
Automatic Differentiation Applied to Economics

Emmanuel M. Tadjouddine ∗

Abstract—This paper discusses the use of the Au-
tomatic Differentiation approach in evaluating deriva-
tives of functions represented by computer programs.
We then considered a Cournot oligopoly modeled by
a system of stochastic differential equations. The set-
ting is that of a set of self-interested firms striving
to adjust their productions in the direction of higher
profits subject to mistakes or random shocks. The
stochastic differential equations are solved by a nu-
merical method and the profits are calculated using
a Monte Carlo simulation. Then, Automatic Differ-
entiation is used to propagate sensitivities along each
path in an automated fashion. Numerical results have
confirmed the intuition one may have that noisy envi-
ronments can lead to important profit differences be-
tween firms as well as higher sensitivities as opposed
to less noisy ones.

Keywords: Automatic Differentiation, sensitivity

analysis, stochastic differential equations, Cournot

oligopoly

1 Introduction

Solving nonlinear systems or nonlinear optimization often
requires derivative computation. Derivatives can be ob-
tained by hand when they are easy. However, if the func-
tions are too complicated, we may use the popular finite
differencing scheme, the complex-step derivative approx-
imation [11] or the truncation-error-free derivative eval-
uation known as Automatic Differentiation (AD) [7, 14].
AD is a technique allowing for the evaluation of deriva-
tives of a numerical function represented by a computer
program. In here, we will use AD to evaluate sensitivities
of expected profit functions by firms engaged in a com-
petition wherein each firm is self-interested and is trying
to setup its production so as to maximize its expected
profit.

The economic model we have considered is known as
Cournot oligopoly. It represents a process that evolves
over time in a noisy environment giving rise to a stochas-
tic game. This describes a sequential game (played in
rounds) going from one state to another thanks to some
probability transitions. At each round, firms simultane-
ously and independently select an action out of a finite

∗Department of Computer Science & Software Engineering,
Xi’an Jiaotong-Liverpool University, 111 Ren Ai Road, SIP,
Suzhou, Jiangsu Province, P.R. China 215123 Email: em-
manuel.tadjouddine@xjtlu.edu.cn

set of actions according to their individual objective and
the history of the game’s interactions so far. Then, each
firm receives an utility value based on an profit function
mapping the outcomes to real numbers.

As discussed in [1, 6], these interactions can be mod-
eled by a system of Stochastic Differential Equations
(SDEs). To solve these equations, we have used the
Euler-Maruyama scheme, see for example [9, 10]. Then,
we have evaluated the profits of the firms by a Monte
Carlo simulation.

Because of the impact small variations on actions can
have on firms’ profits, it is important to be able to as-
sess the sensitivity of each firm’s profit function with re-
spect to its own action and the actions of its opponents.
These sensitivities are useful as they may guide firms in
their decision making process but also they can help the
oligopoly designer through a feedback loop in the model.
For example, if profit differences are small across a range
of possible actions, then firms can make errors since the
consequences for their expected profit are minor.

The remainder of this paper is organized as follows. Sec-
tion 2 presents an overview of AD, points out its ad-
vantages and disadvantages, and states some of its chal-
lenges. Section 3 presents a Cournot oligopoly model
to which we have used AD to evaluate numerical sensi-
tivities. Eventually Section 4 presents some concluding
remarks.

2 Automatic Differentiation (AD)

Automatic Differentiation of a computer code represent-
ing a function F : Rn �→ Rm can be viewed as a program
transformation in which the original code’s statements
that calculate real valued variables are augmented with
additional statements to calculate their derivatives. This
is carried out by regarding the original computer code as
a sequence of elementary functions having at least a first
derivative and then using the chain rule to automatically
evaluate the function represented by the given code as
well as its derivative. The main advantage of this tech-
nique is that it can handle codes of arbitrary complexity
to provides accurate and fast derivatives while being re-
liable compared to hand-coding.

Assuming dx is the derivative associated with a variable
x and x1, x2 the variables with respect to which we de-

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-7-5 IMECS 2009



sire derivatives, the function F : R2 �→ R : (x1, x2) �→
x1x2/(1 + x2

1) represented by the following code can be
transformed as follows:

v1 = x1x2

v2 = 1 + x2
1

y = v1/v2

⇒

dv1 = x2 dx1 + x1 dx2

v1 = x1x2

dv2 = 2x1 dx1

v2 = 1 + x2
1

dy = (v2 dv1 − v1 dv2)/v2
2

y = v1/v2

(1)
In AD terminology, we define the independent variables to
be those input variables with respect to which we need
to compute the derivatives, the dependent variables to
be those outputs whose derivatives are desired, and the
intermediate variables to be those whose value depends
on an independent and affects a dependent variable. An
active variable is an independent, intermediate, or depen-
dent variable.

We distinguish at least two standard AD algorithms: the
forward mode and the reverse or adjoint mode. The for-
ward mode propagates directional derivatives along the
control flow of the original program. The cost of evaluat-
ing ∇F (see [4, 7] for more details) is bounded above as
follows:

W (∇F) ≤ 3nW (F) (2)

The adjoint mode is composed of two passes: a forward
pass that computes the function and a reverse pass that
calculates the sensitivities of the dependent variables with
respect to the intermediate and independent variables in
the reverse order to their calculation in the function. In
the reverse pass, we may need to recompute intermedi-
ate values required by the differentiation process or ex-
tract them from a storage data structure called the tape
(essentially a LIFO stack) if they have been stored dur-
ing the forward pass. The sensitivities of the dependent
to the independent variables give the desired derivatives.
The cost of calculating ∇F (see [4, 7] for more details) is
bounded above as follows:

W (∇F) ≤ 3mW (F) (3)

Note that the adjoint mode is particularly efficient in
calculating gradients (m=1) since its complexity is not
dependent on the number of inputs. However, the stor-
age requirement may increase dramatically and powerful
strategies to reduce the tape size are required in order to
approach the complexity bound shown in (3).

The forward and adjoint modes of AD are implemented
in various AD tools that usually use the following ap-
proaches:

• Augmenting the given computer code with ex-
tra statements calculating derivatives and output
a transformed computer code (e.g., Adifor, Taf,
Tapenade).

• Providing a library that overloads the elementary
operations to support derivatives calculation (e.g.,
AdolC, Mad, Adimat). See www.autodiff.org
for references and details on those softwares.

In this paper we are concerned with AD software for nu-
merical codes written in the FORTRAN programming
language. Examples of such AD tools are Adifor, Taf,
and Tapenadethat implement the two AD modes with
variant strategies for performance purposes.

To differentiate a given source code using an AD package,
we usually specify the independents, dependents, and the
top-level routine, and then choose an AD algorithm (e.g.,
forward mode AD). However, the process is frequently
not that straightforward for large-scale applications since
current AD tools are limited by their language coverage.
This limitation often forces the AD user to rewrite his
or her input code before being transformed by the chosen
software. This phase of code preparation may be aided by
scripting languages (e.g., SED, PERL, or PYTHON) to
automate the rewrite process. Examples of FORTRAN
features not currently well handled by current AD tools
include structured or derived data types, modules, dy-
namic allocation, pointers, or control structures such as
cycle or exit. Consequently, an input code that uses
such features may need to be rewritten prior to differen-
tiation. In this preparation process, the AD user must
validate each transformation by checking the semantic of
the input code is preserved. This may become a difficult
task when the input program is a legacy code that has
been validated or developed in a third party location.
Eventually, when the input code can be read and ana-
lyzed by the AD tool, a transformed code that computes
the original function and its derivatives will be generated.
The obtained computer program need be compiled and
run to get derivative values. This leads us to seek ways
of checking the correctness of derivative values hence val-
idating the AD generated code and of improving its per-
formance.

2.1 Validation

To ensure an AD generated code calculates the cor-
rect derivative values, it is important to check that the
AD obtained values are in line with those from Finite-
Fifferencing (FD) and that different AD algorithms give
the same values to within the limits of the machine pre-
cision. We may proceed as follows:

1. Compute a single directional derivative ẏ = ∇F (x)ẋ
for a random direction ẋ by using FD and the for-
ward mode AD. Then check that the difference be-
tween the two values is about the square root of the
machine precision ε.

2. Compute a single adjoint x̄ = ∇F (x)T ȳ for a ran-
dom ȳ via the reverse mode AD. Then check that

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-7-5 IMECS 2009



ȳẏ ≡ x̄ẋ.

This validation process is crucial and needs careful atten-
tion. Note that AD makes the assumption that the input
function F to be differentiated is composed of elemental
functions φ that are continuously differentiable on their
open domains [7]. However, this may not be the case for
real-life applications. At a point on the boundary of an
open domain, the function F can be continuous, but its
derivative ∇F may jump to a finite value or even infinity.
A black box approach of AD can lead to wrong results
in the presence of non-differentiable functions or iterative
processes.

2.1.1 About non-differentiability

A real-life application may contain mathematical func-
tions that are not differentiable in some points in their
domain. A computer code that models such an applica-
tion may contain intrinsic functions (e.g. abs, or arccos)
or branching constructs used to treat physical constraints
for instance non physical values of model parameters.
We now describe three situations, which may cause non-
differentiability problems.

First, let us consider the case related to non-differentiable
intrinsic functions. For instance, the derivative of cos−1

is not defined at x = 0 since

d cos−1(x = 1)
dx

=∞.

Moreover, consider the function abs. Its derivative evalu-
ated at the point x = 0 has more than one possible values
including −1, 0, 1. Choosing one of these values depends
upon the numerical application. This suggests that there
is no “automatic” way of treating such a pathological
case and that code insight is crucial in guiding sensible
choices. To date, the best thing an AD tool can do is
to provide an exception handling mechanism that can be
turned on in order to track down intrinsic related non-
differentiable points. Adifor is a primary example for
such a mechanism and to our knowledge, at the time of
the writing, it is unique in that respect.

Second, let us consider pathological cases related to
branching constructs. Differentiating blindly such a con-
struct may give point-valued derivatives. Therefore a
function F that is mathematically differentiable may be-
come non-differentiable when AD is applied. This hap-
pens namely when the test used in the branching con-
struct involves active variables as in the following exam-
ple:

if x == 0 then y = 1.0 else y = x + 1.0 (4)

An AD tool will give a derivative value zero at x=0 in lieu
of the value one. Although in this example, the branch-
ing construct is not needed, there may be cases where

such constructs may be used to prevent unphysical val-
ues. Currently AD tools do not handle or even detect
these cases. Tracking down such pathological cases may
require developing robust program analysis algorithms or
rely on the user’s insight of the given computer code.

Third, consider an engineering application in which the
independent or dependent variables are real-valued but
complex-valued data have been used for computation
purposes. Using the equivalence between R2 and C, a
complex function h : a + ib �→ f(a, b) + ig(a, b) of a com-
plex variable a + ib, where a, b are real values and f, g
are real-valued functions, is differentiable if and only if
h is analytic meaning ∂f

∂a=∂g
∂b and ∂f

∂b = − ∂g
∂a . It follows

that the conjugate operator z �→ z̄ is not differentiable.
The application of AD into such complex-valued func-
tions is discussed in [13]. Unlike real-valued functions,
complex-valued functions may be many-to-one mappings.
For example, the function sqrt maps a complex num-
ber x=a + ib to two complex numbers z and −z with

z=
√

1/2(a +
√

a2 + b2) + i
√

1/2(−a +
√

a2 + b2). This
may raise subtle issues for the application of AD. It also
turns out that the modulus function abs raises issues
when evaluated at the origin. To handle possible singu-
larities, the application of the chain rule must be robustly
used by the AD tools [13].

2.1.2 Iterative Numerical Solvers

An important question in using AD concerns differentiat-
ing through iterative processes. Typically, AD augments
the given iteration with statements calculating deriva-
tives. Empirically, AD provides the desired derivatives.
However, questions remained as to whether the AD gen-
erated iteration converges and what it converges to. Con-
sider Fischer’s example as discussed in [3]. The iterative
constructor xk+1 = gk(xk) with

gk(x) = x exp(−kx2) (5)

converges to g ≡ 0 when k → ∞ whilst its derivative
g

′
k(x) → 0 but g

′
(0) = 1. The issues of derivative conver-

gence for iterative solvers in relation to AD are discussed
in detail in [5, 8] for the forward mode AD and in [2] for
the adjoint mode. In [8], it is been shown that the me-
chanical application of AD to a fixpoint iteration gives a
derivative fixpoint iteration that converges R-linearly to
the desired derivative for a large class of nicely contrac-
tive iterates or secant updating methods.

Usually, current AD tools generate derivative code us-
ing the same number of iterations as the original solver.
However, if the initial guess is close to the solution, then
this adjoint solver does no longer converge to the adjoint
of the solution. For example, let us consider the following
implicit iterative solver:

z0 = z0(x, y), zi = g(x, y, zi−1) for i = 1 . . . l, (6)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-7-5 IMECS 2009



for l a non negative integer and the function g defined as:

g : R3 → R
(x, y, z) �→ (y2 + z2)/x

z0 = z0(x, y) is meant z0 is initialized for some values of
x and y. For given values x = 3, y = 2 and an initial
guess z = 0.5, the implicit equation

z = g(x, y, z)

has a solution z∗=z∗(x, y)=1 and ∇g(x, y, z∗)=(−1, 1).
When the code in equation 6 is mechanically differenti-
ated using for example Tapenade, we observed:

• if the initial guess is within a radius of the solution
that leads to convergence, then the AD generated
iteration converged to the correct derivative.

• if the initial guess is closer to the solution, say the
initial value of z=1, then the derivative iteration con-
verges in one iteration to ∇g(x, y, z∗)=(−1/3, 1/3),
which is wrong.

This means the assumption made by most AD tools to
use the same number of iterations taken by the original
iterative process for the derivative one is fair but may
lead to wrong derivatives in certain cases. As suggested
in [2], the AD tool ought to augment the convergence
criterion to account for derivative convergence.

In summary, validating derivative calculation via AD can
be difficult in the presence of non-differentiable functions
and iterative solvers. It is hoped future AD tools will
help spotting such anomalies and raising warnings to the
AD user since, to our knowledge, there is no automatic
ways of solving these issues.

2.2 About Efficiency

In theory, the fundamental idea of AD is simple: consider
a computer code as a composition of elementary functions
and differentiate it using the chain rule. The main ad-
vantage of this technique is that it provides algorithms
that exhibit better accuracy and performance compared
to finite differencing and that it is more reliable than
hand-coded derivatives, which are error prone. In prac-
tice, there is a scope for AD tools to improve further in
producing fast and reliable derivatives. Most of these im-
provements concern code optimization. New algorithms
have been developed and implemented into some AD soft-
ware. These include the followings:

• Dependency analyses which determine the set of ac-
tive variables and procedures. This eliminates many
redundant calculations e.g., creating derivative ob-
jects that are a priori zero or adding/multiplying
zero.

• In-out analyses which determine sets of active vari-
ables or required variables for the reverse sweep of
the adjoint mode at subroutine level.

• Providing ’directives’ facilities for the user to exploit
certain insights of the code to be differentiated (e.g.,
parallel loops).

• Use of graph elimination based techniques for local
Jacobians, see for example [12, 15, 4].

However, hand-tuning the AD generated code can give
further performance.

3 Cournot Oligopoly

Let us consider a Cournot oligopoly (a competition be-
tween a small number of sellers) with n firms competing
for the production of a single good. The cost to firm i of
producing xi units of the good is an increasing function
Ci(xi) while the firms’ total output is sold at a single
price, which is a decreasing function so that firm i’s rev-
enue is xi(a−b

∑n
j=1 xj), wherein a and b are nonnegative

real numbers. Thus, firm i’s profit is

πi(x) = xi(a− b

n∑
j=1

xj)− Ci(xi) (7)

This is usually modeled as a game wherein players are
the set of firms and the actions for a player i are the
set of nonnegative numbers xi. Over time each firm i
will take actions xi so as to maximize πi(x). This gives
rise to a dynamical system wherein firms produce certain
amounts of the good to maximize their profits but also,
observed profits lead to adjustments for the production
quantity. However, these decisions on how much to pro-
duce are taken under uncertainties. These uncertainties
may cause errors or random shocks in each firm’s produc-
tion. Random shocks may arise from mistakes in judg-
ment, preference discrepancies or emotions. Moreover, a
small variation of a firm’s production could impact its
profit and those of its opponents.

Let us now assume the oligopoly is composed of n ≥ 2
firms and let us denote xi(t) ∈ [x, x̄] the action of firm
i over time. Let ui(x(t), t) be the expected profit for
firm i when firms take action x. Assuming that the
profit function ui is differentiable and denoting gi(x(t)) =
u

′
i(x(t), t) = ∂ui(x)

∂xi
, actions xi(t) for an firm i evolve

according to the following system of independent SDE
(Stochastic Differential Equations)

dxi(t) = gi(x(t), t) dt + σi dwi(t), i = 1, . . . , n (8)

wherein the differential dwi(t) of the standard Wiener
process wi(t) represents the random shocks and σi a pa-
rameter related to each firm, see [1, 6] for more details.
Equation (8) expresses the idea that a player i’s deci-
sion will increase as its expected profit increases at x(t)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-7-5 IMECS 2009



proportionally to the slope (derivative) of the profit func-
tion plus a stochastic Brownian motion with a parameter
σi representing the importance of random shocks in the
system.

If the production cost function Ci admits a continuous
first derivative, then the profit function πi for firm i is
differentiable and its derivative with respect to the output
of firm i is

∂πi(x)
∂xi

= a− b

n∑
j=1

xj − bxi − C ′i(xi) (9)

Actions xi taken by the firms in the competition are in-
dependent and their evolution can be described by the
system of independent SDEs in equation (8) since each
firm is aiming to maximize its profit. We will use this
example in the solution of equation (8) using the Monte
Carlo method.

3.1 Monte-Carlo Simulation

We have used the Euler-Maruyama scheme, see for ex-
ample [9, 10] to solve the SDEs in equation (8). Then,
we have estimated each firm’s profit by using the Monte-
Carlo method to evaluate an average profit over P Brow-
nian paths. For each path, we consider only the decision
x

(j)
i (T ) taken by firm i along the Brownian path j at time

T . The associated profit over P paths can be estimated
as

ui(xi(T )) =
1
P

P∑
j=1

1
T

gi(x(j)(T )) (10)

Notice that although the equations describing the dynam-
ics of the decision making for each player are independent,
the profit of each player relies on solving the n SDEs.

For a given firm i in the oligopoly, we would like to esti-
mate

∂ui(x(T ))
∂xj(0)

,

the sensitivity of firm i’s profit with respect to the initial
decision xj(0) of a participant j. Such a sensitivity in-
formation may help firm i in its decision making process
but also it may assist an oligopoly designer in inventing
protocols that have some desirable properties. For ex-
ample, if initial actions have small effects on an firm’s
profit, then firms can make errors since the consequences
for their expected profit are minor.

If all components xk(t), k = 1, . . . , n of the vector x are
differentiable in xj(0) and if ui is differentiable in xi(t),
then we can write

∂ui(x(T ))
∂xj(0)

=
n∑

i=1

∂ui(x(T ))
∂xi(T )

∂xi(T )
∂xj(0)

(11)

Notice that this gives us pathwise derivatives, not only we
get sensitivities with respect to an initial decision xj(0)

but we can even compute sensitivities with respect to
xj(mh), the action of player j at the discrete time mh in
the evolution of the stochastic game.

3.2 Numerical Results

We have solved the equations (8) wherein g(x) represents
the derivative of the firm i’s profit πi in equation (9) and
Ci(xi), a monotonically increasing function on [0 +∞[,

g(x) = ∂πi(x)
∂xi

,

Ci(xi) = cix
2
i ,

whith ci > 0. The EM solutions for two firms, say 1
and 2, in an olygopoly composed of 30 firms are depicted
in Figure 1. The parameter σi representing the diffu-
sion term for the SDEs in equation (8) was set so that
σ1 > σ2. We have observed a higher variability for the
decisions of firm 1 compared to those of firm 2. It is as if
the parameter σi in equation (8) represents some kind of
variance of the variable xi, which encodes obviously the
actions by firm i.

Figure 1: Simulation of the evolution of decisions for firms
1 & 2 in a oligopoly of 30 firms; in this simulation, we
have chosen σ1 > σ2.

We have also computed the profit πi(x) for each firm i by
using the Monte-Carlo estimation in equation (10) and
then calculated the Jacobian ∇π(x) by using both FD
(Finite-Differencing) and the AD technique. The AD sen-
sitivities have been obtained using the MAD tool, which
implements the forward mode AD to calculate the deriva-
tive of a function written in MATLAB. Because ∇π(x)
is a square matrix and given the complexities of the for-
ward and reverse modes AD, it is natural to use here the
forward mode and MAD is a good choice.

Furthermore, by varying the parameter σi in equa-
tion (8), we observed that the more noise in the sys-
tem, the more sensitive the profits become and that in
a less noisy environment, these sensitivities are getting
even smaller. We interpret this by the ability by a player
to learn by its mistakes and to improve its profit over
time in a less noisy environment than in a more noisy
one. Figure 2 shows the performance of sensitivity eval-
uations using both FD and AD.

In our experiments, the function π(x) is been evaluated
over 10, 000 Brownian paths using a Monte Carlo simu-
lation. We have first checked that both FD and AD gave

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-7-5 IMECS 2009



Figure 2: CPU ratios between the Jacobian and function
evaluation for both FD and AD

comparable results; the difference between the AD results
and FD results were about 10−7. As Figure 2 shows, the
FD method is likely to outperform AD for small calcu-
lations. When it comes to large-scale computations, the
AD is usually faster, see for example [4, 12, 15] for more
information about the performance of AD in evaluating
derivatives.

4 Conclusions

In this paper, we have presented a thorough overview of
the AD technique showing its strengths and weaknesses.
We have used it to evaluate sensitivities of expected profit
functions in the setting of a Cournot oligopoly model.
Numerical results have confirmed the intuition one may
have that for each firm, the impact of initial decisions
is higher when the level of noise in the system is higher
in comparison with less noisy environments. The profit
differences between players and the sensitivities decrease
when the coefficient σ of the Brownian term is small.
Sensitivities may be important in decision making since
when errors in decisions imply huge loses, firms’ behav-
iors may be altered accordingly. The use of Automatic
Differentiation allows us to get accurate and fast sensi-
tivities. The accuracy of these sensitivities may be of
interest in modeling scenarios whereby one has to choose
parameters so as to achieve a desired outcome in the sys-
tem. We believe the AD technique is important and that
engineers and practitioners in scientific computing should
be aware of in order to avoid spending months to produce
hand-coded derivatives.

References

[1] S. P. Anderson, J. K. Goeree, and C. A. Holt.
Stochastic game theory: Adjustment to equilibrium
under noisy directional learning. Virginia Economics
Online Papers, 327, 1997.

[2] B. Christianson. Reverse accumulation and attrac-
tive fixed points. Optimization Methods and Soft-
ware, 3:311–326, 1994.

[3] H. Fischer. Special problems in automatic differenti-
ation. In A. Griewank and G. F. Corliss, editors, Au-
tomatic Differentiation of Algorithms: Theory, Im-

plementation, and Application, pages 43–50. SIAM,
Philadelphia, PA, 1991.

[4] S. A. Forth, M. Tadjouddine, J. D. Pryce, and J. K.
Reid. Jacobian code generated by source transfor-
mation and vertex elimination can be as efficient as
hand-coding. ACM Transactions on Mathematical
Software, 30(3):266–299, Sep. 2004.

[5] J. C. Gilbert. Automatic differentiation and itera-
tive processes. Optimization Methods and Software,
1:13–21, 1992.

[6] J. K. Goeree and C. A. Holt. Stochastic game the-
ory: For playing games not just for doing theory.
Proceedings of the National Academy of Sciences of
USA, 96(19):10564–10567, September 2003.

[7] A. Griewank. Evaluating Derivatives: Princi-
ples and Techniques of Algorithmic Differentiation.
Number 19 in Frontiers in Appl. Math. SIAM,
Philadelphia, PA, 2000.

[8] A. Griewank, C. Bischof, G. Corliss, A. Carle, and
K. Williamson. Derivative convergence for iterative
equation solvers. Optimization Methods and Soft-
ware, 2:321–355, 1993.

[9] D. J. Higham. An algorithmic introduction to nu-
merical simulation of stochastic differential equa-
tions. SIAM Review, 43(3):525–546, 2001.

[10] D. J. Higham. An introduction to financial option
valuation: mathematics, stochastics, and computa-
tion. Cambridge University Press, Cambridge, UK,
2004.

[11] J. R. R. A. Martins, P. Sturdza, and J. J. Alonso.
The complex-step derivative approximation. ACM
Trans. Math. Softw., 29(3):245–262, 2003.

[12] J. D. Pryce and E. M. Tadjouddine. Fast automatic
differentiation jacobians by compact LU factoriza-
tion. SIAM J. Scientific Computing, 30(4):1659–
1677, 2008.

[13] G. D. Pusch, C. Bischof, and A. Carle. On automatic
differentiation of codes with COMPLEX arithmetic
with respect to real variables. Technical Memoran-
dum ANL/MCS-TM-188, Argonne National Labora-
tory, Mathematics and Computer Science Division,
9700 South Casss Avenue, Argonne, IL 60439, June
1995.

[14] L. B. Rall. Automatic Differentiation: Techniques
and Applications, volume 120 of Lecture Notes in
Computer Science. Springer-Verlag, Berlin, 1981.

[15] E. M. Tadjouddine. Vertex-ordering algorithms for
automatic differentiation of computer codes. The
Computer Journal, 51(6):688–699, 2008.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-7-5 IMECS 2009


