

Abstract— Matrix multiplication is an integral component of
most of the systems implementing Graph theory, Numerical
algorithms, Digital control, Signal and image processing (i.e
robotics, computer vision, artificial intelligence e.t.c). So
reduction of multiplication time can influence drastically the
overall system performance. Based on the importance, this
paper presents a novel distributed algorithm for matrix
multiplication to lower the time complexity efficiently. For
distributed processing, computational time is usually analyzed
assuming that all processors are of the same type and operating
at same speed. i.e., homogeneous system. A number of
autonomous machines are connected by a local area network
that makes a distributed computing environment where server
and multiple clients exchange their data or information by
using message passing technique. The result shows that an
enormous amount of time can be reduced by adopting such
technique by dividing the tasks on different clients, where
execution time grows rapidly with the increase of data on a
single machine.

Index Terms—Distributed Matrix Multiplication,
Homogeneous System, Sequential Algorithm, Time
Complexity.

I. INTRODUCTION
The main focus of this work is to present a distributed

algorithm for Matrix Multiplication. We have developed the
algorithm “Distributed control, inner-product workers,
multiple vectors per message (n/k rows, n columns per
worker)”. We distribute the large order of matrices into
number of clients which coordinate with server. The clients
perform their calculation on the specific input data and send
their results back to the server. As the total computation is
done by several processors, the time complexity is reduced
enormously.

Manuscript received on October 30, 2008. This work was supported in part

by the IAENG Hong Kong and Department of Computer Science &
Engineering, Dhaka University of Engineering & Technology, Gazipur-1700,
Bangladesh.

M.Nazrul Islam, M. Shohidul Islam , M.A. Kashem, M.R. Islam and M.S.

Islam are with the Department of Computer Science & Engineering in Dhaka
University of Engineering & Technology, Gazipur-1700, Bangladesh. (e-mail:
nazrul_ruet@yahoo.com, shohidulcse@duet.ac.bd, drkashemll@duet.ac.bd,
uzzal01328@yahoo.com and msislam_80@yahoo.com).

II. COMPARATIVE FEATURES WITH EXISTING WORKS
For efficient matrix multiplication different distributed

algorithms exist such as (i). Distributed control,
inner-product workers, (ii). Distributed control,
outer-product workers, multiple vectors per message, (iii).
Distributed control, inner-product workers, multiple vectors
per message (n/k rows, n columns per worker), (iv).
Winograd’s method and (v). Hybrid Winograd-Strassen.
From the design view of the algorithm, we have developed
“distributed control, inner-product workers, multiple vectors
per message (n/k rows, n columns per worker)”- as this
algorithm reduces the time complexity needed by others. But
it might show that the algorithm has some problems. One
crucial issue is equal portion of data were not distributed to
all processors and the last one gets in addition of remainder
portion, as a result some of processors was heavily loaded
than that of others. Consider a 100 x 100 order matrix and 6
processors to perform distributed computing then the first 5
processors compute 80 rows (each processor compute 16
rows of final matrix) and the last processor computes rest of
data i.e. 20 rows of final matrix, but this is not fully
distributed and varies time complexity when large order
matrix is considered. We have considered remedy of this fact
into our devised algorithm.

III. ALGORITHM DEVELOPMENT
The time complexity of matrix multiplication depends on

the number of operations which are performed according to
the algorithm for specified input domain. Basically there are
two approaches for matrix multiplication: sequential
approach which is implemented by a single processor and
parallel approach that is implemented by multiple processors
as they behave like server-client relationship.

A. Sequential approach
Sequential approach is implemented by a single processor

where time complexity is related to only one factor and that is
computation time. Suppose a and b are the matrices to
multiply; cij is the resultant matrix; k is the no. of clients
interconnected to the server; n is the order of those matrices
It is counted that all matrices have the same order. i, j and q
are the variable to continue the looping process. The
algorithm for sequential approach is:

Md. Nazrul Islam, Md. Shohidul Islam, M.A. Kashem, M.R. Islam, M.S. Islam

An Empirical Distributed Matrix Multiplication
Algorithm to Reduce Time Complexity

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-7-5 IMECS 2009

procedure matrix multiplication (a, b: matrices)
for i:=0 to n-1
 for j:=0 to n-1
begin
cij :=0
for q:=1 to n-1
 cij := cij+aiq ×bqj
end

B. Distributed approach
Distributed model of computation has been implemented

in java using client-server based socket programming
wherein each client is assigned task as implied in the below
given algorithm.

Algorithm for the client end:
process client [i: =0 to n-1]
 integer a[n] –row i of matrix a
 integer b[n] –all of matrix b
 integer c[n] –row i of matrix c
 receive initial values for vector a and matrix b
 for[j:=0 to n-1]{
 c[j]:=0
 for[k:=0 to n-1]{
 c[j]:=c[j]+a[k]×b[k,j]
 }
 }
 send result vector c to the server process

The pseudo code for server end:
process server
 integer a[n] –source matrix a
 integer b[n] – source matrix b
 integer c[n] – source matrix c
 initialize a and b
identify how many clients are connected to the same port
choose how many clients (k) you want to involve
calculate how many rows you want to send each client
for[i:=0 to n-1]{
 send row i of a to client[k]
 send all of b to client[k]
 }
for[i:=0 to n-1]{
 receive row i of c from client[k]
 print the results, which are shown now in matrix c}

IV. HOW TIME VARIES

A. Sequential Computing
Resultant matrix has n2 entries. To find each entry

requires a total of n multiplication and n-1 additions. Hence,
a total of n3 multiplications and n2 (n-1) additions are used.
So, time Complexity is O (n3).

B. Distributed Computing
The execution time td is composed of two parts: a

computation part says tcomp, and a communication part say
tcomm; Thus td = computation time (tcomp) + communication
ime(tcomm)

 i.e. td = tcomp + tcomm.

Resultant matrix has at least 1 entry. To find each entry
requires a total of n multiplication and n-1 additions. Hence,
a total of n multiplications and (n-1) additions are used. So,
the computation time complexity is O (n).

tcomm = tstartup + ntdata ; where, tstartup is the startup time
called message latency to pack and unpack data; tdata,
transmission time to send one data word is a constant; and n
is the no. of data words. So, communication time complexity
is O (n), hence, overall time complexity is less than
sequential computation.

V. RESULTS AND DISCUSSION

A. Experimental Results
From table 1 we may give our attention that how the

complexity varies with the increase of clients on one side and
another with the increasing of matrices order.

TABLE I MATRIX MULTIPLICATION TIME STATISTICS

Order
(n)

Sequential
Approach

Distribut
e

with 4
client

Distribut
e

with 6
client

Distribut
e

with 8
client

Distribute
with 10
client

100 2.248
sec

0.891
sec

0.621
sec

0.431
sec

0.382
sec

300 7.797
sec

3.344
sec

3.262
Sec

3.122
sec

2.941
sec

500 1.045
min

36.844
sec

34.672
sec

30.41
sec

26.42
sec

700 2.380
min

56.421
sec

48.245
sec

44.35
sec

40.48
sec

1000 5.730
min

2.31
min

2.012
Min

1.82
min

1.64
min

So it should not be avoided, rather be noted for low ordered

data distributed among more clients may switched to increase
the time than should be for communication complexity.
However, we would like to be frankly said that the more the
machine increases the less will be the computational time
which can be clearly verified by large ordered data or matrix
(i.e. n>=300).

VI. CONCLUSION
 This paper discussed to reduce the computation time for
processing a huge number of data. In distributed system the
performance is influence by dividing the task among
processors. One important issue remains unsolved, if the
system is considered as distributed heterogeneous system,
where data is given again and again which has performed
tasks quickly. We plan to address this issue in our future

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-7-5 IMECS 2009

research.

REFERENCES
[1]. Nicholas Comino, V. Lakshmi Narasimhan, “A Novel Data

Distribution Technique for Host-Client Type Parallel

Applications”, IEEE Transactions on Parallel and Distributed

Systems, vol.13 , no.2, pp.97-110, Feb 2002.

[2]. Jyh-Jang Lim, Jai Menon and David Palmer “A Distributed

Development Environment for Embedded Software” SPE, vol.23,

no.11, Nov 1993.

[3]. Stephen A. Rees, James P. Black, “An Experimental

Investigation of Distributed Matrix Multiplication Techniques”.

SPE, vol.21, no.10, Oct 1991.

[4]. Sartaj Shani,”Computer Algorithm”, third edition, McGraw-Hill.

[5]. Andrew S. Tanenbaum, “Computer Networks”, fourth edition,

Prentice-Hall, Inc.

[6]. H. M. Deitel, P. J. Deitel, “Java How to Program”, sixth edition,

Prentice-Hall, Inc.

[7]. Michael Allen, Barry Wilkinson, “Parallel Programming”, fifth

edition, Prentice-Hall, Inc, ISBN:0131405632.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-7-5 IMECS 2009

