
 
 

 

  
Abstract—This paper presents a solution of the singular 

boundary integral equation of the 3D compressible fluid flow 
around an obstacle, which uses isoparametric linear boundary 
elements of Lagrangean type. The singular boundary integral 
equation formulated in velocity vector terms is deduced by 
applying the indirect technique of the BEM with sources 
distribution. The problem is reduced to a linear system of 
equations and for evaluating the coefficients arising from 
integrals of singular kernels a suitable parametric 
representation is used and the finite part of the integrals 
involved is considered. Based on the method exposed a 
computer code in MATHCAD is made. We test the method 
solving the problem in a particular case, in which an exact 
solution is known. A comparison between the exact solution and 
the numerical one shows a high degree of accuracy. 
 

Index Terms—boundary element method, compressible fluid 
flow, linear boundary elements, singular boundary integral 
equation, singular kernels.  
 

I. INTRODUCTION 
 The Boundary Element Method (BEM) is an important 

numerical technique, a method of great efficiency, used to 
solve boundary value problems for systems of partial 
differential equations.  

The principal advantage of the BEM over other numerical 
methods is the ability to reduce the problem dimension by 
one. This property is advantageous as it reduces the size of 
the system the problem is reduced at, leading to improved 
computational efficiency.  

To achieve this reduction of dimension it is necessary to 
obtain an equivalent boundary integral formulation for the 
governing equations. Usually a singular boundary integral 
equation is obtained.  

In order to solve the integral equation different types of 
boundary elements can be used. As shown in [1] the type of 
boundary elements plays an important role in applying BEM, 
because the accuracy of the numerical solution is affected by 
the approximation models brought into solving through them.  

If the body is three-dimensional, the boundary elements are 
usually of two types: quadrilateral and triangular elements.  
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In this paper we use triangular linear isoparametric 

elements of Lagrangean type for solving the singular integral 
equation resulting as an application of the indirect boundary 
element method with sources distribution to the 
three-dimensional problem of a compressible fluid flow past 
an obstacle. 

 

II. THE BOUNDARY INTEGRAL EQUATION 
We think that it is necessary to make a short presentation 

of the problem we want to solve. We consider a 3D uniform, 
steady, potential motion of an ideal compressible fluid of 
subsonic velocity iU∞ , pressure ∞p and density ∞ρ  
perturbed by the presence of a fixed obstacle of a known 
boundary, noted Σ , assumed to be smooth and closed, which 
equation is: ( ) 0,, =ZYXF . We want to find out the 
perturbation, and the fluid action on the body.   

The problem was studied by other authors too but with 
other numerical techniques, and even when BEM was 
applied the boundary integral formulations were obtained in 
terms of potential functions, or stream function, not in terms 
of velocity field like the approach considered in this paper.  

Using dimensionless variables, we have, for the velocity 
and pressure fields, the following relations: 

 
( ) PUppViUV 2

11 , ∞∞∞∞ +=+= ρ  
 

After some changes of coordinates the mathematical 
model in dimensionless variables for the perturbed motion is: 
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with boundary condition:   
 

 ( ) Σ−=++ onnwnvnun xzyx ββ 2  ,               (2) 

where v  represents the perturbation velocity and 
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gradF
gradFn = .  

It is also required that the perturbation velocity vanishes at 
infinity: ( ) 0,,lim =

∞
wvu .    

The first equation ensures the existence of the potential 
function ( )zyx ,,ϕ , so as: 
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and 0=Δϕ .     
As it is known (see for example[2]), the fundamental 

solution of this equation is : 
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where ( ) ( ) ( )2
33

2
22

2
11 ξξξξ −+−+−=− xxxx , 

and ( )zyx ,,ϕ represents the potential of he motion 

produced by an unitary source situated in point ξ (position 
vector).  The velocity field is given by:  
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Assimilating the body with a continuous distribution of 

sources on the boundary, so on Σ , having an unknown 
intensity ( )xm   (presumed to satisfy hölder condition on 
Σ ), we have for the perturbation velocity, v , the integral 
representation: 
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 For Σ∈→ 0xξ  we get the perturbation velocity in any 
point of the boundary: 
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where ( )00 xnn = .  
 Using the boundary condition (2) a singular integral 
equation for the unknown m is obtained  in [3]: 
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where the sign  “′ “ denotes the  principal value in Cauchy 
sense of the integral. 

For 1=β  we obtain the boundary integral equation  for the 

incompressible fluid flow. 

III. SOLVING THE SINGULAR BOUNDARY INTEGRAL 
EQUATION 

 A collocation method is used for example in [4] for 
solving integral equation (7).  
 In the boundary element approach used herein, for 
solving the integral equation (7) we use linear isoparametric 
boundary elements of Lagrangean type. The body surface, Σ , 
is divided into M  plane triangles, noted  MjTj ,1, = , the 

extremes of the panels, noted Nixi ,1, = , being situated on 
Σ . Introducing this geometric approximation in (7) we 
obtain the following boundary integral equation: 
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                                                                                 (8) 
Considering { }Nixx i ,...,2,1,0 ∈=  we have to calculate 

two types of integrals on jT , with (if ix is one of the triangle 

jT vertices) and without singularities. Thus, we have, for a 

fixed i, the integral equation: 
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                                                                                  (9) 
 

where 1A  and 2A represent the sets of triangles that don’t 
have, respective have, an extreme in ix .  
 For describing the local geometry and the local behavior 
of the unknown m , so on a boundary element, we use linear 
isoparametric boundary elements. They use the same basic 
functions to model the geometry and the unknown function, 
and the approximation function is continuous on the 
boundary. 
 An important and also a difficult step in solving problems 
with BEM is the evaluation of the coefficients of the system 
the problem is reduced at, specially as regarding the 
evaluation of the singular ones. In papers [5], [6] there are 
presented some methods to treat the integrals of singular 
kernels in both cases: bi and three-dimensional problems. An 
efficient method that can be applied to surpass this difficulty 
in the 3D case consists in using suitable geometrical 
transformations of coordinates in order to eliminate the 
singularities.  
 In this approach we calculate the integrals using a local 
system of coordinates, the intrinsic system. Denoting by 

321 ,, xxx  the vertices (nodes) of a triangle, and by 
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321 ,, λλλ the intrinsic triangular coordinates ([7], [8]), we 
have for an interior point of the triangle the relation: 
    ( ) ( ) 3132121 λλ xxxxxx −+−+= .             
Using the parametric representation, so a transformation that 
strings together the current triangle and the basic one, given 
by: 

  θλθλ sin,cos 32 rr == , ⎥⎦
⎤

⎢⎣
⎡∈

2
,0 π

θ , [ ]ρ,0∈r ,  

with ρ  and θ  satisfying relation: 
( ) 1sincos =+ θθρ   ,                   (10) 

we obtain the new domain of integration, Fig.1,  
 

 
Fig. 1. New domain of integration 

 
and further we get:  
 
  ( ) ( ) θθ sincos 13121 rxxrxxxx −+−+= . 
 
 Evaluating the Jacobian of the transformation and noting 
with S the area of the initial triangle we have: 

θSrdrdda 2= . 
 First we consider that jT  has all nodes different from ix . 

Naming by jjj xxx 321 ,, the vertices of panel jT , and by 
321 ,, jjj mmm  the  values of the unknown function in these 

nodes, and using  the formulas below  we have: 
 

( ) ( ) θθ sincos 13121 rxxrxxxx jjjjj −+−+=  

( ) ( ) θθ sincos 13121 rmmrmmmm jjjjj −+−+=                       (11) 
 
We can write that 
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(b   the dot product between   ij xx −1    and ( )θje ).         (12) 

 Integrals ( )θnI  from the above relation are the same as in 
[9 ], where the case of an incompressible fluid was 
considered and so they have the same analytical expressions, 
given by: 
 

θ
r

1

3λ

2λ

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-7-5 IMECS 2009



 
 

 

( )
cba

cbcI
++Δ

+
−

Δ
=

ρρ

ρθ
221 , 

 

( ) ( )

,
2

ln1

2
2

2
3

2

2

2

acb
bacbaa

a

a
cb

cbaa

bcbI

+

++++
+

+
Δ

−
++Δ

+Δ−
=

ρρρ

ρρ

ρθ

 

( )

( ) ( ) ( )
⋅

++Δ

−Δ+−Δ
+

Δ
Δ−

+

+
+

++++
−

++
=

cbaa
bbbc

a
bc

acb

cbaaba

a

b
a

cba
I

ρρ
ρ

ρρρρρ
θ

2
32

2
ln32

22

22

2

2

2

2
52

2

3
 

                                                                                          (13) 
 
The non singular integral becomes: 
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where 111
ijijijij CBAA −−=  .                                   (14) 

IV. EVALUATING THE SINGULAR INTEGRALS 
 

Considering now that the triangle, noted  jT ,  has a vertex 

in ix  we calculate the singular integrals occuring in (9) using 
the following relations: 
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where 32 , jj xx  are the other two nodes of jT , and 32 , jj mm  are 

the values of the unknown function, m , in these nodes. 
If jS is the area of jT , we have: 
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Denoting by 222
ijijijij CBAA −−=′ , we further get: 
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and finally equation (9) has the form: 
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Returning to the global system of notation the problem is 

reduced to the following system of equations: 
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After solving system (19) we may compute the velocity for 

the N  nodes choosen for the boundary discretization and for 
any other point in the fluid domain. 

 

V. TESTING THE METHOD  
In order to test the method we shall consider the uniform 

motion of  an incompressible fluid in the presence of a sphere 
of radius R , centered in the origin of the system of 
coordinates. In this case the integral equation (7) can be 
solved analytically. A solution of this equation can be found 
in [10]. 

Using the spherical coordinates for the nodal points, so 
expressing the position of a point through relation: 

( )kqjqqiqqRx 12121 cossinsincossin ++= , and the method of 
successive approximations to integrate equation (7), the exact 
solution is obtained It has the following expression:  

( ) 121 cos
2
3, qUqqm ∞=  

Comparisons between the analytical values of the intensity 
m , on the sphere,  and the values calculated by means of the 
boundary element method (with a computer code in 
MATHCAD) are performed in Fig.2. The boundary mesh is 
represented by 24 planar triangles and has 14 control points. 

We can observe that  the calculated and analytical values 
of the intensity are very close evan if the number of nodes on 
the boundary is not very big, fact that validates the computer 
code and proves the efficiency of the method proposed in this 
paper. Better results can be achieved with more nodes on the 
boundary or using higher order boundary elements. 
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 with BEM exact sol.
 

Fig.2. The sources intensities for the 14 control points 
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