
 
 

 

  
Abstract— A multi region FDM technique is developed for 

second order, one dimensional linear differential equations and 
applied to a particular singularly perturbed boundary value 
problem, εd2u/dx2 + du/dx = 0.  It will be shown that for this 
problem a multi region structure can be created using single 
point error control which will result in a region structure 
having the property that during its final relaxation no 
algorithm used in the relaxation process in any region will have 
a single point error greater than a desired precision value.  This 
will insure that precision of the numerical solution will be 
approximately the desired precision.  It will be shown using the 
above example that the maximum error of any point in the net 
can be made less than ~10-20 for epsilon values between 1 and 
2-60.  This method can be thought of as simulating a very high 
density single region mesh with a multi region structure 
containing a small number of actual mesh points. The technique 
is applicable to a large class of singular problems. 

 
Index Terms— FDM, high precision, multi region, SPBVP.  

 
1. INTRODUCTION 
 
  Singularly perturbed boundary value problems occur in 

many areas of physics and engineering. They have been and 
continue to be an active research area in computational 
mathematics [1-5].  Two oft cited texts [2, 3] surveying 
progress in this area from its inception [1] in ~ 1969 to 2000 
provides a review of details of the techniques used to solve 
problems of this type.  Supplementing these texts is a more 
qualitative review of the field from 1984 to the 2002 by 
Kadalbajoo and Patidar [6] in which a large number of 
numerical techniques are reviewed, taken from the ~200 
referenced papers.  The most prominent of these are: Multi 
grid, described by Kamowitz [7].  Fitted meshes [8] initially 
presented by Bakhvalov [1] and Piecewise uniform meshes 
described by Shishkin [9] and used extensively in current 
research activity [4, 5, 8, 10].  Details of the above techniques 
may be found in the respective papers and a summary of 
these techniques may be found in Kadalbajoo [6]. Comments 
of a more critical nature may be found in Farrell et al [3].  

The difficulty of singularly perturbed boundary value 
problems arises during the solution of differential equations 
in which the solution is localized in a region of space 
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characterized by a small parameter appearing in the 
differential equation.  For example consider the function exp 
(-x/ ε) which qualitatively exhibits localization 
characteristics of solutions typical of these types of boundary 
value problems.  It is plotted in fig. 1 for various values of ε 
from which the behavior of the function in a region near x=0 
can be seen.  It is clear that to accurately represent this 
function by a set of points, a sufficient number of points 
needs to be in the localized region itself.  
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Fig. 1.  The function exp (-x/ ε) is plotted as a function of x over the 

interval (0, 1) illustrating its localization near x=0 for small epsilon. 
One method of solution, known as the uniform mesh 

method, is to simply place a uniform mesh over the interval 
which would require for sufficiently small epsilon an 
inordinate number of points resulting in excessive relaxation 
times. The limitations of the uniform mesh method are well 
known [3].   

Another method is to allowing the mesh spacing to vary 
throughout the net thus providing a high density of mesh 
points in the localized region. This method was in fact the 
first technique to be applied to this problem and goes under 
the name of “fitted meshes”, “non uniform meshes”, or 
“Bakhvalov fitted meshes”, is described in [3] and is a 
method currently used by many workers in the field [8]. It is a 
method capable with appropriate parameter adjustments of 
reasonably high accuracy (~10-9) although issues 
surrounding this technique have been discussed in Farrell et 
al [3] and revolve around its complexity particularly when 
application is made to higher dimensional problems. Thus the 
higher precision of this method comes at a cost of increased 
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complexity. 
A significant advancement to the field came in ~1988 by 

Shishkin [5] who split the region into two non overlapping, 
separately uniform sub regions, the first being containing the 
rapidly varying portion of the function onto which ~N points 
were placed thus giving this region a very high density, and 
the second containing the very slowly varying portion of the 
function onto which again N points were placed.  This two 
region structure led to solutions in both regions (resultant 
precision of ~10-5) and allowed to some extent the boundary 
layer itself to be determined. The only problem remaining 
was the matching between the two regions.  The matching 
problem is of course non trivial and has been the subject of a 
large amount of research over the ensuing 20 years being yet 
today a field of active research [4, 5, 10]. To date precisions 
in the range 10 -4 to 10-6 have been achieved. 

Somewhat prior to the time that Shishkin developed the 
two region solution to the one dimensional singular problem, 
a multiregion technique was developed by the author [12] to 
solve a similar type of problem in two dimensions related to 
the calculation of electrostatic potentials in cylindrically 
symmetric geometries constructed using rectangular 
elements (as rings of rotation).  In this situation the 
differential equation is the 3 dimensional Laplace’s equation 
which is reduced to a two dimensional problem as a result of 
the problem symmetry. While the differential equation itself 
contains no small parameter and hence is itself non singular, 
the function which is its solution for geometries created using 
the rectangular elements has singularities near the corner 
points of those elements. These geometrically induced 
singularities create large algorithmic errors in their vicinity 
which propagate throughout the net.  These errors were found 
to be mitigated by creating a set of regions telescopically 
converging to the respective singular points and thus 
provided the first instance of multi region FDM (finite 
difference method) to a problem with “singular point” 
difficulties [12].  This work has been continued, refined and 
is reported in a recent series of publications [13-16].  

It is believed that workers in the areas of singularly 
perturbed boundary value problems and electrostatic 
potential calculations were completely unaware of each 
others existence even though their research efforts coexisted 
in time.  This changed in 2008 at a multi disciplinary 
conference which the author attended when a paper was 
presented by R.K.Bawa [5] making the author aware of the 
singularly perturbed one dimensional boundary value 
problem (SPBVP). The strong possibility that the method 
used in the electrostatic situation would be applicable to this 
problem was quickly recognized since both of these problems 
were had localized singularities.  

 
This paper is a result of that recognition. 
 

To provide an overview of this paper and to help keep track 
of its logical flow the following outline is provided. 
 2. Technical concepts  
  2.1 The single region FDM process  
  2.2 Algorithm development     
 3.  The multi region structure  
  3.1 Region definition 

  3.2 Manually creating a region structure 
  3.3 Relaxing a region structure 
 4. Auto establishing a multi region structure.  
 5.  Basic tests to corroborate the technique 
  5.1 Convergence of the multi region nets with respect to 
c13_c  
  5.2 Stability 
 6.  Multi region FDM solutions for ε between 1 and 2-60 
 7.  The dependence of single point algorithmic errors on 
c13_c 
 8. Generalized applicability 
 9.  Notes of caution. 
          10.  Comparison with other methods. 

          11.  Conclusion 
The test example is: 
(1)  εd2u/dx2 + du/dx = 0,   u(0)=0, u(1)=1 
It is one of the simplest examples of a singularly perturbed 

boundary value problem and an example from class 2.1 of 
Farrell et al. [3] having also been recently studied by Bawa 
[5]. This example is one which has been typically used by 
workers when presenting a new technique.  Its simplicity 
allows the easy abstraction of the technique’s main features 
while providing a basis for application to more complex 
problems. That it has a known solution allows for the 
immediate verification of numerical results. 

2. TECHNICAL CONCEPTS  
  The technical concepts required for understanding the 

multi region FDM process are twofold; 1 a knowledge of the 
basic single region relaxation process; 2 an understanding of 
the algorithm development method. 

2.1 THE SINGLE REGION FDM PROCESS 
 The single region FDM process is explained in many texts 

[17, 18] and presented here to standardize our terminology in 
preparation for its extension to multi regions.   

The domain of u(x) will be transformed to one having n 
equally spaced subintervals within the boundary points 
occurring at 0 and n. This single region may then be relaxed 
by stepping through the n-1 points of the interval, at each 
point updating its value using values of its surrounding points 
by means of an algorithm.  For the one dimension problem 
values of two points are required by the algorithm, the values  
taken from the immediately preceding and succeeding mesh 
points.  This process is repeated throughout the interval, the 
repetition iterated until an appropriate stopping criterion is 
reached at which time it is said that the solution has 
converged. This type of convergence will be called iteration 
convergence to distinguish it from other types of 
convergence. 

2.2 ALGORITHM DEVELOPMENT  
During the relaxation cycle an algorithm is required at 

each mesh point which, using values at its surrounding points 
will yield an accurate value of u at the point itself. In order to 
create an interval with n subintervals, the interval [0,1] is 
transformed by the substitution of x = z/n.   

 
Applying this transformation to (1), the following is 

obtained: 
(2) nε d2u/dz2+ du/dz = 0, u(0) = 0, u(n) = 1 
 
As we will desire a power series representation of u near a 
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mesh point,  a final substitution is made, z = r + ri with r being 
the relative coordinate of the point z with respect to the mesh 
point at z = ri.  Thus one obtains: 

(3) nεd2u/dr2+ du/dr = 0, u(0) = 0, u(n) = 1 
A power series representation of u about a mesh point at rj 

on the z axis is written: 
(4) u(r) = c0+c1r+c2r2+… +cjrj +O(rj+1 ) 
Where O(rj+1) indicates that terms in (4) containing powers 

of r larger than j are neglected.  
Defining the order of the algorithm as the highest included 

power of r in the power series representation of u from which 
the algorithm is derived, the above power series describes a 
power series of order j used in the development of a jth order 
algorithm. 

The actual process of algorithm development from its 
power series representation may again be found in 
elementary texts on differential equations [17, 18] and hence 
only an abbreviated description will be given for an order 5 
algorithm. This may be useful to those unfamiliar with this 
classical technique and will render understandable the 
remainder of the paper. From this example it is seen that the 
process can be easily generalized to the development of 
higher order algorithms.  

Using (4) the 5th order power series representation of u is 
written:  

(5) u(r) = c0+c1r+c2r2+c3r3+c4r4+c5r5 + O(r6) 
To find u(r) the 6 coefficients, c0.. c5 need be determined. 

This is accomplished in the following manner:  First the 
differential equation (3) is evaluated using the representation 
of u given in (5) which results in a single equation again 
being a power series in r: 

(6)  (c1+2nεc2)r0 + (2c2+6nεc3)r1 + (3c3+12nεc4)r2             

+ (4c4+20nεc5)r3  +  O(r4) = 0 
Since (6) is true in an arbitrary neighborhood of r=0, each 

coefficient of rj is required to be 0, and results in 4 equations. 
As there are 6 unknowns two additional equations are 
required.  They are found from evaluating u(r) at 2 
surrounding meshpoints, in this instance taken from mesh 
points on either side of r=0. Letting b5 = u(r=1) and b1 = 
u(r=-1) we have the following set of 6 linear equations which 
may be solved for c0 .. c5. 

  b5 = c0+c1+c2+c3+c4+c5 
  b1 = c0-c1+c2-c3+c4-c5 
(7) c1+2(nε) c2 = 0 
  2c2+6(nε) c3= 0 
  3c3+12(nε) c4= 0  
  4c4+20(nε) c5= 0 
The complete solution of this linear equation set is listed 

below both to illustrate the order of the complexity of the 5th 
order algorithm and to emphasize the fact that the algorithm 
development process may actually determine the complete 
set of coefficients (c0... c5). This ability will permit the 
definition of the c13 in §4. It will also enable by the use of (5), 
an interpolation for values between mesh points.  The 
solution is:   

  c0 = (+120(nε)4*b1+120(nε)4*b5-         
  60(nε)3b1+60(nε)3b5+20 (nε)2b5+20(nε)2b1+5(nε)b5- 
    5(nε)b1 + b1 + b5)/ (+240(nε)4 + 40(nε)2 +2 ) 

  c1 = (-60(nε) 4*b1+60(nε) 4*b5)/(+120(nε) 4+20(nε)2+1) 
 (8) c2 = (+30(nε)3*b1-30(nε)3*b5)/ (120(nε)4 + 20(nε)2 

    + 1 ) 
  c3 = (+10(nε)2*b5-10(nε)2*b1)/ (+120(nε)4+20(nε)2+1) 
  c4 = (+5(nε)*b1-5(nε)*b5)/ (+240(nε)4+40(nε)2+2) 
  c5 = (+b5-b1)/ (+240(nε)4+40(nε)2+2) 
 In general to determine a jth order algorithm, one applies 

the differential equation (1) to a jth order power series which 
results in a power series of order j-2 due to the d2u/dr2 term in 
the differential equation. As there are j cj’s to be determined 
an additional two equations are required as in the example 
above. This is in contradistinction to the situation in 2 
dimensions where the 5th order algorithm developed for the 
cylindrically symmetric electrostatic, has 21 coefficients, 
while the number of equations resulting from the application 
of the differential equation to the power series is only 11. 
Thus an additional 10 equations are required and are obtained 
from the 10 surrounding meshpoints.  It is further noted that 
the number of required meshpoints for the two dimensional 
case grows rapidly as the algorithm order increases, requiring 
for example 21 surrounding meshpoints for the order 10 
algorithm. (Algorithm development is considerably simpler 
in one dimension.) 

The consistency of the set of equations (8) from which the 
solutions are obtained must be established for each individual 
differential equation.  For all of the algorithms that have been 
determined for this and other one dimensional examples, no 
inconsistent situations were found.  This was not the case 
however in two dimensions where a sufficiently 
unsymmetrical set of mesh points would result in an 
inconsistent equation set. 

It is noted that the notation using b1 and b5 for the mesh 
points to the left and right of the central meshpoint has been 
chosen to be consistent with the notation previously 
employed [13-16]. 

3. THE MULTI REGION STRUCTURE  
  3.1 REGION DEFINITION 
A region is considered to consist of an interval containing 

its mesh points and to have both a single parent region and 
possibly many child regions.  It is required to be contained 
within its parent and have an enhanced density with respect 
to its parent.  The region may be represented by the following 
notation:   

  index, parent index, left endpoint, width, subintervals; 
 where width is the width of the interval in parent units, 

and subintervals is the number of subintervals in a single 
parent interval.  Thus a region has the following 
characteristics:  1. every region except the main net has a 
parent and is contained within the parent; 2. a region may 
have child regions, and for those child regions it is their 
parent; 3. child regions are non-overlapping.  It is noted that 
each region has a number of points N in its interval and an 
effective n, neff, which is found from multiplying the neff of 
the parent times its subintervals value. (neff  of the main net is 
its number of mesh points.) 

3.2 MANUALLY CREATING A REGION STRUCTURE 
Using the above concept of a region, a region structure 

may be manually created. As a concrete example  the base 
region is taken to consist of a mesh of 32 mesh points and 
each region will contain its first 3 parent intervals and have a 
density enhancement of 4. As the singularity is known to be 
at the left endpoint of the interval, the density of points needs 
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to be much higher there than in other places in the net.  Thus a 
3 region structure which puts an enhanced density in the 
vicinity of x = 0 having the above parameters can be 
manually created and is listed below: 

  0,-1, 0, 32, 1 
(9) 1, 0, 0, 3, 4 
  2, 1, 0, 3, 4   
(This structure has been found to have a precision of 

3*10-8 for ε= 2-10.)  
3.3 RELAXING A REGION STRUCTURE 
 Any region within the structure is to be relaxed with the 

standard single region FDM process described in 2.1.  The 
multi region relaxation process will proceed in the following 
manner: 0 regions within the structure are sequential relaxed; 
1 before a region is relaxed its boundary points are copied 
from their image points in the parent region; 2 no point in the 
region is relaxed which is either on a boundary or has an 
image in a child region; 3 after a region is relaxed, the image 
points within it of its parent are copied into its parent.  The 
process is terminated when a given stopping criterion is 
reached.  

In this manner a region structure can be created for any ε, 
relaxed, and its precision determined. The process can be 
continued by trial and error until the desired precision is 
obtained. The problem with the above is the requirement for 
significant user intervention during the process.  To 
overcome this, a procedure for auto establishing a region 
structure has been developed and is described in §4 below. It 
will be shown that for a desired precision the required multi 
region structure can be auto established thus removing  user 
intervention from the process. 

4. AUTO ESTABLISHING A REGION STRUCTURE. 
  Let us suppose that we have a base region which has been 

relaxed, and that it is desired to add a child region to this base 
region which will improve the overall precision of the 
solution.  The task is thus to construct a child region to 
contain the mesh points of the base region having high 
algorithmic errors. The algorithmic errors for these mesh 
points in the child region will then be reduced from their 
errors in the parent due to the enhanced density of mesh 
points in the child. The task thus becomes to determine those 
points in the base region which would have high algorithmic 
errors from the values of the mesh points themselves.  The 
above would be accomplished if one could estimate the 
algorithmic error at a mesh point from the values of its 
neighbors.  This estimation will be made possible by the use 
of |c13(z)|, c13 (z) determined during the development of the 
order 13 algorithm. (Note that the functional dependence of 
c13 on z arises from the dependence of c13 on b1 and b5 which 
themselves are functions of z.  

The motivation for using |c13| as an algorithmic error 
estimator is given in the following qualitative argument: The 
truncation error in evaluating c0 using an order 13 algorithm 
will involve coefficients c14 and above, all of which are likely 
to be of the order of magnitude of c13 or smaller.   Thus it is 
not unreasonable to expect that the single point algorithmic 
error at a mesh point would be of the order of this quantity. It 
must be emphasized that at this point the above is simply an 
assumption whose validity needs to be examined (see §7).  

Let c13_c be the desired precision of the numerical 

solution. The region may be then divided into two sets, one 
having their |c13| values less than the desired precision and the 
other greater than the desired precision.   

  Using the above concepts the region structure is created 
as follows: first N is selected for the main net and the main 
net relaxed. After this relaxation |c13| values are determined 
for all points in the main net and those having a |c13| of < the 
desired precision are colored blue, the remainder green. (N is 
initially chosen for the main region so that some blue points 
are in the region.)  A child region is then constructed so that it 
contains all of the green points. The interval between parent 
points in the child region is divided into say s subintervals 
(fixed at 4).  The region structure now consists of a parent net 
and one child region (for only one contiguous set of green 
points) or many child regions (for several separately 
contiguous sets of green points).   

Without loss of generality suppose only one child region 
was found. The relaxation of the current two region structure 
(parent and child) proceeds previously described. After it has 
been relaxed a child region may be added to the two region 
structure again using desired precision to divide the mesh 
points of the region into two sets. The added region would be 
a child region of the previous child region which would be its 
parent. The 3 region structure is then relaxed, the region 
construction being continued until the last child region has no 
points with |c13| values > the desired precision. At this point 
the structure is complete and a final relax of the region 
structure is made using possibly a more stringent end 
criterion than used during the region construction.  It should 
be noted that both the location of the singularity as well as the 
number of singularities are determined by the process itself 
and the process is self terminating. 

It will be later be shown in §7 that for our example, c13_c 
(the desired precision) is in fact an upper bound to the single 
point algorithm error for all mesh points having |c13| values 
less than it. Thus the above region creation process has the 
following characteristic: during the final relax cycle no point 
in the mesh is relaxed that has a single point algorithmic 
error greater than c13_c and hence apart from the 
cumulative round off errors which occur, the precision at any 
point with the entire structure should be of the order of or 
less than c13_c.  Thus a structure can be created which at the 
end of the final relaxation will give a maximum error at any 
mesh point within the net of the order of or less than the 
desired precision. And the only user input is the desired 
precision of the final result. It is noted that this type of 
process is also termed adaptive. 

 5.  BASIC TESTS TO CORROBORATE THE TECHNIQUE 
 A new technique is being proposed in this paper. As such 

several issues need to be discussed.  The first is the concept of 
order of convergence of the relaxation process and what in 
fact is meant by this for multi region FDM.  The next is to 
find a suitable convergence parameter which will enable a 
convergent solution to be found. The stability of the high 
order algorithms developed using the techniques of §2.2 also 
needs to be examined. And finally an additional test of the 
technique which must be done is to solve a non trivial 
problem with multiregions which is also solvable by the 
single region technique thus providing an overlap between 
the single region FDM solution (in which there is 
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considerable confidence) and the solution using the new 
multi region FDM technique. 

  
In much of the literature, particularly those methods based 

on the piecewise uniform method of Shishkin, the order of 
convergence of the process is a quantity often determined for 
the process. It may be calculated from: 

(10) emax = a*np ,  
where emax is the maximum error of the numerical 

solution parameterized by n, the number of mesh points. The 
order of the convergence is then defined as –p. For Shishkin 
related methods the number of meshpoints is taken to be the 
number  of points in the main net.  

Unfortunately any definition of the order of convergence 
of a process dependent on number of mesh points does not 
apply to the multi region FDM process described here since 
in most instances the region structure created with differing 
values of c13_c (desired precision) for a given ε will have the 
same number of regions and hence a identical neff for all the 
regions (including the main net) but its after relax precision 
will differ markedly depending on c13_c.  However, in order 
to examine the order of convergence of the high order 
algorithms in a defining context, the algorithms will be used 
in a single region FDM relaxation problem from which the 
order of convergence is well defined and can be evaluated 
using (10). To this end ε is chosen to be 2-10, nets created 
having varying number of mesh points N (from 256 to 8192), 
relaxed using a particular algorithm, and  emax and hence p 
determined for each algorithm.   The results are plotted in 
Fig. 2 for algorithms of order 3, 5, 9, 13.  
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Fig. 2.  The log of the single region error for ε = 2-10 is shown as a function 

of the log of the number of mesh points in the net for various order 
algorithms used in the relaxation process.  The slopes ranging from ~ -11 for 
the order 13 algorithm to ~ -2 for the order 3 algorithm give the order of 
convergence of the algorithm. 

 From the slope of the error curves (the 8192 net is used as 
the reference) the order of convergence of the particular 
algorithm can be determined. The table below gives the order 
of convergence for the various algorithms. 

 
algorithm  Order of convergence 
order 3  1.82 
order 5  3.6437 
order 9  7.63689 
order 13  11.65862 

Seen from the above table is that the high order algorithms 
have large orders of convergence, and hence are suitable for 
the relaxation process. It is seen also that orders of 
convergence increase in an essentially linear manner with 
respect to the order of the algorithm.  

 From the order 13 curve in Fig. 2 it is seen that; 1 the nets 
converge as a function of N to the 8192 net and 2; the 
precision of the 8192 net (log (N) ~ 3.9) can be estimated to 
be  ~10-22 for ε = 2-10.    

5.1 CONVERGENCE OF THE MULTI REGION NETS WITH 
RESPECT TO C13_C (THE DESIRED PRECISION VALUE) 

From the discussion above, it was seen that n is not and 
cannot be made to be a useful parameter in determining 
convergence properties of the multi region process. Thus 
another parameter needs to be determined. Defining cut by:  

(11)  cut = log10 (c13_c)  
It will be shown that cut is in fact a convergence parameter.   
One can see that cut is a parameter of convergence by 

considering a problem (ε = 2-10) for which we have a 
reference net (the single region 8192 net) and then creating 
and relaxing a number of multi region structures for various 
cuts.  

Fig. 3 shows the resultant plot from which it is seen that the 
multi region solution converges and converges to the 8192 
solution as cut is decreased from -6 to -20 thus demonstrating 
that cut is a convergence parameter.  This also demonstrates 
the overlap of the multi region solution with that of a single 
region solution for a common problem, ε = 2-10, since as seen 
in Fig. 3 the multi region solution converges to the 8192 
solution. 

cut

lo
g 

m
ax

 d
iff

er
en

ce

log error vs cut
converging to single region 8192 net

epsilon = 2^(-10)

-22 -20 -18 -16 -14 -12 -10 -8 -6
-22

-20

-18

-16

-14

-12

-10

-8

-6

 
Fig. 3. Seen in this figure is that the multi region process for a given cut 

converges to the 8192 single region reference net thus showing that cut is a 
convergence parameter. 

5.2 STABILITY 
The question to be answered in this section is: are the 

solutions stable? (See definition below.)  There are several 
types of unstable situations. The first is that the relaxation 
process has values which become unbounded during the 
process itself and is the most common type of instability 
found in our investigations.  The second less common 
instability is that after a large number of iterations the value 
of any point during one cycle is the negative of its value in a 
previous cycle.  In this case the net is bounded but the end 
criterion will not be met.  The last type of instability which is 
quite rare is one in which the net converges but the solution it 
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converges to is not stable(see definition below).  
5.2.1 DEFINITION OF PROCESS STABILITY. 
 A net is considered having been relaxed from an arbitrary 

initial state with appropriate boundary conditions using a 
process.  The process consists of an iteration method coupled 
with an algorithm used in the process to determine the values 
of the function at each mesh point from the surrounding 
points.  The process is considered to be stable if the following 
two conditions hold:  i. The process converges to a final state, 
uN(z).  ii. The iteration process starting from any perturbation 
of the final state must converge to the same final state, uN(z).  

5.2.2 THE SIMULATION METHOD USING MONTE CARLO 
TECHNIQUES 

Defining Z (z) as the solution to (1) with Z (z) =0 for all z, 
it is a straightforward exercise to show that uN(z) is stable if Z 
is stable.  We will determine the stability of Z and hence uN 
by constructing random initial states for Z (all non boundary 
mesh points values are chosen randomly from the interval 
[-1, 1]) and then relaxing Z for each of these states. If the 
relaxation converges to Z for every random initial states in a 
sufficiently large simulation set it is considered to be stable.  

From equation (5) it is seen that the value c0 depends 
linearly on b1 and b5 (this is true for all algorithms as well as 
the 5th order algorithm).  Calling the coefficients of these 
quantities cb1 and cb5, c0 may be written:  

(11) c0 = cb1*b1+cb5*b5 
It is noted that the coefficients cb1 and cb5 depend upon 

the particular algorithm used in the relaxation process and 
that in any multi region structure only a small number of cbj 
values are actually realized (cb1 and cb5 are constant 
throughout each region depending only on nε, where n is the 
effective n for the region). 

The process simulation will be treated in two steps. First 
values of cb1 and cb5 will be scanned from -2 to 2 and the 
stability of each pair (cb5, cb1) determined. This will provide 
a plot of the stable values of cb1 and cb5.  The realized values 
cb5, cb1, obtained for a particular algorithm will be 
superimposed upon the stability plot thus determining the 
stable points of the algorithm.  

5.2.3 RESULTS FROM THE SIMULATIONS 
The perturbed Z net was created by constructing a single 

region mesh having N mesh points. The values at all non 
boundary points are initialized to random numbers in the 
range -1 and 1 with the boundary points being set to 0. (It 
should be noted that for any region in the multi region 
structure the N to be used for its stability determination is the 
number of points in its interval and not its effective n defined 
in §3.1.)  This net was then relaxed and found stable if the 
value at every mesh point was less than 10-15 for iterations 
larger than a given number. It is noted that for this situation a 
mesh point was either stable or reached a sufficiently large 
value during a relax cycle at which point the process was 
terminated.  Only in other cases (mesh points used in the 
algorithm not b1, b5) did the simulator find the very special 
situations in which either the entire net would relax to a non 
zero function or successive iteration cycles would give 
alternate signs to the non zero function and so in fact would 
never satisfy the end criterion, i.e. it would never become 
unbounded but never converge. The stability plot for a j trial 
simulation set is the intersection of all of the individual 

simulation plots.  A single simulation consisted in finding the 
stability of each pair (cb5, cb1) in its domain using the same 
random initial function  for the mesh point values.  

Fig. 4 shows a plot of the final stability region for a 100 
point mesh for the simulation sets containing 1, 5, and 10000 
trials.  Seen that the final stability region does not change 
after the first ~1-5 simulations and hence implying that only a 
small number of actual simulations are in fact required to 
determine the final state of the stability plot. 
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Fig 4.  Seen is that the stability plots for a 100 point net for 1, 10 and 

10000 simulations are equivalent.  Also plotted are the possible values of cb1 
and cb5 for the various algorithms for nε between .0001 and 10 showing that 
the odd order algorithms are stable for all nε while the order 4 algorithm has 
is unstable for a range of  nε values.   

The quantities cb1 and cb5 in a relaxation process are 
determined by the particular algorithm used. The algorithms 
developed from (1) depend only on nε (n is the neff for the 
region).  By scanning nε over its domain (.0001 to 10), the set 
of realized pairs (cb5, cb1) can be determined for each 
algorithm.  Thus superimposed on the plot in Fig. 4 are the 
pairs (cb5, cb1) for algorithms of order 5 and 13 (order 9 was 
similar).  Seen is that all possible pairs (cb5, cb1) produced 
by these algorithms lie within the stable region of the stability 
plot and hence the solutions using orders 5, 9, and 13 are 
stable for all values of nε.  Shown also is a plot of the pair 
(cb5, cb1) for an order 4 algorithm which is seen to be 
unstable for a range of nε values (nε <~.3) but stable 
otherwise.  This type of behavior has occurred for other even 
order algorithms and it is believed that even order algorithms 
have regions of instability while odd order algorithms are 
stable.  

It may be useful to point out that: 1 having an algorithm 
with an unstable region does not preclude its use in its stable 
regions, and 2 the algorithm stability will need be determined 
for each problem individually.  In other examples selecting 
the mesh points to be the two points immediately to the right 
or left of a central point has produced algorithms with 
unstable regions and points in the unstable regions which 
both oscillated and were bounded and convergent.These 
algorithms, however, are quite useful to the relaxation 
process when used in their stable regions and in order to use 
them it is essential to be able to determine their regions of 
stability. 

The ability to numerically determine the stability of an 
entire process has the additional benefit of being able to 
determine the stability of an entire multi region structure 
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together with its detailed relaxation schema.  This has been 
done and the results have found that the multi region process 
is stable when it uses stable algorithms. 

 
§6. MULTI REGION FDM SOLUTIONS FOR EPSILON 

BETWEEN 1 AND 2-60  
Let epsilon index be defined by: 
(12) epsilon index = -log2 (ε) 
To establish the appropriate structure for a desired epsilon, 

one starts with epsilon index of 0 and establishes its multi 
region structure as described in §3. Using this structure as the 
basis for the next epsilon, epsilon index is incremented by 1 
and the multi region structure for this new epsilon is 
determined. This is continued until the structure for the final 
epsilon has been created. As an example the region structure 
for ε = 2-40 (~10-12) having a required precision of 10-16 has 
been found to be: 

 0, -1, 0, 32, 1 
 1, 0, 0, 15, 4 
 2, 1, 0, 15, 4 
 …… 
 19, 18, 0, 15, 4 
where the fields are defined in §3.1.  (Values other than 4 

for the number of child subintervals in a parent interval have 
been tried and found to have essentially little effect on either 
the final precision or relaxation time.) 

It is found after determining and relaxing the above 
structure (using double precision arithmetic, lsb of ~10-16), 
that the maximum error at any point within the structure was 
2.9*10-14 which occurred in the above example in region 19, 
z = 17. Since it was suspected that the above error was 
dominated by the cumulative effect of round off errors of the 
double precision arithmetic, the final net was relaxed using a 
very high precision software arithmetic unit. After the net 
was relaxed using the high precision code the maximum error 
was found to be 4.01*10-18 both confirming the suspicion that 
the excessive error was due to round off and likely giving a 
very good estimate to errors due to the relaxation process 
itself. (In the following the high precision code will always 
be used during the final relax of the multi region structure.)  
The above structure would by construction be valid for any 
epsilon <= 2-40. 

Thus for any epsilon a region structure can be determined, 
relaxed and the maximum net errors found and plotted vs 
epsilon. Such a plot is shown in Fig. 5 for various cuts.  (The 
errors have been determined using the known exact solution 
as the reference.) Epsilon index is incremented by 1 for most 
points within the epsilon index range 0-60 except for points 
between 18 and 20 where the increment was taken as 0.1 and 
is plotted as the darkened curve in the Fig. 5.  Seen is that the 
maximum mesh point error shows slight periodic variations 
(periodicity 2) within the range 10 to 60.  It is noted that if 
epsilon index increment was 2 all curves would appear to be 
exactly constant which would be an artifact of the  periodicity 
of 2.  Seen also in fig. 5 is that precisions in excess of 10-20 
can be obtained with appropriately large negative cuts. 
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Fig. 5. The maximum error at any point in the net is plotted vs epsilon 

index for various cuts.  Shown also is a higher precision plot between epsilon 
index 18-20.  Seen is that the error is periodic in epsilon index with period 2 
units, while the phase is not independent of the cut, thus the apparent 
constancy of the cuts -10, -14, -18. 

As mentioned above algorithms of order 13 were used in 
all of the mesh relaxation calculations.  To see the 
dependence of the resultant error on algorithm order, epsilon 
was set at 2-20; the required structure created using the order 
13 algorithm and relaxed using algorithm orders of 5, 9, and 
13. The resultant plots are shown in Fig. 6.   
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Fig.  6. The maximum error in the mesh for ε = 2-20 are plotted vs cut for 

orders 5, 9, and 13.  Seen is the marked dependence of error on order for high 
precision cuts whereas for low precision cuts the errors tend to converge. 

Seen is the marked sensitivity of precision on the 
algorithm used.  This plot also shows that for cuts ranging 
from   -8 to -20 the precision of the 5th order algorithm varies 
between 10-4 and 10-7 while the order 13 algorithm varies 
between 10-12 and 10-20 thus emphasizing that the advantages 
of multi region FDM are only fully realized with the 
accompanying use of high order algorithms.  

7. THE DEPENDENCE OF SINGLE POINT ALGORITHMIC 
ERRORS ON C13_C. 

At this point we have a reference net (cut = -20) for the 
multi region solution for epsilon in the range of 1 to 2-60.  
Using this reference net a single region net of N points can be 
formed and precise values for every point within the net 
determined.  For any point within this single region net its 
value can be then found for a particular algorithm and a 
single point error value determined.  In addition for that same 
point its |c13| value can be calculated and hence the single 
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point algorithmic error can be plotted vs |c13| for all points in 
the net. Note that in such a plot, all of the mesh points in the 
net are represented on the |c13| axis. Such a plot is shown in 
Fig. 7 in which N and epsilon are scanned from 32 to 256 and 
20 to 2-12 respectively. The plot is made for an order 13 
algorithm. It was assumed in §4 that the single point error at a 
mesh point would be of the order of |c13| which from Fig. 7 is 
seen to be valid. In addition it is seen that statement can in 
fact be strengthened to:  at any meshpoint z the algorithmic 
error is bounded above by |c13(z)|. The function represented 
by this upper bound is called the maximum error function 
which is a function of the mesh point location z and is also 
shown in Fig. 7.   

To summarize, any point within the net has a calculatable 
value of c13 and hence a value of the maximum error function 
of the point can be determined. Thus Fig. 7 shows that its 
single point algorithmic error value will be less than its 
maximum error function value. 
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Fig. 7. The errors in evaluating an algorithm order 13 are plotted vs log 

(c13).  All points within the net are on the log|c13| axis. Seen is that the 
maximum error function is an upper bound to the single point algorithmic 
error for any mesh point in the net. 

 
In fig. 8 the maximum errors in relaxed net for any epsilon 

in the range 10 to 60 are given for various cuts.  Seen is that 
the max errors are in fact less than cut as anticipated by the 
discussion above. The implication of this is that one can 
create a region structure based on a desired resultant 
precision and the relaxed structure will in fact meet or exceed 
the desired precision. It is clear in fact that the region 
structure created is in fact optimal in that this structure is the 
smallest structure having the desired precision. 
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Fig.  8. The log10 (maximum error) for 60>epsilon index >10 are plotted 

vs cut.  Seen is that the measured values are less than cut 
For a particular cut one can anticipate that the maximum 

errors only be of the order of the of the maximum error 
function since there could be a cumulative effect of those 
errors (which are strictly not round off errors) so that the 
maximum error value for a given epsilon could be slightly 
larger than the maximum error function. Thus that the errors 
found are less than the maximum error function is fortuitous 
but not required. 

8. GENERALIZED APPLICABILITY 
The establishing of the region structure is clearly not 

dependent on a priori knowing the location of the singular 
point since during region creation one simply finds all those 
points with |c13| values greater than a given value and then 
defines a child region containing those points. The singular 
point itself could be anywhere within the interval (0, 1).  By 
the same token if there were more than 1 singular point the 
process would both find and isolate those points.   

As the method is a derivative of the two dimensional 
electrostatic problem, the extension of the technique to two 
dimensions has already been demonstrated [12-16].  It should 
be apparent that the technique does not depend upon 
knowing the origin of the singularities i.e. the differential 
equation or the geometry but only on the behavior of the 
function produced by the combination of both. Child regions 
are simply placed in over those points at which the single 
point algorithm precision would exceed a certain value 
regardless of the “cause” of the singularity (a small parameter 
in the differential equation or near an edge of a rectangular 
element) in this way assuring that during the final relaxation 
process the algorithm is only applied to those points whose 
single point precision is less than or equal to the desired 
precision. 

  9. NOTES OF CAUTION. 
0. The result is not epsilon uniformly convergent, since the 

structure established for the epsilon index = 60, for example, 
would require for the same precision a different structure if 
epsilon index were larger than 60.  It is not felt that this is a 
real limitation of the technique since the structure for epsilon 
index = 60 would cover all epsilons in the range 2-60 (`10-18) 
to 1 which would likely encompass any realizable physical 
modeling situation.  

 1.  In general it is believed that whenever a high order 
single point algorithm can be developed, the present 
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technique will be viable.  Algorithm development is however 
only assured for linear differential equations.  Algorithm 
development for non linear equations may be possible but 
there is no assurance of success. 

 2. During the algorithm development process a set of 
linear equation must be solved.  If the differential equation 
producing this equation set contains a large number of 
constants, the linear solver may have difficulties solving the 
resultant equation set. Its success would then depend on the 
sophistication of the solver. 

 3. The high precision result described herein comes at a 
price and the price is time.  For example, to create and relax 
the multi region structure using the built in double precision 
arithmetic unit of the processor, for epsilon = 2-60 with a cut 
of -20 takes ~350 seconds while relaxing this output with the 
high precision software takes an additional 300 seconds. This 
is not considered to be excessive but it is certainly not 
instantaneous.  It is also noted that the linear equation set for 
the high order algorithms were solved in the same time 
interval. 

10. COMPARISON WITH OTHER METHODS. 
There are three methods with which this technique can be 

compared: the piecewise uniform mesh method of Shishkin 
method, the fitted mesh method of Bakhvalov, and the multi 
grid method. 

10.1 PIECEWISE UNIFORM MESH METHOD. 
This method has only two regions, a high density region in 

the localized region of the function and a low density region 
in the rest of the net.  Within each region there are a sufficient 
number of mesh points to mitigate the algorithmic errors for 
points within the region.  The problem is of course the link 
between the two regions.  It is felt that to accurately link the 
two regions either a variable mesh might be used or the multi 
region structure developed here used. If neither of these is 
used then it is unlikely that this method will produce 
precisions much higher than workers have already obtained.  
However, if accuracy is not an issue, it is not only applicable 
but probably preferred. 

10.2 FITTED MESH METHOD. 
The fitted mesh method uses a variable mesh which is 

capable of putting a very high density in the localized region 
of the function.  There is a clear equivalence of this method 
and the multiregion method discussed here in that if the mesh 
density at any point net of the fitted mesh was of the same 
order as the density at the equivalent point in the multi region 
net the single point errors would in fact be similar if the single 
point algorithm precisions were themselves equivalent. (See 
Fig. 6). Thus the fitted mesh method could have precisions 
equivalent to those of the present technique.  

10.3 MULTI GRID FDM.  
Multi grid is in extensive use in a wide variety of 

applications.  However a literature search of multi grid 
applied to the test example above has located only two 
references [7, 19] with precision data in the 10-7 range.  
However due to the wide ranging concept of multi grid it is 
certainly capable of having the same structures as those 
determined here.  And if it does have the same structures and 
its single point algorithms have equivalent precisions as the 
order 13 algorithm developed here then the precisions of the 
two methods should be the same.  

Thus both the fitted mesh method and the multi grid 
method are capable of high accuracy and could be 
competitive with the multi region method developed here.  It 
is believed however that the simplicity of the multi region 
method would compete rather strongly against complexity of 
either for problems of common applicability.  

11. CONCLUSION 
The multi region FDM method has been described and 

applied to a one dimensional problem of singularly perturbed 
differential equations. The following have been 
demonstrated: 1 for epsilon in the range of 1 to 2-60 precisions 
of the order of ~10-20 can be achieved.  2 the required region 
structure can be auto established. 

The advantages of the technique are two fold. The first is 
its simplicity.  It uses the standard single region relaxation 
techniques along with well known classical algorithm 
development processes.  The second is its performance.  It 
has been shown capable of achieving precisions which are 
many orders of magnitude beyond those which have been 
obtained by other techniques. The combination of these two 
properties should make it a useful addition to the techniques 
available for solving singularly perturbed boundary value 
problems. 

 
Newark, VT Oct 13 2008 
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