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Abstract—We propose a space-precise computa-
tional scheme to investigate nonlinear partial differ-
ential equations (PDEs) defined on infinite interval.
As a model equation, we treat the singular evolution
equation for the risk preference in the optimal invest-
ment problem under the random risk process, whose
unknown quantity is related to the Arrow-Pratt co-
efficient of absolute risk aversion with respect to the
optimal value function. Numerical implementation
shows that our method is robust and stable.
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1 Introduction

Numerical computation, by its own nature, necessary em-
ploys various approximations; the differential quotient is
replaced by the difference quotient, infinite intervals are
truncated into finite intervals, and so on. These approxi-
mate procedures are justified by relevant convergence ar-
gument. In this paper, on the other hand, we propose
an effective numerical method, which is precise in space
varaiable, to study a singular nonlinear partial differen-
tial equation (PDE) defined on infinite interval. As a
model equation, we consider the PDE derived from the
Hamilton-Jacobi-Bellman (HJB) equation for the value
function in the optimal investment problem.

First we explain background issues of our model equa-
tion. We recall that the study of the optimal behavior
in economics environment has been an intensive subject
for researches. Various models have been introduced so
far and much progress has been made. For instance op-
timal portfolio problems are discussed in [4][6] after a

∗This work is partially supported by Grants-in-Aids for Scien-
tific Research (No. 19340022) from the Japan Society for Promo-
tion of Sciences. The second author (NI) is supported in part by
Seimei-kai Foundation. Hitoshi IMAI: Department of Informat-
ics and Mathematical Science, Institute of Technology and Sci-
ence, The University of Tokushima, Tokushima 770-8506, Japan,
E-mail: imai@pm.tokushima-u.ac.jp; Naoyuki ISHIMURA: De-
partment of Mathematics, Graduate School of Economics, Hitot-
subashi University, Kunitachi, Tokyo 186-8601, Japan, E-mail:
ishimura@econ.hit-u.ac.jp; Masahiro KUSHIDA: Anan National
College of Technology, Anan, Tokushima 774-0017, Japan, E-mail:
kushida@anan-nct.ac.jp

pioneering work of Merton [15]. Applications to insur-
ance are considered in [3][7][8][9][17]. We also refer to
the references cited in these papers. We point out that
the traditional way of investigation has been based on
stochastic control and a number of authors have reduced
the analysis to the treatment of the HJB equation for
the value function. The resulting nonlinear equations,
however, are typically hard to solve; it may be not an
exaggeration to say that all that we can do is to merely
guess a shape of solutions and manage to arrange the pa-
rameters. Observe the statement in [2]. Of course there
are weak approaches to these equations and substantial
success in mathematics was made. The notion of weak
solutions, however, is a little involved and does not seem
to meet the wishes of practitioners. As a result the anal-
ysis of HJB equations has certainly stayed as principal
difficulties to be surmounted.

In our previous paper [1][14] we introduce a singular PDE
in order to deal with such HJBs. See (7) below. Although
essential difficulties are equivalent to those expressed by
the HJB equation, this derived PDE has rather simple
looking from the viewpoint of the theory of nonlinear
PDEs. In addition, the unknown quantity is related to
the Arrow-Pratt coefficient of absolute risk aversion [18]
with respect to the optimal value function. In this sense
our introduced PDE may be interpreted as the character-
istic equation for the risk structure of the model. We do
not insist that our PDE would replace the HJB itself but
we at least believe that the study of this PDE is interest-
ing as well as important and therefore worth investigating
further. Here we undertake numerical treatment. The
basic reference of this project is our recent publication
[13], to which we refer for further examples.

The organization of the paper is as follows. In §2 we
make a sketch of our model, derive a PDE, and recall cer-
tain existence theorem as well as the structure of steady
state solutions. §3 is devoted to exhibiting our numerical
scheme. Numerical implementation is depicted in §4. We
conclude with discussions in §5.
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2 Model processes

The basic model we follow is rather standard. See Browne
[3] or [1][14]. It is assumed that there is only one risky
stock available for investment, whose price Pt at time t is
governed by the stochastic differential equation of Black-
Scholes-Merton type [5][16]

dPt = Pt(µdt + σdW
(1)
t ),

where µ and σ are constants and {W (1)
t }t≥0 is a standard

Brownian motion. There are also a risk process and a
bond, whose price at time t are denoted by Yt and Bt,
respectively, and assumed to be evolved as

dYt = αdt + βdW
(2)
t , dBt = γBtdt,

where α and β (β > 0) are constants and {W (2)
t }t≥0 is

another standard Brownian motion. The interest rate
γ > 0 is supposed to be constant and µ > γ. It is allowed
these two Brownian motions to be correlated with the
correlation coefficient ρ. We prescribe 0 ≤ ρ2 < 1 in the
sequel.

The company invests in the risky stock under an invest-
ment policy f , where f = {ft}0≤t≤T is a suitable, admis-
sible adapted control process. T stands for the maturity
date. Let Xf

t denote the wealth of the company at time
t with X0 = x, whose evolution process is given by

dXf
t = ft

dPt

Pt
+ γ(Xf

t − ft)dt + dYt

= (γXf
t + ft(µ− γ) + α)dt + ftσdW

(1)
t + βdW

(2)
t ,

X0 = x.

The generator Af of this wealth process is then expressed
as

(Afg)(x, t) :=
∂g

∂t
+ (f(µ− γ) + γx + α)

∂g

∂x

+
1
2
(f2σ2 + β2 + 2βσρf)

∂2g

∂x2
.

Suppose that the investor wants to maximize the utility
U(x) from his terminal wealth. The utility function U(x)
is customarily assumed to satisfy U ′ > 0 and U ′′ < 0.
Let

V (x, t) := sup
f

E[e−δ(T−t)U(Xf
T ) |Xf

t = x], (1)

where δ stands for the rate at which consumption and
terminal wealth are discounted. We remark that in the
seminal work of Browne [3] the case of δ ≡ 0 is treated.

Now the Bellman principle applied to (1) implies that
the equation for V , which is called the Hamilton-Jacobi-
Bellman equation, becomes

sup
f
{AfV (x, t)} = −δV, V (x, T ) = U(x). (2)

Suppose that (2) has a classical solution V with ∂V/∂x >
0, ∂2V/∂x2 < 0. We then infer that

f∗t = −µ− γ

σ2

∂V/∂x

∂2V/∂x2
− βρ

σ
, (3)

where {f∗t }0≤t≤T denotes the optimal policy. Placing (3)
back into (2) we obtain

∂V

∂t
+

(
γx + α− βρ(µ− γ)

σ

)∂V

∂x

− 1
2

(µ− γ

σ

)2 (∂V/∂x)2

∂2V/∂x2
+

1
2
β2(1− ρ2)

∂2V

∂x2

= −δV for 0 < t < T

V (T, x) = U(x).

(4)

Browne [3] shows that if δ = 0 (4) possesses a solution
in the case U(x) = λ− (ν/θ)e−θx with positive constants
λ, ν, θ. This utility has constant absolute risk aversion
parameter θ; precisely stated, −U ′′(x)/U ′(x) = θ. Here
we proceed further in the analysis of (4) along the line of
[1]. We remark that in [1] the case of γ ≡ 0 and δ ≡ 0 is
discussed.

Let v(x, t) be defined by V (x, t) = v(Ex, F (T−t)), where

E :=

√
(µ− γ)2

β2(1− ρ2)σ2
, F :=

1
2

(µ− γ

σ

)2

.

We further define

a :=
E

F

(
α− βρ

σ
(µ− γ)

)
, b :=

δ

F
,

and write γ/F by the same γ with abuse of notation. It
follows that after a calculation

∂v

∂t
=

∂2v

∂x2
− (∂v/∂x)2

∂2v/∂x2
+ (γx + a)

∂v

∂x
+ bv,

v(x, 0) = U(E−1x).
(5)

Now we additionally introduce the next quantity.

r(x, t) := −∂2v/∂x2

∂v/∂x
= − ∂

∂x
log

∣∣∣∂v

∂x
(x, t)

∣∣∣. (6)

It should be noted that (6) is related to the coefficient of
absolute risk aversion. A little tedious computation then
leads us to the following equation.

∂r

∂t
=

∂

∂x

{(
1 +

1
r2

) ∂r

∂x
− r2 + (γx + a)r

}
,

r = r(x, t) in (x, t) ∈ ΩT := R+ × (0, T )
(7)

where T > 0 and R+ = {x > 0}.
We remark that in [1] the equation (7) with γ ≡ 0 and
a ≡ 0 is derived. Compared to the equation (5), which
is in itself worth investigating further, the equation (7) is
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quasilinear and has divergence form; (7) is rather popular
type in the PDE world, although it is singular at the same
time.

In [14] we have proved the next existence result, which is
formulated on a bounded interval.

Theorem. Let L, l > 0 be given. For every non-
increasing r0(x) ∈ C1[0, L] with r0 ≥ l and ∂r0/∂x = 0
at x = 0 and L, there corresponds T = T (u0) > 0 such
that there exists a classical solution r of the problem

∂r

∂t
=

∂

∂x

{(
1 +

1
r2

) ∂r

∂x
− r2 + (γx + a)r

}

in (x, t) ∈ ΩL
T := (0, L)× (0, T )

∂r

∂x
(0, t) =

∂r

∂x
(L, t) = 0 for 0 < t < T

∂r

∂x
≤ 0, r(x, t) ≥ l > 0 for (x, t) ∈ ΩT

L

r(x, 0) = r0(x) on 0 ≤ x ≤ L.

We note that in [1] the existence is assured under a differ-
ent situation; that is, the equation with γ = a = 0 is dis-
cussed on {x > 0} under the conditions that ∂r/∂x = 0
at x = 0 and u converges to a positive constant as x →∞.

The structure of steady state solutions makes us realize
what kind of solutions the equation (7) produces. Here we
reproduce our previous establishment of [1] for the read-
ers’ convenience. That is, we examine the case γ = a = 0
and consider the next ordinary differential equation:

(
1 +

1
r2

) dr

dx
− r2 = C,

where C denotes a constant independent of x and t.

There are three possibilities according to the sign of C.
We note that, however, the first two cases are meaningless
for the economics because r takes a negative value.

If C > 0 then we write C = M2 to obtain

−1/M2

r(x)
+

( 1
M

− 1
M3

)
tan−1 r(x)

M

= x− 1/M2

r(0)
+

( 1
M

− 1
M3

)
tan−1 r(0)

M
.

It follows that r(x) ∼ −M−2x−1 as x →∞.

If C = 0 then we know

− 1
r(x)

− 1
3r(x)3

= x− 1
r(0)

− 1
3r(0)3

.

It follows that r(x) ∼ −(3x)−1/3 as x →∞.

Consequently if C ≥ 0 then there is no steady state solu-
tion suitable to the finance; the risk preference should be

non-negative by definition. Only the next last case fits
into our requirement.

If C < 0 then we write C = −M2 to discover

1/M2

r(x)
+

1 + M2

2M3
log

∣∣∣r(x)−M

r(x) + M

∣∣∣

= x +
1/M2

r(0)
+

1 + M2

2M3
log

∣∣∣r(0)−M

r(0) + M

∣∣∣,

provided r(x) 6= M . In this case r(x) ∼ M−2x−1 as
x → ∞. It is also clear that r(x) ≡ M gives one of
steady state solutions, which has a character of constant
absolute risk aversion. It should be noted that the last
steady state solutions correspond to those presented in
[3].

3 Numerical Procedure

Now we turn our attention to the numerical treatment of
the equation (7) under the next condition.

∂r

∂x
(0, t) = 0,

∂r

∂x
(x, t) ≤ 0,

r(x, t) → 0 as x →∞.
(8)

We notice that in particular the domain is not bounded
but the half line.

In order to compute the equation on a bounded interval,
we make the next change of variables, which is introduced
by [10] in this context and successfully applied to nonlin-
ear PDEs of this kind [11]. See also [12].

s =
2x

1 +
√

4x2 + 1

(
x =

s

1− s2

)
,

r(s, t) = r(x, t)

The half line [0,∞) then corresponds bijectively to [0, 1).
Furthermore the equation (7) is transformed into

∂r

∂t
=

(
1 +

1
r2

) (1− s2)4

(1 + s2)2
∂2r

∂s2
− 2(1− s2)4

r3(1 + s2)2
(∂r

∂s

)2

− 2
{(

1 +
1
r2

)s(1− s2)(3 + s2)
(1 + s2)3

+ ((r − a)(1− s2)− γs)
1− s2

1 + s2

}∂r

∂s
+ γr

r = r(s, t) in (s, t) ∈ (0, 1)× (0, T )

r(s, 0) = r0

( s

1− s2

)
on s ∈ [0, 1].

As to the first and the third condition of (8) we simply
put

∂r

∂s
(0, t) = 0, r(1, t) = 0 for t ∈ [0, T ]. (9)

Our discretization is now performed on this transformed
equation. For integers N,M >> 1 we define si := ih
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(i = 0, 1, 2, · · · , N) with h = 1/N , tj := j∆t (j =
0, 1, 2, · · · ,M) with ∆t = T/M , and ri,j := r(si, tj). The
boundary conditions are

rN,j = 0,
−r2,j + 4r1,j − 3r0,j

2h
= 0,

and our scheme is, for i = 0, 1, 2, · · · , N − 1 and j =
0, 1, 2, · · · ,M ,

1
∆t

(ri,j+1 − ri,j) =
(
1 +

1
r2
i,j

) (1− s2
i )

4

(1 + s2
i )2

ri+1,j − 2ri,j + ri−1,j

h2

− 2(1− s2
i )

4

r3
i,j(1 + s2

i )2
(ri+1,j − ri−1,j)2

4h2

− 2
{(

1 +
1

r2
i,j

)si(1− s2
i )

3(3 + s2
i )

(1 + s2
i )3

+ ((ri,j − a)(1− s2
i )− γsi)

1− s2
i

1 + s2
i

}ri+1,j − ri−1,j

2h

+ γri,j .

(10)

We should remark that the condition (9), namely the
point s = 1, does not produce a singularity.

4 Numerical implementation

We carry out our numerical experiment based on the
scheme (10). We here consider one example. For other
examples, we refer to [13]. To keep our situation simple
enough we assume a = 0 here.

Example. We take r0(x) = x−1 tanh x. The results are
shown in Figure. Figure (a) deals with γ = 0 while Figure
(b) with γ = 1. In both cases we set N = 103, M = 107

and T = 1.

The function r0(x) is monotone decreasing and attains
its maximum at x = 0. It is seen that the point of local
maximum grows as time proceeds.

Other examples show that our scheme is robust and sta-
ble. We will not get into the details and just refer to
[13].

5 Conclusions and Discussions

We have numerically investigated singular nonlinear par-
tial differential equations (PDE) arising in the optimal
investment problem. The unknown quantity is related to
the Arrow-Pratt coefficient of absolute risk aversion in
terms of the optimal value function. Therefore the cur-
rent PDE may be considered to characterize the evolution
of the risk preference in optimal investment behavior. It
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(a) γ = 0
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(b) γ = 1

Figure. Solution profiles for Example:
r0(x) = x−1 tanh x.

is also to be noticed that the resulting PDE is quasilin-
ear and hence typical from the standpoint of the theory
of nonlinear PDEs.

Numerical performances show that the solution is
smoothened as time proceeds. Since we make a change
of time inversion, this means that as time approaches
the maturity it is becoming more risk sensitive. We also
observe that under the effect of interest rate the solution
grows. Interpretation of this phenomena in the economics
is that the interest rate tempers the risk evolution. We
are able to judge that our PDE really represents the risk
preference in some sense.

The research for the optimal behaviors under stochas-
tic processes gradually gains its importance both among
academics and practical world. PDE approach has an ad-
vantage that it is rather easy to implement the equation
by numerical computation. We hope that our methodol-
ogy have made at least a positive step toward the better
understanding of the optimal decision problem.
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