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Abstract—After birth of IDR(s) method based
on IDR Theorem, two variants of MR IDR(s) and
Bi IDR(s) methods were proposed one after another.
The former method gained stability by adoptation
of strategy of minimizing intermediate residual norm
with extra computational cost. The latter method
became sophiscated and elegant variant with stability
by means of adoptation of bi-orthogonalization condi-
tions. In this article, we overview a family of IDR(s)
methods, and evaluate performance of these variants
through several numerical experiments.
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1 Introduction

We consider to solve a unsymmetric linear system of
equations,

Ax = b, (1)

where A is a given unsymmetric coefficient matrix in
RN×N , and x is a solution vector in RN , and b is a
right-hand side vector in RN . Krylov subspace methods
are effective for solving linear systems of equations [2].
Krylov subspace is defined as follows:

Kn(A; r0) := span{r0, Ar0, . . . , A
n−1r0}. (2)

Here, r0 := b − Ax0 is an initial residual vector. The
members of Krylov subspace methods, product-type Bi-
Conjugate Gradient (BiCG) methods are often used for
solving nonsymmetric linear systems of equations. BiCG
stabilized (BiCGStab) method [2] is one of versions of
product-type Bi-Conjugate Gradient (BiCG) methods.

In 2007, one of Krylov subspace method, IDR(s) method
is proposed by P. Sonneveld and M. B. van Gijzen [5].
IDR(s) method is based on the IDR Theorem. IDR(s)
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method is competitive with or superior to most product-
type BiCG methods, and outperforms BiCGStab method
when s > 1.

Furthermore, Minimum Residual IDR(s) (MR IDR(s))
and Bi-orthogonalized IDR(s) (Bi IDR(s)) methods are
proposed as variants of IDR(s) method one after another
by P. Sonneveld and M. B. van Gijzen[6][7].

In this paper, we overview MR IDR(s) and Bi IDR(s)
methods, and determine effectiveness of these two itera-
tive methods through numerical experiments.

This paper is organized as follows. In section 2, we
note outline and algorithm of IDR(s) method. In sec-
tion 3, we describe outline and algorithm of MR IDR(s)
method. In section 4, we describe outline and algorithm
of Bi IDR(s) method. In section 5, we examine effec-
tiveness of MR IDR(s) and Bi IDR(s) methods through
numerical experiments. Finally, in section 6, we draw
concluding remarks.

2 IDR(s) method

In this section, characteristics of IDR(s) method can be
mentioned as follows[5]:

IDR Theorem

Let A be any matrix in RN×N , and v0 be any vector in
RN , and G0 be the complete Krylov space KN (A,v0).
Let S denote any space in RN , and define the sequence
spaces Gj(j = 1, 2, . . .) as

Gj := (I − ωjA)(Gj−1 ∩ S). (3)

Here ωj ’s are non-zero scalars. Then, the next two The-
orems hold.

(i) Gj ⊆ Gj−1 for all j > 0,

(ii) Gj = {0} for some j ≤ N .

Computing the first residual rn+1 in Gj+1
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IDR(s) method is built such that s + 1 residual vectors
are forced to be in Gj . The reisdual rn+1 is in Gj+1 if

rn+1 = (I − ωjA)vn, vn ∈ Gj ∩ Null(PT ). (4)

Here, parameter ωj is determined by solving minimiza-
tion of the residual norm ||rn+1||2.

Computing a combination of the residual
vectors, a vector vn

Vector vn can be written as a combination of the residual
vectors in Gj because vn ∈ Gj ∩Null(PT ). We define the
forward difference residual vector en := rn+1 − rn. If
rn−i(i = 0, . . . , s) ∈ Gj then en−i(i = 1, . . . , s) ∈ Gj .
Thus, vector vn can be written as

vn = rn −
s∑

i=1

cien−i. (5)

Since vn ∈ Null(PT ), it satisfies PT vn = 0. We can
solve the coefficients ci by solving an s × s linear system
PT vn = 0. Besides, we can compute the vector vn.

Computing the kth residual rn+k in subspace
Gj+1

The kth residual rn+k(2 ≤ k ≤ s + 1) can be computed
by consecutive computations as follows:

Computing the kth residual rn+k in subspace Gj+1

1. Solve ci from P T
s∑

i=1

cien+k−1−i = P T rn+k−1

2. vn+k−1 = rn+k−1 −
s∑

i=1

cien+k−1−i

3. rn+k = (I − ωjA)vn+k−1

Here, rn+k−1−i ∈ Gj+1 ⊆ Gj when 1 ≤ i < k, and
rn+k−1−i ∈ Gj when k ≤ i ≤ s. Therefore, en+k−1−i ∈
Gj and rn+k ∈ Gj+1.

We present the algorithm of IDR(s) method as follows:

Algorithm 1: IDR(s) method

1. Let x0 be a random vector, and put r0 = b− Ax0

2. For n = 0, . . . , s − 1 Do

3. vn = Arn

4. ω =
(vn, rn)

(vn,vn)(
ρ =

|(vn,rn)|
||vn||2∗||rn||2

If ρ < κ then ω = κ
ρ
ω

)
5. qn = ωrn, en = −ωvn

6. rn+1 = rn + en, xn+1 = xn + qn

7. End Do

8. Es = (es−1, . . . , e0), Qs = (qs−1, . . . , q0)

9. Do n = s, s + 1, . . .

10. Solve cn from P T Encn = P T rn

11. vn = rn − Encn

12. If mod(n, s + 1) = s then

13. tn = Avn

14. ω =
(tn,vn)

(tn, tn)(
ρ =

|(tn,vn)|
||tn||2∗||vn||2

If ρ < κ then ω = κ
ρ
ω

)
15. en = −Encn − ωtn

16. qn = −Qncn + ωvn

17. Else

18. qn = −Qncn + ωvn

19. en = −Aqn

20. End If

21. rn+1 = rn + en, xn+1 = xn + qn

22. if ||rn+1||2/||r0||2 ≤ ϵ then stop

23. En+1 = (en, . . . , en+1−s), Qn+1 = (qn, . . . , qn+1−s)

24. End Do

In steps 4th and 14th, we note the additional computa-
tion for ω. The computation improves the accuracy of
IDR(s) method.

3 MR IDR(s) method

In this section, characteristics of MR IDR(s) method can
be mentioned as follows[7]:

Computing the kth residual rn+k in subspace
Gj+1

The kth residual rn+k(1 ≤ k ≤ s + 1) can be computed
by consecutive computations as follows:

Computing the kth residual rn+k in subspace Gj+1

1. Solve ci from P T
s∑

i=1

cign+k−1−i = P T rn+k−1

2. vn+k−1 = rn+k−1 −
s∑

i=1

cign+k−1−i

3. rn+k = (I − ωjA)vn+k−1

Here, the vector gn is defined as

gn := (−1) ∗ en = rn − rn+1. (6)

rn+k−1−i ∈ Gj+1 ⊆ Gj when 1 ≤ i < k, and rn+k−1−i ∈
Gj when k ≤ i ≤ s. Accordingly, gn+k−1−i ∈ Gj and
rn+k ∈ Gj+1.
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Minimization of the intermediate residual norms

Let matrix Gn+k = (gn+k−1, . . . ,n + k − s). Having
computed k orthogonal columns of Gn+k, the kth inter-
mediate residual rn+k can be minimized over the vectors
in Gj+1 by making rn+k orthogonal to the first k columns
of Gn+k.

We present the algorithm of MR IDR(s) method as fol-
lows:

Algorithm 2: MR IDR(s) method

1. Let x0 be a random vector, and put r0 = b− Ax0,

2. G−1, U−1 = O ∈ RN×s, M−1 = I, ω0 = 1

3. n = 0, j = 0

4. While ||rn||2/||r0||2 > ϵ Do

5. Do k = 1, . . . , s

6. m = P T rn

7. Solve c from Mj−1c =m

8. v = rn − Gj−1c, ū = Uj−1c+ ωjv

9. ḡ = Aū

10. Do i = 1, . . . , k − 1

11. α = (gn−i, ḡ)

12. ḡ = ḡ − αgn−i, ū = ū− αun−i

13. End Do

14. α =
√

(ḡ, ḡ)

15. gn =
1

α
ḡ,un =

1

α
ū

16. βn = (rn, gn)

17. rn+1 = rn − βngn,xn+1 = xn + βnun

18. n = n + 1

19. End Do

20. Gj = (gn−1, . . . , gn−s), Uj = (un−1, . . . ,un−s)

21. Mj = P T Gj ,m = P T rn

22. Solve c from Mjc =m

23. v = rn − Gjc, t = Av

24. ωj+1 =
(t,v)

(t, t)

25. xn+1 = xn + Ujc+ ωj+1v

26. rn+1 = rn − Gjc− ωj+1t

27. n = n + 1, j = j + 1

28. End While

In 16th step of the above algorithm, Mj = PT Gj can be
computed cheaply using

PT gn−i = PT (rn−i − rn−i+1)/βn−i.

4 Bi IDR(s) method

In this section, characteristics of Bi IDR(s) method can
be mentioned as follows[6]:

Strategies of Bi IDR(s) method

We assume that rn+1 is the first residual in Gj+1.
Bi IDR(s) method is built by constructing vectors that
satisfy the following two orthogonaly conditions:

gn+i ⊥ pj (i = 2, . . . , s, j = 1, . . . , i), (7)
rn+i+1 ⊥ pj (i = 1, . . . , s, j = 1, . . . , i). (8)

Here, the vector pi are a column vector of matrix P . The
above two orthogonal conditions lead to computational
cost reduction and stabilization of convergence property.

Computing the first residual rn+1 in Gj+1

The orthogonal condition (8) means that the first inter-
mediate residual is orthogonal to p1. The last interme-
diate residual is orthogonal to p1 ∼ ps. Hence, the last
intermediate residual rn in Gj is orthogonal to p1 ∼ ps.
Consequently,

rn ∈ Gj ∩ Null(PT ). (9)

The first residual rn+1 in Gj+1 can be computed as

rn+1 = (I − ωjA)rn. (10)

Computing the kth residual rn+k in Gj+1

The kth residual rn+k in Gj+1 is computed similarly to
MR IDR(s) method. In order to compute rn+k, you
should solve the following linear systems:

PT
s∑

i=1

cign+k−1−i = PT rn+k−1,

s∑
i=1

cip
T
j gn+k−1−i = pT

j rn+k−1 (j = 1, . . . , s). (11)

Here, the orthogonal condition (7) leads to
pT

j gn+k−1−i = 0 when j < k − 1 − i. Addition-
ally, the orthogonal condition (8) leads to pT

j rn+k−1 = 0
when j < k − 1. Hence, you don’t have to compute
pT

j gn+k−1−i when j < k − 1 − i and pT
j rn+k−1 when

j < k − 1. In consequence, computational cost of
Bi IDR(s) method is lower than that of IDR(s) and
MR IDR(s) methods.

We present the algorithm of Bi IDR(s) method as follows:

Algorithm 3: Bi IDR(s) method

1. Let x0 be a random vector, and put r0 = b− Ax0,

2. gi = ui = 0, i = 1, . . . , s, M = I, ω = 1

3. n = 0

4. While ||rn||2/||r0||2 > ϵ Do

5. f = P T rn,f = (ϕ1, . . . , ϕs)
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6. Do k = 1, . . . , s

7. Solve c from Mc = f , c = (γ1, . . . , γs)

8. v = rn −
s∑

i=k

γigi,uk = ωv +

s∑
i=k

γiui

9. gk = Auk

10. Do i = 1, . . . , k − 1

11. α =
(pi, gk)

µi,i

12. gk = gk − αgi,uk = uk − αui

13. End Do

14. µi,k = (pi, gk), i = k, . . . , s, Mi,k = µi,k

15. β =
ϕk

µk,k

16. rn+1 = rn − βgk,xn+1 = xn + βuk

17. If k < s then

18. ϕi = 0, i = 1, . . . , k, ϕi = ϕi − βµi,k,

19. i = k + 1, . . . , s

20. f = (ϕ1, . . . , ϕs)

21. End If

22. n = n + 1

23. End Do

24. t = Arn

25. ω =
(t, r)

(t, t)

26. xn+1 = xn + ωrn, rn+1 = rn − ωt

27. n = n + 1

28. End While

5 Numerical Experiments

In this section we discuss numerical experiments of
IDR(s) method and MR IDR(s) method, Bi IDR(s)
method. All computations are carried out in double pre-
cision floating-point arithmetic on a PC with a POWER5
processor (1.9GHz). Intel Fortran Compiler90 ver 7.1 and
compile option -O3 -qtune=power5 -qarch=pw5 -qhot
was used. In all cases the iteration was started with the
initial guess solution x0 = 0. The maximum iterations
was fixed as 10000. The value of s varies at the interval of
1 from 1 to 10. Twelve test matrices are from University
of Florida Sparse Matrix Collection[1][3]. Description of
test matrices is shown in Table 1. In this Table, ”nnz”
means number of nonzero entries, and ”ave nnz” means
number of nonzero entries per single row.

5.1 Numerical Results

Table 2 shows iterations and CPU time in seconds of
three iterative methods. In Table 2, ”sopt” means opti-
mum parameter s. CPU time is minimum at optimum
parameter s. ”itr.” means number of iterations. ”ratio”
means ratio of CPU time of each method to CPU time
of IDR(s) method. The figure in bold means minimum
CPU time of three iterative methods. From Table 2, the
following observations can be made.

Table 1: Description of test matrices.

matrix dimension nnz ave nnz
big 13,209 91,465 6.92
epb1 14,734 95,053 6.45
epb2 25,228 175,027 6.94
garon2 13,535 373,235 27.58
memplus 17,758 126,150 7.10
poisson3da 13,514 352,762 26.10
poisson3db 85,623 2,374,949 27.74
raefsky2 3,242 293,551 90.55
sme3da 12,504 874,887 69.97
sme3db 29,067 2,081,063 71.60
xenon1 48,600 1,181,120 24.30
xenon2 157,464 3,866,688 24.56

1. Bi IDR(s) method converges fastest for 10 matrices.

2. CPU time of all methods are fastest at s = 3 for
matrix epb1.

3. Iterations of MR IDR(s) method is minimum and
that of Bi IDR(s) method is maximum for matrix
epb1.

4. CPU time of Bi IDR(s) method is minimum and
that of MR IDR(s) method is maximum for matrix
epb1.

From the second and third, fourth observations you can
see that computational cost of Bi IDR(s) method is min-
imum and that of MR IDR(s) method is maximum.

Fig. 1 displays variation of iterations of three iterative
methods for matrices big and epb1. In Fig. 1, we show
variation of iterations of IDR(s) method in solid line
and MR IDR(s) method in dashed line and Bi IDR(s)
method in dotted line. From Fig. 1 you can see that
iterations of MR IDR(s) method is minimum and that of
IDR(s) method is maximum for almost cases.

Fig. 2 shows variation of CPU time of three iterative
methods for matrices big and epb1. From Fig. 2 you can
see that CPU time of Bi IDR(s) method is minimum and
that of MR IDR(s) method is maximum for almost cases.

Fig. 3 plots relative residual of three iterative methods
for matrices big and epb1. From Fig. 3 you can see
that Bi IDR(s) method converges fastest and MR IDR(s)
method converges slowest, and oscillation of relative
residual norms of MR IDR(s) and Bi IDR(s) methods
is more gentle than that of IDR(s) method.
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Figure 1: Variation of iterations of three iterative meth-
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Figure 2: Variation of CPU Time of three iterative meth-
ods.

Table 2: Iterations and CPU time in seconds of three
iterative methods.

matrix method sopt. itr. time ratio mem.
[sec.] [MB]

big
IDR(s) 4 1687 1.36 1.00 2.91

MR IDR(s) 4 1489 1.77 1.30 3.82
Bi IDR(s) 7 1111 0.98 0.72 3.92

epb1
IDR(s) 2 818 0.58 1.00 2.49

MR IDR(s) 2 803 0.72 1.24 3.06
Bi IDR(s) 2 833 0.49 0.84 2.61

epb2
IDR(s) 3 450 0.68 1.00 4.99

MR IDR(s) 2 473 0.79 1.16 5.37
Bi IDR(s) 2 481 0.54 0.79 4.60

garon2
IDR(s) 2 777 1.26 1.00 5.76

MR IDR(s) 3 722 1.31 1.04 6.07
Bi IDR(s) 2 758 1.12 0.89 5.86

memplus
IDR(s) 5 574 0.67 1.00 4.36

MR IDR(s) 3 751 0.95 1.42 4.49
Bi IDR(s) 2 782 0.62 0.93 3.27

poisson- IDR(s) 2 263 0.52 1.00 5.33
3da MR IDR(s) 4 232 0.54 1.04 6.87

Bi IDR(s) 4 238 0.46 0.88 6.05

poisson- IDR(s) 5 528 15.31 1.00 41.22
3db MR IDR(s) 3 551 16.00 1.05 41.88

Bi IDR(s) 5 518 14.77 0.96 41.88

raefsky2
IDR(s) 7 420 0.40 1.00 4.05

MR IDR(s) 3 491 0.44 1.10 3.92
Bi IDR(s) 7 431 0.38 0.95 4.07

sme3da
IDR(s) 7 2272 9.30 1.00 12.64

MR IDR(s) 9 2088 10.01 1.08 15.02
Bi IDR(s) 7 2415 9.59 1.03 12.73

sme3db
IDR(s) 9 2668 45.47 1.00 31.25

MR IDR(s) 6 3441 56.62 1.25 32.13
Bi IDR(s) 4 3546 44.53 0.98 28.14

xenon1
IDR(s) 2 2240 12.12 1.00 18.15

MR IDR(s) 3 2015 12.98 1.07 21.86
Bi IDR(s) 4 1952 10.74 0.89 20.75

xenon2
IDR(s) 1 2725 77.89 1.00 55.66

MR IDR(s) 1 2847 84.88 1.09 59.27
Bi IDR(s) 1 2911 78.01 1.00 56.87

5.2 Verification of the solution vector with
degraded accuracy

The solution vector of IDR(s) method sometime isn’t ac-
curate when value of s is large. Thereby, we inspect
the accuracy of the solution vector of MR IDR(s) and
Bi IDR(s) method. Test matrix is real unsymmetric
Toeplitz matrix. Number of columns of Toeplitz matrix
is 2000, and parameter γ is 1.5.

Fig. 4 draws variation of common logarithm of TRR(true
relative residual) 2-norm of four iterative methods for
matrix Toeplitz. In Fig. 4, TRR 2-norm is defined by
||b − Axn||2/||b − Ax0||2. We show variation of TRR
of IDR(s) method in solid line, and IDR(s) method with
the additional operation for parameter ω in chained line ,
MR IDR(s) method in dashed line , Bi IDR(s) method in

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-7-5 IMECS 2009



-12

-10

-8

-6

-4

-2

 0

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8

R
e
la

ti
v
e
 R

e
s
id

u
a
l

CPU time

IDR(4)
MR_IDR(4)

Bi_IDR(4)

(a) matrix big

-12

-10

-8

-6

-4

-2

 0

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

R
e
la

ti
v
e
 R

e
s
id

u
a
l

CPU Time

IDR(4)
MR_IDR(4)

Bi_IDR(4)

(b) matrix epb1

Figure 3: Relative residual history of three iterative
methods.

dotted line. We set parameter κ for the additional com-
putation as κ = 0.7, because the κ = 0.7 is recommended
by Sleijpen and van der Vorst[4].

From Fig. 4, you can see that the accuracy of IDR(s)
improves if the additional operation for parameter ω
is adopted, and the solution vector of MR IDR(s) and
Bi IDR(s) methods is more accurate than that of IDR(s)
method.

6 Concluding Remarks

We overviewed MR IDR(s) and Bi IDR(s) methods
based on IDR Theorem. Next, we evaluated performance
of these methods through numerical experiments. As a
result, we concluded that MR IDR(s) method converges
slower than original IDR(s) method because of high cost
of evaluating intermediate residua norm. On the other
hand, Bi IDR(s) method converges faster than original
IDR(s) method because of low computational cost. Fur-
thermore, MR IDR(s) and Bi IDR(s) methods clearly
improve the accuracy of original IDR(s) method.
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