of this paper, a second order multi-point
boundary value problem is defined as the following se-
quence of boundary value problems.

y′′ = fi(x, y, y′), ci−1 ≤ x ≤ ci, 1 ≤ i ≤ M, (1)
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where [ci−1, ci], 1 ≤ i ≤ M , is the ith subdomain, M is
the number of subdomains, [c0, cM ] = [a, b] is the overall
domain, and fi, 1 ≤ i ≤ M , are functions defining the
differential equations in the ith subdomain. The solu-
tion y is to satisfy the boundary conditions y(a) = α and
y(b) = β. In addition, the solution has to satisfy smooth-
ness conditions at the interface nodes ci, 1 ≤ i ≤ M − 1.
Specifically, the solution is assumed to be smooth at each
of the ci, i.e.,

y(c−i ) = y(c+
i ) and y′(c−i ) = y′(c+

i ), 1 ≤ i ≤ M − 1. (2)

The above mentioned multi-point boundary value prob-
lem is of interest to us in this paper because it occurs in
many areas of engineering applications such as in mod-
eling the flow of fluid such as water, oil and gas through
ground layers, where each layer constitutes a subdomain.
In fact, our motivation for this work comes from model-
ing fluid flow through multilayer porous medium, where
many works have been conducted in this regard [9]–[13].
The present work generalizes earlier works on two-layer
porous medium, [9, 10].

Boundary value problems have been extensively studied
theoretically and numerically [1]–[5]. Many of the numer-
ical schemes are based on discretization of the space and
finite difference approximations of the derivatives. Other
schemes are based on expansion methods [4]. Theorems
pertaining to the existence and uniqueness of solutions of
boundary value problems are contained in a comprehen-
sive survey in a book by Agarwal [5].

In this paper, we consider the multi-point boundary value
problem given by (1)–(2) and propose a numerical ap-
proach based on finite differences. The idea is to express
the solution at the interface nodes y(ci) in terms of the
value of the solution at neighboring internal points. This
is accomplished by equating the left and the right ap-
proximations, of various orders, of the derivative y′(ci),
since the solution is assumed to be smooth at each ci.
This results is a system of nonlinear equations for the so-
lution at the discretization points. The nonlinear system
is solved iteratively using a third order modified form of
the classical multidimensional Newton’s method.
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The paper is organized as follows. In section 2, we present
the problem formulation and present the derivation which
leads to the nonlinear system. In section 3, a modified
Newton’s method with cubic convergence is outlined. In
section 4, we test the method using examples whose exact
solutions are known in order to measure the accuracy of
the method. In section 5, we present an application of the
proposed method to the resolution of the velocity profile
of fluid in multilayer porous media.

2 Problem formulation and description
of the algorithm

The problem we consider is the following second order
multi-point boundary value problem:

y′′ = fi(x, y, y′), ci−1 < x < ci, 1 ≤ i ≤ M, (3)
y(a) = α, y(b) = β, (4)
y(c−i ) = y(c+

i ), y′(c−i ) = y′(c+
i ), 1 ≤ i ≤ M − 1, (5)

where [ci−1, ci], 1 ≤ i ≤ M , is the ith subdomain, M is
the number of subdomains, [c0, cM ] = [a, b] is the over-
all domain, and fi, 1 ≤ i ≤ M , are functions defining
the differential equations in the ith subdomain. Here, we
assume that functions fi satisfy necessary conditions for
the existence of solution. Conditions (5) states that the
solution must be smooth at the interface nodes ci. Such a
condition is very important in many areas of engineering
such as in modeling fluid flow through multilayer porous
media, where the velocity and shear stress are to be con-
tinuous across the layers [14].

The finite difference approach we propose starts with a
the classical uniform discretization of each subdomain
[ci−1, ci] with a local step size hi, i = 1, 2, . . . M , where
hi = ci−ci−1

Ni
and Ni, assumed to be an integer, is the

number of subintervals in the ith subdomain. The dis-
cretization produces the doubly-indexed mesh points

x
(i)
k = ci−1 + khi, 1 ≤ i ≤ M, 0 ≤ k ≤ Ni,

where the superscript (i) refers to the subdomain and the
subscript k refers to the mesh point in that subdomain.
Note that x

(1)
0 = a, x

(M)
NM

= b, and x
(i)
Ni

= x
(i+1)
0 = ci. It is

important to note here that we have chosen to discretize
each subdomain with a different step size. We could have
chosen a uniform step size h for the whole domain [a, b],
but this does not guarantee that the interface nodes, ci,
will be mesh points. Moreover, choosing a different step
size for each subdomain offers more flexibility.

The differential equations (3) are then discretized at the
internal mesh points x

(i)
k , excluding the interface nodes

ci. The interface nodes ci are excluded because the sec-
ond derivative at these points is in general not contin-
uous. In each subdomain i, with local step size hi, the
derivatives are approximated by the central difference for-

mulae: y′(x(i)
k ) =

y(x
(i)
k+1)−y(x

(i)
k−1)

2hi
+ O(h2

i ), y′′(x(i)
k ) =

y(x
(i)
k+1)−2y(x

(i)
k

)+y(x
(i)
k−1)

h2
i

+ O(h2
i ).

In general the discretization produces a rectangular sys-
tem of algebraic equations in the unknowns y

(i)
k ≈ y(x(i)

k ):

y
(i)
k+1 − 2y

(i)
k + y

(i)
k−1 = h2

i fi(x
(i)
k , y

(i)
k ,

y
(i)
k+1 − y

(i)
k−1

2hi
), (6)

where 1 ≤ i ≤ M, 1 ≤ k ≤ Ni − 1. We note here that
the above algebraic system is under determined. It has
(N−M) equations and N unknowns y

(i)
k , 1 ≤ k ≤ Ni, 1 ≤

i ≤ M , where N =
M∑
i=1

Ni and Ni = ci−ci−1
hi

.

In theory, under determined systems, if they admit a so-
lution, they admit infinitely many. Thus, we need to
somehow transform the system to a square system whose
solution, if it exists, is unique. This can be done by elim-
inating enough unknowns. In our case we need to elimi-
nate M unknowns.

To render system (6) square, we eliminate the M un-
knowns y

(i)
Ni
≈ y(ci) by expressing them in terms of neigh-

boring unknowns y
(i)
Ni−j and y

(i+1)
j , j = 1, 2 or 3, depend-

ing on the desired accuracy. This will be accomplished
by imposing the smoothness conditions at the interface
nodes: y′(c−i ) = y′(c+

i ), 1 ≤ i ≤ M .

From the right and left Taylor series expansions of y(x)
about ci, 1 ≤ i ≤ M − 1, we have the following backward
and forward first-, second- and third-order approxima-
tions for y′(ci).

First order:

Backward: y′(ci) ≈
y
(i)
Ni
− y

(i)
Ni−1

hi
. (7)

Forward: y′(ci) ≈
y
(i+1)
1 − y

(i)
Ni

hi+1
. (8)

Second order:

Backward: y′(ci) ≈
3y

(i)
Ni
− 4y

(i)
Ni−1 + y

(i)
Ni−2

2hi
. (9)

Forward: y′(ci) ≈
−3y

(i)
Ni

+ 4y
(i+1)
1 − y

(i+1)
2

2hi+1
. (10)

Third order:

Backward:

y′(ci) ≈
11y

(i)
Ni
− 18y

(i)
Ni−1 + 9y

(i)
Ni−2 − 2y

(i)
Ni−3

6hi
. (11)

Forward:

y′(ci) ≈
−11y

(i)
Ni

+ 18y
(i+1)
1 − 9y

(i+1)
2 + 2y

(i+1)
3

6hi+1
. (12)
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Then using (7) – (12), equating the forward approxima-
tion to the backward approximation, we find the follow-
ing approximations for y

(i)
Ni
≈ y(ci) in terms of y

(i)
Ni−j and

y
(i+1)
j , j = 1, 2 or 3:

First order:

y
(i)
Ni

=
hi+1y

(i)
Ni−1 + hiy

(i+1)
1

hi + hi+1
. (13)

Second order:

y
(i)
Ni

=
−hi+1y

(i)
Ni−2 + 4hi+1y

(i)
Ni−1 + 4hiy

(i+1)
1 − hiy

(i+1)
2

3(hi + hi+1)
.

(14)

Third order:

y
(i)
Ni

= [2hi+1y
(i)
Ni−3 − 9hi+1y

(i)
Ni−2

+18hi+1y
(i)
Ni−1 + 18hiy

(i+1)
1

−9hiy
(i+1)
2 + 2hiy

(i+1)
3 ]/[11(hi + hi+1)]. (15)

When either (13), (14) or (15) is substituted for each
y
(i)
Ni

, i = 1, 2, . . . , M , in the system (6), we obtain a
square nonlinear system of size (N−M) in the unknowns
y
(i)
k , 1 ≤ i ≤ M, 1 ≤ k ≤ Ni − 1. The resulting non-

linear algebraic system can then be solved by a suitable
iterative method. The solution at the interface nodes ci,
i.e., y(ci) ≈ y

(i)
Ni

, can be recovered using the appropriate
approximation formula (13), (14) or (15). In the next sec-
tion we describe a modified Newton’s method which may
be used to solve the resulting nonlinear algebraic system.

3 A Modified Newton’s Method with
Cubic Convergence

It is known that the multidimensional Newton’s method
iterative scheme

x(n+1) = x(n) − J−1
n F(x(n)) (16)

converges quadratically to the (simple) root x∗ =
(x∗1, x

∗
2, . . . , x

∗
d)

T of F(x) = 0, where F : Rd −→ Rd

(F = (F1, F2, . . . , Fd)T ), x = (x1, x2, . . . , xd)T , and
J−1

n ≡ J−1(x(n)) is the inverse of the Jacobian matrix
of F, Jij = ∂Fi

∂xj
, evaluated at x(n).

Recently, a lot of work has been done to derive modi-
fied versions of Newton’s method which converge cubi-
cally. In the one-dimensional case, cubically convergent
modified Newton’s schemes were derived in [6, 8] and in
references therein. A generalization of the cubically con-
vergent scheme given in [6] to the multivariate case was
later given in [7] and is formally stated below.

Theorem 3.1 Let F : Rd → Rd be a sufficiently smooth
function in a neighborhood of its root x∗, where the Ja-
cobian of F at x∗, J(x∗), is invertible. Assume that

max
1≤i,j,k≤d

∣∣∣∣
∂3F

∂xi∂xj∂xk
(x)

∣∣∣∣ ≤ C

holds in the neighborhood of x∗ for some constant C .
Then the iterative scheme

x(n+1) = x(n) − J−1(x(n) − 1
2
J−1(x(n))F(x(n)))F(x(n))

converges cubically to x∗.

It is important to note that as in the univariate case
the inverse J−1 is never computed in practice. The
scheme in Theorem 3.1 proceeds as follows. Given x(n),
let z(n) = x(n) − 1

2J
−1(x(n))F(x(n)). Then x(n+1) =

x(n) − J−1(z(n))F(x(n)). Therefore, at every step, given
x(n), x(n+1) is obtained by solving, in order, the following
two systems of linear equations with coefficient matrix J:

J(x(n))z(n) = J(x(n))x(n) − 1
2
F(x(n)) for z(n) then

J(z(n))x(n+1) = J(z(n))x(n) − F(x(n)) for x(n+1).

In our numerical experiments we use the scheme given in
Theorem 3.1 with the stopping criteria ‖x(n+1)−x(n)‖ <
ε = 10−6.

4 Numerical Examples

In this section we apply our proposed algorithm as de-
scribed in Section 2 to two examples whose exact solu-
tions are known thereby validating its accuracy.

Example 4.1 As a first example, we consider the same
ODE

y′′ = yy′ − y + cos(2x), 0 ≤ x ≤ 2π, (17)

over three neighboring intervals [0, π/2], [π/2, 5π/4], and
[5π/4, 2π], with the boundary conditions at x = 0 and at
x = 2π:

y(0) = 1 and y(2π) = 1, (18)

and the continuity and smoothness conditions at c1 = π/2
and c2 = 5π/4:

y(π/2−) = y(π/2+), y′(π/2−) = y′(π/2+),
(19)

y(5π/4−) = y(5π/4+), y′(5π/4−) = y′(5π/4+).

It can be verified that the exact solution of (17) subject
to (18) is

ye(x) = cos(x)− sin(x)
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which is smooth, hence verifies (19).

The suggested algorithm as described in section 2 has
been applied to the above example and the results are
shown in Figure 1 and in Table 1. The following pa-
rameter values have been used. The step sizes used are
h1 = π/200 ≈ 0.015708, h2 = 3π/800 ≈ 0.011781, and
h3 = 3π/400 ≈ 0.0235619. Figure 1 displays the absolute
error between the exact and the numerical solution for
second- and third-order approximations.
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Figure 1: The absolute error between the exact and nu-
merical solution of Example 1, for second- and third-order
approximations.

(y(π/2), y′(π/2)) (y(5π/4), y′(5π/4))

O(1) (-1.006254,-1.001467) (-0.004125,1.414787)

O(2) (-1.000878,-0.999192) (0.000324,1.414522)

O(3) (-1.000216,-0.999786) (0.000099,1.414294)

Exact (-1.000000,-1.000000) (0.000000,1.414214)

Error (2.16, 2.14)×10−4 (0.99,0.8)×10−4

Table 1: Approximate values of y(ci) and y′(ci) for c1 =
π/2 and c2 = 5π/4.

This first example shows that the proposed method is
accurate in resolving the smoothness of the solution at the
interface nodes, as can be seen by the results displayed
in Table 1, where the absolute error is of the order of
10−4 when third order approximation of the derivative is
used. We note that if higher order approximations are
used, certainly the absolute error will be less. This is, of
course, on the expense of having a lesser dense matrix.

Example 4.2 As a second example, consider the 4-
subinterval problem:

y′′ = 2y3, −1 ≤ x < 0,
y′′ = −(y′)2 − 20

9 y′ − 100
81 , 0 < x < 1/2,

y′′ = 2(y − 14x/9− ln(3x) + 3)3 − 1
x

+(y′ − 14/9)2, 1/2 < x < 1,
y′′ = −(y − 5x/9 + 1) + ln(3x)

−(y′ − 5/9)2, 1 < x ≤ 2,

with the boundary conditions y(−1) = 1
2 , y(2) = ln(6) +

1
9 , and the smoothness conditions at the interface nodes

c1 = 0, c2 = 1/2 and c3 = 1: y(0−) = y(0+),
y′(0−) = y′(0+), y(1/2−) = y(1/2+), y′(1/2−) =
y′(1/2+), y(1−) = y(1+), y′(1−) = y′(1+).

It is easy to check that the exact solution to the above
problem is

y(x) =





1
x+3 , −1 ≤ x < 0,

ln(x + 1)− 10
9 x + 1

3 , 0 ≤ x < 1/2,

ln(3x) + 1
x + 14

9 x− 3, 1/2 ≤ x < 1,

ln(3x) + 5
9x− 1, 1 ≤ x ≤ 2.

(20)

The results of the algorithm for this example are shown
in Fig. 2 and Table 2. The following parameter values
have been used. The step sizes used are h1 = h4 = 0.01
and h2 = h3 = 0.005.
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Figure 2: The absolute error between the exact and nu-
merical solution of Example 2, for second- and third-order
approximations.

Order (1,2,3) Exact

Order3
Abs.Error
(×10−5)

y(0) (0.3378,0.3335,0.3334), 0.3333 2.8445

y′(0) (-0.1059,-0.1110,-0.1111) -0.1111 3.4837

y(1/2) (0.1903,0.1834,0.1833) 0.1832 3.9887

y′(1/2) (-0.4399,-0.4444,-0.4444) -0.4444 1.4985
y(1) (0.6559,0.6542,0.6542) 0.6542 2.0979

y′(1) (1.5478,1.5554,1.5555) 1.5556 3.1434

Table 2: y(ci) and y′(ci) for c1 = 0, c2 = 1/2, c3 = 1.

The results of this second example again show that the
proposed algorithm can accurately resolve the continuity
and smoothness of the solution at the interface nodes as
seen in Table 2.

5 Flow through porous media

In this section we apply the proposed algorithm to solve
for the velocity profile of fluid flow through multilayer
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porous media. The media consists of a many porous lay-
ers, where the upper and lower layers are bounded above
and below, respectively, by solid walls, see Fig. 3, which
depicts a six-layer porous media configuration.

Solid Wall

Solid Wall

Figure 3: Configuration of 6 layer-porous media.

In each layer, the governing equation, after suitable
transformations, in dimensionless form, is the following
second-order differential equation.

d2u

dy2
= Re C +

u

k
+

Re Cd√
k

u2, (21)

where u(y), −1 ≤ y ≤ 1, is the velocity of the fluid, where
y = 1 corresponds to the upper solid wall boundary and
y = −1 corresponds to the lower solid wall boundary.
The various physical parameters are defined as follows.
Re = ρU∞L/µ is the Reynolds number, ρ is the fluid
density, U∞ is the free-stream characteristic velocity, µ is
the fluid viscosity, L is the channel characteristic length, k
is the permeability of the porous channel, Cd is the form
drag coefficient, and C < 0 is a dimensionless pressure
gradient. For detailed derivations of (21) see [10].

The model given by equation (21) is referred to as the
Darcy-Lapwood-Forchheimer-Brinkman (DFB) model,
[11]. When the drag coefficient Cd = 0, we have the
linear model

d2u

dy2
= ReC +

u

k
, (22)

which is known as Darcy-Lapwood-Brinkman (DLB)
model.

A lot of work on fluid flow through porous media have
been done, see [9]-[14] and references therein. Two-layer
and three-layer configurations have been considered in
[10] and [13], respectively, where in [13], exact solutions
for the velocity of the flow have been obtained for the
three-layer configuration with the middle layer is finite
and the outer layers are assumed to be of infinite widths.

In our present work, our aim is to test our algorithm
on configurations of more than three layers. In fact, the
algorithm is designed to handle any number of layers.

Since the upper (lower) layer is bounded above (below)
by solid impermeable wall, a no-slip condition at the solid
boundaries (y = ±1) is assumed, i.e., u(±1) = 0. At the
interface boundaries between different layers, we assume
that the velocity and the shear stress are continuous, that
is, u(0−) = u(0+) and u′(0−) = u′(0+). This assumption
is realistic and makes it possible to determine the fluid
velocity at the interface.

In our simulations, we have considered 2 and 5 layer-
configurations, where each layer is either governed by the
DFB or the DLB model. In all experiments we fix the
following parameter values. The Reynolds number Re =
10, C = −10 and Cd = 0.55.

5.1 A two-layer configuration

This case is considered here for comparison purposes with
the results obtained in [10]. The flow in the top layer is
modeled the DLB model and in the lower layer by the
DFB model. The permeability of the top layer is set to
kt = 1 and that of the lower layer is varied. The results
are shown in Fig. 4 and Table 3.

0 5 10 15 20 25
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0.8

1

u

y

kb = 0 .0001

kb = 0 .01

kb = 1

kb = 10
kb = 100

DLB, kt = 1

DFB

Figure 4: Velocity profile for the DFB/DLB two-layer
channel.

kb u(0) u′(0))

Order (1,2,3) Order (1,2,3)

0.0001 (0.73124, 0.56957,0.52049) (44.7556, 45.462, 45.5279)

0.01 (3.43867,3.28921,3.26835) (41.2142, 41.8911, 41.9199)

1 (8.67902, 8.58168 ,8.5728) (34.3595,34.9422, 34.955)

10 (12.7381, 12.6822,12.6772 ) (29.05, 29.5582,29.5657)

100 (18.3294, 18.3301, 18.3278) (21.7363,22.1426,22.1464)

Table 3: Velocity and shear stress at the interface for
various permeability kb.

We remark here that our results for the two-channel con-
figuration are similar in nature but not in values to those
obtained in [10].

5.2 A five-layer configuration

The final simulation was performed on a five-layer config-
uration. The interface nodes were set at c1 = −0.6, c2 =
0, c3 = 0.4 and c4 = 0.6. We assumed that all layers are
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modeled by the DFB model. The permeabilities were set
to k1 = 0.1, k2 = 1, k2 = 0.001, k3 = 10, k4 = 0.1, k5 =
0.001, where k1 corresponds to bottom layer and k5 cor-
responds to top layer. The step sizes were chosen to
be h1 = 0.004, h2 = 0.006, h3 = 0.004, h4 = 0.002 and
h5 = 0.004. The velocity profile is shown in Fig. 5.
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DFB, k2 = 1

DFB, k3 = 0.001
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DFB, k5 = 0.001

Figure 5: Velocity profile for the DFB five-layer channel.

We particularly note here that eventhough layer 4 has
a larger permeability (k4 = 10) than layer 2 (k2 = 1),
the velocity of the fluid in layer 2 is larger than in
layer 4. This is due to the fact that layer 4 is sand-
wiched between two low-permeability layers (layers 3 and
5 with k3 = k5 = 0.001). This suggests that the flow in
the low-permeability layers affect the flow in the high-
permeability layers.

6 Conclusion

In this paper, we have developed a numerical procedure
to solve multipoint special second-order boundary-value
problems. The algorithm was based on finite differences.
The discretization is done locally to each subdomain to
ensure that the interface nodes are not missed and con-
stitute mesh points. The smoothness requirement of the
solution at the interface nodes was used to render the
obtained algebraic system a square one. A cubic conver-
gent modified Newton’s method was introduced and used
in the experiments to solve the nonlinear system.

The algorithm proved to be very accurate on two ex-
amples with known exact solutions. Also, the algorithm
proved to be very accurate and effective in a more realistic
problem of fluid flow thorough multi-layer porous media.
In this application, it was accurately possible to solve for
the flow velocity profiles across any number of layers. The
results of the experiments, especially in the five-layer con-
figuration, show that the flow in low-permeability layers
affect the flow in high-permeability layers. The imple-
mentation of the algorithm was done using the software
package Mathematica.
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